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Abstract 
 
This paper discusses two techniques that target the determination of the buckling critical load for 
composite concrete-filled steel tube (CFT) cantilever columns from partial or incomplete 
experimental axial load – lateral displacement (P-∆) data. The numerical techniques evaluated in 
this study are the secant approach (better known as the Southwell plot) and the tangent approach. 
The motivation of this study arises from the inability of a sophisticated laboratory system to 
reach the experimental peak buckling capacity of some full-scale composite CFT specimens 
during compression tests. The review of these two techniques is validated against an 
experimental dataset of CFT specimens. In addition, these two techniques are evaluated through 
numerical nonlinear analysis of composite CFT columns with different values of slendernesses 
and initial imperfections. The evaluation with both the available experimental dataset and the 
parametric study confirms the scope and limitations of these two techniques. The application of 
the secant approach allows a more accurate determination of the critical load for those composite 
CFT columns where the laboratory system is not capable to reach their buckling capacity. 
 
 
1. Introduction 
 
Perea (2010) conducted a comprehensive experimental research program on composite concrete-
filled steel tube (CFT) columns that consisted of tests on eighteen full-scale slender specimens in 
a fixed-free configuration. The specimens were tested under a series of unique loadings that 
included buckling loads, combinations of different axial and transverse loads inducing both 
uniaxial and biaxial bending, and torsional load histories. The description of the test series and 
the main experimental results with respect to buckling loads are documented in Perea et al. 
(2013). 
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These specimens were tested at the Multi-Axial Subassemblage Testing (MAST) Laboratory of 
the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES), a large 
universal testing machine with precise six degree-of-freedom (DOF) control of both load (forces 
and moments) and deformation (displacements and rotations) at the top crosshead (Hajjar et al. 
2002). The crosshead capacity for axial loadings in the MAST system has a nominal value of 
5,872 kN (1,320 kip), which is constrained by the 1,468 kN (330 kip) capacity for each of the 
four vertical actuators that are connected to the crosshead. 
 
The first load case in the load protocol consists of moving the crosshead with an incremental 
downward vertical displacement (∆z) and with free lateral translation (∆) and free rotations (θ) 
controlled at the top. Both principal translations (∆x and ∆y) and rotations (θx & θy) were 
controlled as free in the circular specimens (Kx = Ky = 2), while in the rectangular specimens the 
y-axis was kept fixed (∆y = θy = 0) and only the x-axis was controlled free (Kx = 2, Ky = 0.5). 
 
In four of the eighteen specimens in this test matrix, the expected axial buckling critical load was 
larger than the axial capacity of the MAST system. These four specimens include two circular 
specimens with 20-inch diameter (specimens 3 and 7) and two rectangular specimens with free 
translation towards the strong axis (specimens 5 and 9). The main characteristics of these four 
specimens are listed in Table 1. In this table, L is the column length, λ is the slenderness ratio, 
Pn, is the expected buckling load as per the AISC Specification (AISC 2016), and Pmax is the 
maximum experimental load applied to the specimen at the MAST system (limited to the 
maximum available capacity of the testing system). The geometric and material properties 
reported in Table 1 correspond to actual values measured and obtained from material testing. 
 
 

Table 1. CFT specimens with a nominal compressive strength higher than the laboratory system  

Note: (a) Maximum laboratory capacity to axial load. 
 
 
Motivated by the fact that the compressive strength of these specimens cannot be determined 
directly from the experimental data, two techniques that target the determination of the buckling 
critical load of composite concrete-filled steel tube (CFT) columns from partial or incomplete 
experimental axial load – lateral displacement (P-∆) data are discussed and evaluated in the 
following sections. 
 
  

Specimen 
Steel Concrete L 

(m) 

AISC 360-16 Pmax 
(kN) HSS Fy fc Ec λ 

Pn 
(kN) (MPa) (MPa) (GPa) 

3 HSS508×6.4 
(HSS20×1/4) 

328 
40.0 27.6 5.52 1.10 6295.5 

5872(a) 7 91.0 41.9 5.53 1.36 9088.9 
5 HSS508×304.8×7.9 

(HSS20×12×5/16) 
365 

40.7 27.6 5.54 0.91 6528.0 
9 91.7 41.9 5.55 1.07 9513.4 
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2. Background 
 
In the literature, there are methodologies that aim to estimate the unstable load based on the 
response with a lower load.  Southwell (Horton et al., 1971) noticed a linear relationship between 
the ratio of lateral out-of-plumbness or out-of-straightness displacement to axial load (∆/P or 
δ/P) and the respective lateral displacement (∆ or δ). He also noticed than the slope of that linear 
relationship is the inverse value of the buckling load. Similar linear relationships (Horton et al., 
1971) were found by Ayrton and Perry (1/P vs. 1/∆), and by Donnel (P vs. P/∆). 
 
