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Abstract 
Gable metal frames are popular, cost-efficient structural systems for commercial and industrial 
buildings. The use of relatively thin web material typically leads to buckling of the panel zone in 
the beam-to-column connections when the frame is subjected to lateral loads. However, the panel 
zones may still be capable of developing post-buckling resistance by means of tension field action 
(TFA). Previous experimental research has shown that the exterior corner of a panel zone in gable 
frame knee joints may not be stiff enough to fully develop TFA. Although these test results have 
demonstrated the development of post-buckling strength, the amount of TFA and the design 
parameters that affect such action are not well understood. This paper presents a theoretical model 
for TFA in knee joints based on plastic analysis, and an accompanying equation for predicting the 
post-buckling panel zone strength for positive bending (wherein the tension field is oriented from 
the interior to the exterior corners). The TFA was found to primarily depend on three design 
parameters, namely, flange flexural strength, panel aspect ratio, and panel slenderness. To calibrate 
the proposed equation, a parametric analytical study was conducted using the finite element 
method. The modeling scheme accounted for material and geometric nonlinearity and was 
validated with experimental test data. The study involved 98 prototype gable frame configurations 
and allowed the investigation of the impact of the aforementioned three design parameters on the 
TFA. The proposed equation was found to predict the panel zone shear strength for the prototype 
frames with an average error of 1% and an error standard deviation of 5%. Therefore, the equation 
can be used to calculate the post-buckling shear strength of panel zones for the range of design 
parameters considered in the parametric study.  
 
 
1. Introduction 
Metal building systems are popular for low-rise buildings because they are associated with fast 
construction and cost efficiency. The corner regions of a gable frame in metal building systems 
are sometimes referred to as knee joints and the column web in the knee joint is the panel zone. 
As the knee joint undergoes bending, the panel zone is subjected to significant shear force.  
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Experimental tests by Young and Murray (1997) have demonstrated that knee joints subjected to 
positive bending (tension on the bottom flange of the rafter) can develop some post-shear-buckling 
resistance due to tension field action (TFA). In Table 1, the experimental shear strength of the 
panel zone in test specimens is compared to the nominal shear strength calculated with AISC 360-
16 Eq. G2-7 (AISC 2016) with and without the consideration of full tension field action. It can be 
observed that the shear strength of all specimens exceeded the value Vcr corresponding to shear 
buckling, but was less than the sum, Vcr + VTFA, corresponding to full TFA. Therefore, TFA was 
partially developed in these test specimens. 
 
The tests by Young and Murray (1997) were conducted on a limited number of specimens, and 
could not allow a reliable estimation of the amount of TFA that can be developed for a knee joint. 
For this reason, the AISC Design Guide 16 (Murray and Shoemaker 2002) does not allow the 
consideration of TFA in shear design of knee joint panel zones subjected to positive bending. 
 
To make use of the post-buckling shear strength for a more efficient and economical design, it is 
beneficial to study the amount of TFA, the consistency of the level of action, and the design 
parameters that affect the action in this type of structures. This paper describes an analytical and 
computational study that investigates the shear strength of thin panel zones in knee joints subjected 
to positive bending. A theoretical model was created to derive prediction equations for the strength, 
and a parametric study with finite element analyses was conducted to validate these proposed 
equations. 
 

Table 1 Shear strength of knee joint specimens in Young and Murray (1997)  
Specimen # 1 2 3 4 
Vexp (kips) 43.2 46.8 119 148 
Vexp / Vcr 1.18 1.48 2.33 3.68 

Vexp/ (Vcr+ VTFA) 0.64 0.64 0.67 0.77 
 Note: Vexp = shear strength obtained from the experiments;  
  Vcr = shear buckling strength of web panel; 
  VTFA = shear strength developed by tension field action 

 
2. Theoretical Model for TFA in Knee Joints under Positive Bending 
A theoretical model is established based on plastic analysis to predict the post-buckling shear 
strength of a knee joint panel zone subjected to positive bending. The model is based on the 
following assumptions: 
 

1) The panel zone web plate is simply supported along its four edges by the panel zone flanges. 
This assumption is similar to that by Porter et al. (1975). 

2) The panel zone flanges develop plastic hinges at the exterior corner of the panel zone. These 
hinges lead to a mechanism in the panel zone after it buckles (see Rockey 1971, Porter et 
al. 1975). 

