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Abstract 
In cold-formed steel structures (CFS), the ultimate strength, stiffness, and post-buckling behavior 
are highly susceptible to geometric nonlinearity, in addition to material yielding or nonlinearity. It 
has long been standard practice in research to include initial geometric imperfections in shell finite 
element collapse simulations. The purpose of this paper is to provide a summary of efforts geared 
towards characterizing and modeling geometric imperfections in their full three-dimensional 
spatially varying forms. A close look at different geometric imperfection models proposed in the 
literature, reveals that, while seemingly different, almost all of these models express an 
imperfection profile by three components: imperfection shape, magnitude, and combination 
coefficient. Herein, the details required to setup high fidelity shell finite element nonlinear collapse 
analysis of CFS members to mimic the multitude of different imperfection models are presented. 
A careful comparison of the different strategies in seeding geometric imperfections shows a 
noticeable variability in the load carrying capacity and the stability behavior. The insights drawn 
from this work support our overall goals of developing an advanced analysis-based design 
framework for CFS members, through applying data-driven stochastic modeling, and providing a 
platform for the validation of code-prescribed or practice-oriented geometric imperfection models. 
 
1. Introduction 
Cold Formed Steel (CFS) members belong to a unique class of structures, thin-walled structures 
where pushing the efficiency in performance and cost to its boundaries is achieved through extreme 
material minimization. This often leads to ultra-thin or ultra-slender structures that undergo sudden 
large deformation under loading, known as mechanical instabilities or buckling. CFS structural 
members are made by rolling or pressing thin sheets of steel into a variety of shapes at room 
temperature. These structures like any other fabricated structure possess imperfections that are a 
result of manufacturing, shipping, storage, and construction processes. These imperfections, often 
random in nature, are either in the form of the difference between the actual or physical values and 
the nominal values for material properties such as modulus of elasticity, yield stress, and residual 
stresses and strains (material imperfections) or Geometric Imperfections (GI) that pertain to 
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deviation of the member from perfect geometry. The Load Carrying Capacity (LCC) of CFS 
members like any other thin-walled structure is highly influenced by geometric nonlinearity. 
Therefore, initial GIs play a key role in ultimate strength, stiffness, and post-buckling behavior of 
CFS members. As a result, close replication of mechanical response observed in experiments, 
requires advanced measuring techniques for accurate characterization of GI, and use of proper 
simulation procedures. A close look at different GI models proposed in literature (see Section 2), 
reveals that, while seemingly different, almost all of these models assume an imperfection profile 
in the following form: 

 𝐺(𝑥, 𝑦, 𝑧) =)𝑐+𝛼+

-

+./

𝜑+(𝑥, 𝑦, 𝑧) (1) 

where, 𝜙+ is the imperfection shape, 𝛼+ is the magnitude, and 𝑐+ is a combination coefficient. This 
imperfection form is inspired by the fact that such members are sensitive to geometric imperfection 
shapes that are affine to the member eigenbuckling mode. The 𝜙+ in the preceding expression are 
often inherent attributes of CFS members and depend on several factors including section profile, 
member length, loading condition, etc. They are either simple trigonometric functions representing 
individual plate buckling modes, or the critical mode shapes of the whole member, or are selected 
to be the critical mode shapes spanning certain classes of deformation such as cross-sectional and 
global deformations. Imperfection mode shapes are usually obtained via Finite Element (FE) 
analysis and/or semi-analytical techniques such as Finite Strip Method (FSM). Global 
imperfection mode shapes, however, can be approximated well by rigid body translation or rotation 
of cross-section in the form of single half-sine wave along the member. The 𝛼+  values can be 
obtained from statistics of measured imperfections, from simple empirical relations, or based on 
quality control tolerances (see Section 2). The 𝑐+  values, on the other hand, pertain to how to 
combine the imperfections to find the lowest LCC, or the LCC that is close to experimental 
observations, and are obtained in such a way that a suitable norm of the coefficient vector equals 
to 1: 

 ‖𝑐‖3 = 4)𝑐+3
-

+./

= 1 (2a) 

 
 

‖𝑐‖6 = max(|𝑐+|) = 1 (2b) 

For simplicity, researchers have classified the general forms of GI in Eq. 1 into five modal 
imperfections; i.e., the so-called traditional modal approach. The global or overall out-of-
straightness is a deviation of whole member from straightness, or the rigid body translation or 
rotation of the cross-section from its perfect position. The cross-sectional imperfection is a form 
of inaccurate section dimensions or general waviness in the section shape where cross-sectional 
elements distort individually. Global imperfections are either divided into bow, camber, and twist 
modes reflecting sweeps about the weak, strong, and longitudinal axes of the member (passing 
through the shear center), respectively or any combination thereof. Cross-sectional imperfections 
are divided into local and distortional with the former corresponding to plate (web or flange) 
buckling at specific locations and the latter pertaining to the rotation of the flange at the web/flange 
junction or the displacement of stiffener element (lip) normal to its plane. Within a distortional 
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mode, cross-sectional elements buckle together with a relatively longer wave length than that of 
local mode. 