The first method, commonly referred as the Southwell plot, was initially developed by Ayrton 
and Perry in 1886, but later independently rediscovered by Southwell in 1932, and reexamined 
by Donnell in 1938. Horton et al. (1971) presented an historical review of this approach in its 
three available forms (Ayrton-Perry, Southwell and Donnell forms), as well as its derivation and 
some experimental validation. This method assumes that the first order terms in the series 
expansion solution derived for columns buckling elastically are predominant (so second order 
terms are neglected), and thus the axial force and the relative displacements can be represented 
by a linear relationship, where the elastic critical load is implicitly included (Timoshenko, 1961). 
Thus, a linear relationship will not be exhibited if the second order terms are considerable. These 
linear equations (Eqs. 1 to 3) can be plotted in different forms as illustrated in Figure 1, and as 
suggested by Ayrton-Perry (Eq. 1 for the relationship 1/∆ vs. 1/P), Southwell (Eq. 2 for the 
relationship ∆ vs. ∆/P) or Donnell (Eq. 3 for the relationship P/∆ vs. P). From these forms, the 
elastic buckling load is given by either the inverse of the initial abscissa from the Ayrton-Perry 
form, the reciprocal of the slope from the Southwell form, or the y-intercept from the Donnell 
form. Note that Southwell linear equation (Eq. 2) can be obtained by multiplying the Ayrton-
Perry equation (Eq. 1) by the lateral displacement, ∆. Similarly, the Donnell linear equation (Eq. 
3) can be derived after some algebraic manipulation from either the Ayrton-Perry or the 
Southwell equations (Eqs. 1 and 2, respectively). 
 

 
 (a) Ayrton-Perry form (b) Southwell form (c) Donnell form 

 
Figure 1. Linear relationship in columns with elastic buckling 
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As mentioned before, the previous approach (from now on just called Southwell or secant 
approach) is only valid in the elastic buckling range when the axial load and the axial load -
lateral displacement ratio keep a linear relationship. In addition, this correlation is held linear 
only when relative displacements, ∆, are used, but the relationship is not linear with the absolute 
displacements (∆+∆o), and thus the effects of the initial imperfection, ∆o, are not included. 
Therefore, the application of this method is limited only to the determination of the Euler load, 
Pe. 
 
The second method presented in this paper is based on the fact that, in either the elastic or the 
inelastic buckling ranges, the critical load is given when the tangent slope in the P-∆ curve reach 
zero. Thus, the plot axial force P vs. P-∆ tangent, dP/d∆, is used (Figure 2(c)) for the 
determination of the buckling load. This approach accounts for both geometric imperfections and 
the material non-linearities (i.e. yielding in the steel, cracking and crushing in the concrete, 
Figure 2(a)). Similar to the Donnell form (Figure 2(b)), where the secant P-∆ is used for the 
estimation of the Euler load, Pe, the nominal critical load, Pn, from the tangent form is defined 
by its y-intercept or when the tangent becomes zero (Eq. 4). 
 

 n
dPP P c
d

= −
∆

 (4) 

 

 
 (a) P-∆ curve (b) Donnell (secant) form (c) Tangent form 

 
Figure 2. Proposed tangent form for elastic and inelastic buckling of columns 
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In this approximate method (from now on just called the tangent approach), the relationship P-
dP/d∆ tends to be linear when the column remains elastic (elastic buckling range and low axial 
loads in the inelastic buckling range). In addition, geometric imperfections are included since the 
P-∆ slope follows the path defined by the initial imperfection (no matter if it is used relative ∆ 
displacements or absolute ∆+∆o displacements). As the load increases beyond the elastic limit 
for short columns within the inelastic buckling range, material nonlinearities (i.e. steel yielding, 
concrete cracking and crushing) change the tangent and the buckling load estimated linearly. 
Even if approximate, this method has some advantages over the Southwell plot. 
 
In order to calibrate the accuracy of these approaches, the application of these methods to 
different analytical and experimental data results are presented and discussed in the following 
sections. 
 
 
 
 
3. Analytical evaluation 
 
Figure 3 shows the application of the tangent plot using data from analytical results. This data is 
obtained from a fiber analysis in a cantilever circular CFT column with nominal strength 
parameters. This column consisted of an HSS20.000×0.250 ASTM A500 Gr. B (Fy = 289.6 MPa 
or 42 ksi) filled with concrete having a nominal strength of fc’ = 34.5 MPa (5 ksi). An initial out-
of-plumbness imperfection of ∆o = L/500 was considered in the analysis. In addition, different 
slendernesses are used in these analyses. In these figures, Pcr is the buckling load obtained from 
the analysis represented by the continuous line, and Pt is the estimated load based on the tangent 
plot defined by two lower loads, defined by the points at 0.6Pcr and 0.8Pcr, and represented by 
the dashed line. The prediction of the buckling load based on this method for these cases is 
reasonable, except for the shortest column shown in Figure 3(a). 
 