3) The tensile stress in the tension field is uniformly distributed and its orientation is aligned 
with the diagonal of the panel plate (Rockey 1971). 

4) The two panel edges on the rafter and column sides are rigid in-plane, but can undergo rigid 
body rotation relative to one another. 

5) The shear capacity associated with buckling Vcr remains constant after the panel buckles 
(Porter et al. 1975). 
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The shear strength, VPZ, of the panel zone considering the contribution of TFA is given by: 
 
 PZ cr TFAV V V= +  (1) 
 
The shear buckling strength, Vcr, is given by: 
 
 cr v cr c w crV A d tτ τ= =  (2) 
 
where Av is the overall area of the panel web plate cross section along the top of column, dc is the 
full depth of the panel zone along the top of column, tw is the thickness of the panel web plate, and 
τcr is the critical shear stress at buckling. For a simply supported rectangular plate, τcr is given by 
(Timoshenko and Gere 1961): 
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where K is a buckling coefficient. The value of K is given by the following expression (Ziemian 
2010): 
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Parameters hc and hr in Eq. 4 correspond to the panel width (column web height) and panel height 
(rafter web height), respectively. 
 
For an infinitesimal square element in the tension field of panel zone, the stress tensor can be 
transformed into a coordinate system aligned with the direction of the tension field (Fig. 1a). At 
the ultimate state, the transformed stress components must satisfy the Von Mises yield criterion: 
 
 2 2 23 yw+ − + =ξ η ζ ησ σ σ σ τ σ  (5a) 
 
where σyw is the yield stress of the web plate.  
 
One can obtain the following expression for the diagonal tension field stress when the plate yields: 
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where θ is the angle between the panel web diagonal and the horizontal face of the panel zone. 
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Fig. 1b schematically summarizes the assumed plastic mechanism for a knee joint panel zone 
subjected to shear force. Plastic hinges develop in the exterior flanges at distances c1 and c2 from 
the external corner of the panel, as also shown in Fig. 1b. The values of c1 and c2 can be obtained 
by considering equilibrium of the flange segments XY and XZ and given as follows: 
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           (a) Stress transformation of an element   (b) Proposed failure mechanism 
                  on the diagonal of panel zone        with virtual displacements 

Figure 1: Panel zone subjected to pure shear 
 
The tension field strength, VTFA , corresponding to the assumed mechanism can be obtained by 
employing the principle of virtual work for the mechanism: 
 
 ext intW W=  (8) 
 
where Wext and Wint are the virtual external work and virtual internal work, respectively. The values 
of the two virtual work quantities can be obtained by the following equations. 
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where 
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Solving equation ext intW W=  for TFAV  results in: 
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The critical shear stress can be expressed as cr v yCτ τ= , where 
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Eq. 5b can also be written as: 
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Eq. 11 can be written as: 
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Section 4 of this paper will discuss a modification to Eq. 15 that adjusts for actual boundary 
conditions and the final equations are included in the Conclusion section. 
 
3. Finite Element Modeling Approach and Validation 
A computational study is performed using the commercial finite element program LS-DYNA 
(LSTC 2016a; LSTC 2016b), which is capable of simulating structural response in the presence of 
material nonlinearity, large displacements and large strains. The models of the prototype structures 
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employ shell elements with selectively reduced integration, using the formulation of Hughes and 
Liu (1981), to capture the inelastic hysteretic material behavior and the buckling of panel regions. 
As shown in Fig. 2, refined three-dimensional shell element assemblages simulate the connection 
regions, while the remainder of the frame members are modeled with much simpler frame (beam) 
elements, as this remainder of the frame is assumed to remain elastic during the loading and its 
behavior is not of primary interest in this study. The kinematics of the beam elements are also 
governed by the formulation of Hughes and Liu (1981). 
 
 

 
Figure 2: Finite element model with high-fidelity representation of the connection regions 

 
The model shown in Fig. 2 simulates a knee joint subjected to positive bending.  The end of the 
beam (at the approximate inflection point of the portal frame) and bottom of column are assumed 
to be points of zero moment.  The application of loads as shown in Fig. 2 produces combinations 
of member axial force and bending moment which are consistent with those in a real building.  
Based on a mesh sensitivity study, an element size of 0.5 in. for the shell elements was found to 
lead to practically converged results in terms of load-deformation response and deformation 
patterns. An initial imperfection was also introduced in the original geometry of each mesh based 
on the first buckling mode such that the maximum initial out-of-plane deviation of the panel web 
is 1/72 times the maximum in-plane panel plate dimension. The specific value equals the tolerance 
allowed for deviations from a plane in the webs of built-up plate girders according to MBMA 
(MBMA 2012). An elastoplastic constitutive model, using a von Mises yield surface, linear 
kinematic hardening, and an associative flow rule was used to model the steel. The modulus of 
elasticity and hardening modulus were set equal to 29,000 ksi and 400 ksi, respectively. 
 
To validate the finite element modeling approach for this study, two specimens tested by Young 
and Murray (1997) were simulated, to ensure that the computational models can satisfactorily 
capture the experimentally observed load-displacement response and buckling modes. The 
analytically obtained force-displacement curves for the two specimens are compared to the 
corresponding test results in Fig. 3. The peak force values obtained from the experiments and the 
FEA are 16.9 kips and 18.5 kips, respectively, for the first specimen. The peak force values for the 
second specimen are 21.9 kips and 23.6 kips, respectively. The discrepancy between the 
analytically obtained and experimentally recorded peak force values is most likely due to the 
existence of residual stress in the panel zone and surrounding flanges. Such residual stresses are 
not accounted for in the computational models. Fig. 4 shows the deformed shapes of the specimens 
in the tests and the simulations. Overall, the FEA results agree reasonably well with the test data. 
 

Column Rafter 

Panel Zone 
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 (a) Specimen 1 (b) Specimen 2 

Figure 3: Force-displacement response for validation analyses 
of specimens tested by Young and Murray (1997) 

 

 
Figure 4a: Comparison of analytically obtained and experimentally observed deformation patterns, for validation 

analyses of the knee joint Specimen 1 tested by Young and Murray (1997) 
 

   
Figure 4b: Comparison of analytically obtained and experimentally observed deformation patterns, for validation 

analyses of the knee joint Specimen 2 tested by Young and Murray (1997) 
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4. Parametric Study and Validation of the Theoretical Model 
The panel strength obtained with the proposed theoretical model primarily depends on three 
dimensionless variables, namely, panel web slenderness, max(hc, hr)/tw , panel web aspect ratio,   
hr /hc , and the panel flange flexural strength parameter, MP

* . The range for the values of these 
variables in the 56 prototype structures has been determined based on the responses of an industry 
survey and is given in Table 2. More information about the industry survey can be found in Wei 
et al. (2017).  A detailed description of the dimensions of the prototype structures is also provided 
in Table 5 of the Appendix. In all prototype structures considered, the parameter MP

* is identical 
for both flanges at the corner edges of the panel zone (i.e. the flanges on the two outside edges of 
the knee joint are assumed identical). All prototype configurations have a roof slope of 2:12 and a 
vertical end-plate connection. No stiffener is used across the panel zone. 
 

Table 2 Values and combinations of the three variables for the design of prototype structures 
 

 
 
The validated modeling scheme was used to create 56 models for the prototype knee joint 
configurations. The maximum applied displacement in the models was equal to 10 inches 
(corresponding to a story drift of approximately 4% ~ 5% for most of the configurations).  
 
The analyses of the prototype structures yielded two types of force-displacement behavior in terms 
of post-yielding response. The first type corresponds to softening, where the strength degraded 
after reaching a peak capacity at a relatively low level of deformation, as shown in Fig. 5a. 
Softening was associated with kinks (i.e. large rotations) forming in the exterior flanges at the 
location of the flange plastic hinges.  The second type is shown in Fig. 5b and corresponds to 
hardening, where an initial, linear segment of the load-displacement curve reaches a threshold 
value of force, after which point the force-displacement curve retains a positive, hardening slope. 
Softening occurred for cases with MP

*, equal to 0.005 or 0.01, where the flanges on the outside of 
the panel zone were weaker and experienced large inelastic deformations.  Conversely, hardening 
response was obtained for higher values of MP