Figure 4 shows the influence of the initial imperfection on the analytical results for the 
mentioned CCFT cross-section with a length of L = 5.5 m. (18 ft., λ = 0.97). The initial 
imperfections selected are L/250, L/500, and L/1000. As seen in this figure, the P-dP/d∆ curves 
tend to be linear for low axial loads, but the slope changes when the axial load approaches the 
buckling load. Changes in the slope seem to be lower for larger initial imperfections, where 
geometric nonlinearities are predominant. The predictions using the tangent form for these three 
cases are not exact (6% of maximum error), however, the critical load predictions, Pn, with this 
methodology are more accurate than the predictions obtained with the secant or the Southwell 
plot which are related to the Euler load, Pe. 
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 P (kip) P (kip) 

 
 dP/d∆ (104) dP/d∆ 
 (a) L = 2.7 m. (9 ft.), λ = 0.49 (b) L = 5.5 m. (18 ft.), λ = 0.97 
 
 P (kip) P (kip) 

 
 dP/d∆ dP/d∆ 
 (c) L = 7.9 m. (26 ft.), λ = 1.41 (d) L = 16.8 m. (55 ft.), λ = 2.98 

 
Figure 3. Application of the tangent form on a CCFT column with different slenderness 
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P (kip)

dP/d∆

 
Figure 4. Application of the tangent form on a CCFT column with different imperfections 

 
 
 
 
4. Experimental evaluation 
 
As mentioned at the beginning of this section, the application of the secant plot (or Donnell form, 
variant of the Southwell plot) and the tangent plot (evaluated in this research) allows to rough 
estimate the buckling load for those cases (as in specimens 3, 5, 7 and 9) when the load history 
firstly reached the 5872 kN (1320 kip) of maximum axial capacity of the testing system. 
 
Figure 5 shows the results of the application of the secant and the tangent plots from the data 
measured in these tests (specimens 3, 5, 7 and 9). In this figure, the blue thick lines represent a 
filtered and smoothed record of the raw data denoted by the green thin lines. Additionally, stated 
in this figure are the maximum load, Pmax, applied in the test and the y-intercept of the secant 
plot (Ps, rough estimator of the Pe) and the tangent plot (Pt, rough estimator of the Pn or Pcr); 
the points used for the calculation of the slopes and the extrapolated line to the y-intercept are 
included in these plots. 
 
As observed in Figure 5, the smoothed experimental data do not exhibit a clear linear relation. 
This may be attributed to the influence of the second order terms in the series expansion solution. 
Nevertheless, this approach may be seen at a first approach to rough estimate the experimental 
axial load capacity in these specimens where the buckling load was not met during the test. 
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 P (kip) P (kip) 

 
 dP/d∆ dP/d∆ 
 (a) Specimen 3 (b) Specimen 7 
 
 P (kip) P (kip) 

 
 dP/d∆ (104) dP/d∆ 
 (c) Specimen 5 (d) Specimen 9 
 
Figure 5. Application of the tangent and the secant form on the CFT specimens that did not 
buckle with the full compressive capacity of the MAST system 
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A summary of the buckling load capacities obtained from Figure 5 is shown in Table 2. In this 
table, λ and Pn are respectively the slenderness parameter and the buckling capacity calculated 
with the AISC (2016) Specifications, Pmax is the maximum experimental axial load applied on 
the specimens, Ps is an estimator of the Euler load obtained with the secant plot, and Pt is an 
estimator of the buckling load capacity, Pn, obtained with tangent plot. 
 
 

Table 2: Summary of the maximum axial loads obtained from incomplete experimental data 

Specimen Pmax 
(kN) 

AISC (2016) Southwell 
PS 

(kN) 

PS / Pn 
ratio 

Tangent 
PT 

(kN) 

PT / Pn 
ratio    λ 

- 
Pe 

(kN) 
Pn 

(kN) 
3 

5872(a) 

1.10 8,664.2 6,295.5 8,531.7 1.355 6574.5 1.045 
7 1.36 10,646.4 9,088.9 9,007.6 0.991 7966.8 0.877 
5 0.91 11,196.0 6,528.0 8,006.8 1.227 7584.2 1.162 
9 1.07 13,370.1 9,513.4 14,679.1 1.543 8531.7 0.897 

Note: (a) Maximum laboratory capacity to axial load. 
 
 
 
 
5. Conclusions 
 
This paper presented the application of two techniques that target the determination of the 
buckling critical load of composite concrete-filled steel tube (CFT) columns from incomplete or 
partial experimental axial load – lateral out-of-plumbness displacement (P-∆) data. The 
numerical techniques evaluated in this study are the secant approach (better known as the 
Southwell plot) and the tangent approach. The motivation of this study arises from the inability 
of a sophisticated laboratory system to reach the experimental peak buckling capacity of some 
full-scale composite CFT specimens. The two techniques are validated against numerical 
nonlinear analyses of composite CFT columns with different values of slendernesses and initial 
imperfections. The techniques were then used to estimate the axial capacity of four specimens 
that were tested experimentally. The evaluation with both the available experimental dataset and 
the parametric study confirms the scope and limitations of these two techniques. The application 
of the secant approach allows a more accurate determination of the critical load for composite 
CFT columns with capacity greater than that of the laboratory system in which they are tested. 
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