*, corresponding to cases with less deformable 
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Figure 5: Different types of force-displacement curves obtained in analyses of prototype structures and definition of 

peak force, Fmax 

 max(hc, hr)/tw  hr /hc MP
* 

144, 192, 256, 292 
0.67, 1.50 0.010 

0.75, 1.00, 1.33 0.005, 0.010, 0.050, 0.100 
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flanges, which are adequately stiff to anchor the tension field action and allow the development of 
post-buckling strength in the panel zones, associated with hardening in the elastoplastic material. 
Given that the applied force in the load-deformation curve is always increasing, a definition of the 
obtained shear strength is necessary. The present study defines the peak force for hardening 
response as the force corresponding to a displacement value equal to four times the yield 
displacement, as shown in Fig. 5b. This approach was originally employed by Krawinkler (1978) 
to define the ultimate shear strength of panel zones. 
 
After the maximum applied force is obtained from the load-deformation curve, the maximum 
moment Mu and axial force Pu applied at the rafter face of the panel zone can be determined, based 
on the geometry of the knee joint. The panel shear strength from the FEA results, VFEA , is 
calculated using the following equation: 
 

 1
1.08 2

u u
FEA

ro

M PV
h

 
= − 

 
  (16) 

 
where hro is the distance between the center lines of the rafter flanges at the rafter face of the panel 
zone. The “1.08” factor in Eq (16) is equal to the average ratio of analytically obtained over 
experimentally recorded shear strength values in the validation analyses of Section 3. For this 
reason, the same factor is used to correct the shear strength values obtained in the parametric 
analyses.  
 
A modification to the prediction equation is calibrated to account for the idealized assumptions 
made during the formulation of the theoretical model, e.g., that the panel web plate is simply 
supported in the out-of-plane direction and rigidly anchored to resist in-plane deformation at the 
edges connected to the column and rafter, that the stress distribution across the tension field strip 
is uniform, and that the geometry of the panel zone is a rectangle as well. Specifically, the shear 
buckling coefficient, Cv , is modified to account for the limited accuracy of these idealized 
assumptions. A modification with a first-order linear equation is made to Cv as follows: 
 
 1 2

*
v vC C C C= +  (17) 

 
where C1 and C2 are constant coefficients determined by solving an optimization problem, aimed 
to minimize the root mean square (RMS) of the values, (VPZ /VFEA  − 1). A Generalized Reduced 
Gradient (GRG) nonlinear solving method (Lasdon et al. 1978) is adopted for the solution of the 
optimization problem, and the optimal values of C1 and C2 were found to be equal to 0.50 and 
0.17, respectively. 
 
Table 5 in the Appendix summarizes the results for the 56 models from the FEA compared to those 
calculated with the modified theoretical model. Additional details are included in Wei et al. (2017).  
The modified equations were found to produce panel zone shear strength that were satisfactorily 
close to the shear strength from the FEA models by 1% on average with a standard deviation of 
4% for the difference, and the difference is less than 10% for all the cases. The accuracy of the 
modified theoretical equations is also reflected in Fig. 6, which presents the relation between the 
panel shear strength from the FEA and the theoretical equations. 
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Figure 6: Evaluating panel zone shear strength equations as compared to FEA results 

 
Table 3 shows the comparison of shear strength from tests and from the theoretical model for two 
test specimens (Young and Murray 1997). The predicted shear strength from the modified 
equations agrees reasonably well with test results. 
 

Table 3 Validation of Theoretical Model against Test Data 
Specimen 

 # 
Vexp 

(kips) 
VPZ 

(kips) VPZ / Vexp 

1 43.2 43.5 101% 
2 46.8 43.6 93% 

 
Table 4 Summary of the Computational Study 

Total number of models 98 
Panel web thickness (in) 0.164 – 0.250 
Panel web height (in) 24 – 48 
Panel web width (in) 24 – 48 
Panel flange width (in) 5 – 16 
Panel flange thickness (in) 0.25 – 1.5 
Panel web slenderness max(hc , hr)/tw 144 – 292 
Panel web aspect ratio hr /hc 0.67 – 1.50 
Panel flange flexural strength parameter MP1

* 0.005 – 0.1 
Panel flange flexural strength parameter MP2

* 0.005 – 0.1 
Colum and rafter sectional property Prismatic, tapered 
Orientation of end-plate connection Vertical, horizontal, sloped 
Roof slope 0:12, 2:12, 4:12 
Average of VPZ / VFEA 99% 
Standard deviation of VPZ / VFEA 4% 
Percentage of models with 15% difference or less 100% 
Percentage of models with 10% difference or less 98% 
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Additional studies involving 42 prototype structures were also conducted to investigate the impact 
of several other variables on the knee joint panel zone shear resistance, such as column and rafter 
lengths, use of tapered sections, different dimensions for the two exterior flanges of the panel, 
orientation of end-plate connection, and roof slope. Table 4 provides a summary of the results for 
all the prototype knee joint configurations. For the range of parameter values considered in this 
study, the modified prediction equations of the theoretical model can accurately predict the panel 
zone shear strength. 
 
5. Conclusions and Recommendations 
This study used plastic analysis to formulate a theoretical model which predicts the post-buckling 
shear strength of knee joint panel zones subjected to positive bending (bottom flange of rafter in 
tension) including partially developed tension field action. The panel shear strength was found to 
primarily depend on three design parameters, namely, flange flexural strength, panel aspect ratio, 
and panel slenderness. A parametric computational study involving 56 models with a range of 
values for the three parameters was conducted to validate and fine-tune the proposed equations. 
Additional studies were also performed to investigate the application of the proposed equations 
for predicting shear strength of knee joint configurations with different member lengths, different 
section types (prismatic or tapered), different flexural strength for the two exterior panel flanges, 
different orientations of end-plate connections, and different values of roof slope. 
 
For the range of parameters considered in this study, the modified equations can accurately predict 
the panel shear strength. However, there are three reasons to be cautious with configurations that 
produce softening response including: 1) the cumulative plastic strains were larger than the models 
with hardening behavior and thus softening joints may be more prone to fracture, 2) the panel zone 
shear strength is expected to be more sensitive to initial imperfections and residual stresses, and 3) 
the consequences of reaching this limit state are worse because it is a brittle failure mode. 
Therefore, the use of TFA in positive bending is not recommended for design of configurations 
that will produce softening (normalized flange flexural strength less than 0.05), until further testing 
is conducted. 
 
The proposed equations for panel zone shear strength, VPZ, in knee joints with MP

* ≥ 0.05 subjected 
to positive bending are summarized below: 
 
 PZ cr TFAV V V= +  (18) 
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The work described in this paper is based on using finite element analyses to extrapolate from the 
results of two experimental tests (Young and Murray 1997). The FEA models are not capable of 
capturing fracture which could limit the panel zone shear strength, nor do they address detailing 
requirements (e.g. stronger welds around the panel zone) that might be needed to reach the panel 
zone shear strengths given by the proposed equations. For this reason, large-scale experimental 
tests are deemed necessary to further validate the proposed design approach. 
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Appendix 

Table 5 Comparison of results from FEA and the modified theoretical equations 

Model # tw 
(in) 

hc 

(in) 
hr 

(in) 
bf 

(in) 
tf 

(in) 
tp 

(in) 
lc 

(ft) 
lr 

(ft) 
VFEA 

(kips) 
VPZ 

(kips) 
PZ

FEM

V
V

 

1 0.2500 36 24 6 0.625 0.875 15 18.5 189 191 109% 
2 0.2500 36 27 8 0.375 0.750 15 17.0 172 161 101% 
3 0.2500 36 27 6 0.625 0.875 15 19.5 180 177 106% 
4 0.2500 36 27 10 1.000 1.125 15 29.5 250 228 99% 
5 0.2500 36 27 14 1.250 1.250 15 38.5 319 274 93% 
6 0.2500 36 36 8 0.375 0.750 15 20.5 156 135 94% 
7 0.2500 36 36 6 0.625 0.875 15 23.0 162 150 100% 
8 0.2500 36 36 10 1.000 1.125 15 34.5 217 199 99% 
9 0.2500 36 36 14 1.250 1.250 15 45.0 276 243 95% 

10 0.2500 27 36 6 0.313 0.750 15 18.5 126 113 97% 
11 0.2500 27 36 9 0.375 0.750 15 21.5 129 122 102% 
12 0.2500 27 36 10 0.750 1.000 15 31.0 158 153 104% 
13 0.2500 27 36 12 1.000 1.125 15 38.0 195 178 99% 
14 0.2500 24 36 6 0.375 0.750 15 20.5 120 114 103% 
15 0.2500 48 32 10 0.625 0.875 15 26.0 218 207 102% 
16 0.2500 48 36 8 0.500 0.875 15 23.0 194 174 97% 
17 0.2500 48 36 10 0.625 0.875 15 27.5 207 194 102% 
18 0.2500 48 36 12 1.250 1.250 15 41.5 309 277 97% 
19 0.2500 48 36 16 1.500 1.375 15 52.5 383 332 94% 
20 0.2500 48 48 8 0.500 0.875 15 27.5 172 152 95% 
21 0.2500 48 48 10 0.625 0.875 15 33.0 183 170 100% 
22 0.2500 48 48 12 1.250 1.250 15 49.5 270 245 98% 
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Table 5 (Continued) Comparison of results from FEA and the modified theoretical equations 

Model # tw 
(in) 

hc 

(in) 
hr 

(in) 
bf 

(in) 
tf 

(in) 
tp 

(in) 
lc 

(ft) 
lr 

(ft) 
VFEA 

(kips) 
VPZ 

(kips) 
PZ

FEM

V
V

 

23 0.2500 48 48 16 1.500 1.375 15 62.5 331 297 97% 
24 0.2500 36 48 8 0.375 0.750 15 24.5 141 121 93% 
25 0.2500 36 48 6 0.625 0.875 15 27.5 146 134 99% 
26 0.2500 36 48 10 1.000 1.125 15 41.0 187 177 102% 
27 0.2500 36 48 14 1.250 1.250 15 53.5 233 216 100% 
28 0.2500 32 48 6 0.500 0.875 15 26.0 133 120 97% 
29 0.1875 48 32 8 0.625 0.875 15 22.5 146 138 102% 
30 0.1875 48 36 6 0.500 0.750 15 19.5 124 113 98% 
31 0.1875 48 36 8 0.625 0.875 15 24.0 138 131 102% 
32 0.1875 48 36 14 1.000 1.125 15 39.5 222 193 94% 
33 0.1875 48 36 14 1.500 1.375 15 48.5 298 249 91% 
34 0.1875 48 48 6 0.500 0.750 15 22.5 109 102 101% 
35 0.1875 48 48 8 0.625 0.875 15 28.0 122 118 104% 
36 0.1875 48 48 14 1.000 1.125 15 46.5 192 174 98% 
37 0.1875 48 48 14 1.500 1.375 15 57.5 255 225 95% 
38 0.1875 36 48 6 0.375 0.750 15 21.0 87.5 77.6 96% 
39 0.1875 36 48 6 0.500 0.750 15 23.0 92.6 85.1 99% 
40 0.1875 36 48 8 1.000 1.000 15 35.5 132 124 101% 
41 0.1875 36 48 10 1.250 1.125 15 44.0 162 150 100% 
42 0.1875 32 48 9 0.375 0.625 15 23.0 84.3 77.3 99% 
43 0.1644 48 32 10 0.500 0.750 15 21.5 119 113 103% 
44 0.1644 48 36 9 0.375 0.625 15 18.5 100 94.3 102% 
45 0.1644 48 36 10 0.500 0.750 15 23.0 112 108 104% 
46 0.1644 48 36 12 1.000 1.125 15 36.0 190 165 94% 
47 0.1644 48 36 16 1.250 1.250 15 47.0 246 209 91% 
48 0.1644 48 48 9 0.375 0.625 15 21.0 86.3 85.5 107% 
49 0.1644 48 48 10 0.500 0.750 15 26.5 97.6 98.0 108% 
50 0.1644 48 48 12 1.000 1.125 15 42.5 165 149 97% 
51 0.1644 48 48 16 1.250 1.250 15 55.5 212 188 96% 
52 0.1644 36 48 5 0.375 0.625 15 18.5 69.9 64.0 99% 
53 0.1644 36 48 10 0.375 0.625 15 22.0 74.9 72.1 104% 
54 0.1644 36 48 12 0.750 1.000 15 37.0 114 104 99% 
55 0.1644 36 48 14 1.000 1.125 15 46.5 141 130 99% 
56 0.1644 32 48 8 0.375 0.625 15 21.5 69.2 64.4 100% 

Average: 99% 
Standard deviation: 4% 

 