This paper aims at providing a brief summary of efforts aimed at characterizing and modeling GI 
in CFS members. The FE implementation details for nonlinear collapse analysis of imperfect CFS 
structural members are laid out. A comparative study of numerical results obtained with different 
GI modeling strategies is provided. The presented results are part of an ongoing comprehensive 
study (Farzanian et al. 2018a, Farzanian et al. 2018b) that is focused on developing a probabilistic 
framework  for the validation of code-prescribed or practice-oriented geometric imperfection 
models. 
 
2. Review of geometric imperfection modeling 
The literature on nonlinear collapse analysis of CFS members is ripe with many GI models that 
have been proposed by researchers and different structural design codes. In what follows, we 
review some of these models that relate directly to the discussion in the preceding section on 
imperfection shapes 𝜑+(𝑥, 𝑦, 𝑧), magnitudes 𝛼+, and combination coefficients 𝑐+ with the goal of 
informing nonlinear FE modeling procedures that aim at characterizing the load carrying capacity 
of CFS members (Farzanian et al. 2018a).  
 
2.1 Dawson and Walker (1972) 
Dawson and Walker (1972) presented closed form solutions for elastic local buckling of simply 
supported plates with stress free edges considering the geometric imperfections. The behavior of 
such plates is similar to individual assembly elements of thin-walled members. Explicit 
expressions for LCC, end shortening, and stiffness of these members were derived and the shape 
of initial geometric imperfection was assumed to be the same as plate buckling mode: 

 

 

𝑤< = 𝑡 ) ) 𝑎+? cos
𝑖𝜋𝑥
𝑎 cos

𝑗𝜋𝑦
𝑏

6

?./,G,…

6

+./,G,…

 (3) 

where 𝑎, 𝑏, and 𝑡 are length, width, and thickness of plate, respectively and 𝑎+?  are prescribed 
coefficients such that 

 𝑒< = ) ) 𝑎+?

6

?./,G,…

6

+./,G,…

 (4) 

is the amplitude of the initial geometric imperfection at 𝑥 = 0 and 𝑦 = 0. Dawson and Walker 
considered three different expressions proposed by other researchers (Winter 1947, Dutheil 1952, 
Chilver 1953) to estimate the magnitude of the local imperfections: 
 𝑒< = 𝛼 (5a) 
 𝑒< = 𝛽L𝜎N 𝜎OP⁄ R<.T (5b) 
 𝑒< = 𝛾L𝜎N 𝜎OP⁄ R (5c) 

where 𝛼, 𝛽, 𝛾 are general constants to be determined experimentally, 𝜎N is the yield stress, and 
𝜎OP is the critical buckling stress of CFS members. Although, assuming 𝛼 = 𝛽 = 𝛾 = 0.2 in the 
above equations provided adequately conservative results, they recommended Eq. 5c with 𝛾 = 0.2 
as the most suitable generalized imperfection amplitude for the analysis of CFS members. 
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2.2 Chou and Chai (1997) 
Chou and Chai (1997) performed post-buckling FE analysis of thin-walled structural members to 
propose a design procedure. The LCC of a set of stub-columns with geometric imperfections was 
numerically determined. To validate the results, a comparison with experimental data and BS 5950 
(1987) was performed. The geometric imperfection shape was inspired by buckling mode shapes 
obtained from eigenvalue analysis. Two cases were modeled; small perturbation forces applied at 
a single plane at the middle of member, and perturbation forces at multiple (four) planes at the 
extrema of the first mode shape along the member. The former leads to a half sine wave which is 
typically the first buckling mode for long columns. Also, the values of such transverse forces were 
first estimated for a benchmark specimen and then calculated for other stubs invoking empirical 
expressions. Three sets of force values with a constant ratio were chosen to represent different 
degrees of initial imperfection. One issue with this approach is that the benchmark force values 
are calibrated with given experiments and force amplitudes for other stub-columns depend on the 
ratio of cross-sectional areas for the stub-column under investigation and the benchmark stub-
column. This results in the same degree of imperfection for the two specimens with same cross-
sectional area and different thicknesses which is counter intuitive since a thinner section typically 
has a higher potential for imperfection. Through comparison with experiments and BS 5950 code, 
they showed that FEA results were consistently conservative. Therefore, they proposed a constant 
correction factor for predicting the ultimate load in their design procedure. 
 
2.3 Schafer and Pekoz (1998) 
Schafer and Pekoz (1998) suggested two approaches for geometric imperfection modeling that 
consider both imperfection shape and magnitude. To perform a limited study, they suggested that 
at least two fundamentally different eigenmode shapes be summed together for the imperfection 
shape. Such modes should not be the same fundamental modes with a different wavelength. It was 
shown as an example that seeding a GI pattern with only local or only distortional eigenmode is 
conservative when compared to seeding both modes which implies the importance of properly 
combining eigenmodes to form the GI pattern. As for the magnitude, Schafer and Pekoz proposed 
the maximum values for local and distortional GI using empirical expressions (simple rules of 
thumb) and probabilistic analysis (Table 1). In empirical relations, two values at representative 
points were introduced; 𝑑/, the maximum local GI at the middle of the web in the form of out-of-
flatness of the web plate, and 𝑑3, the maximum deviation at flange-lip intersection or its out-of-
straightness for distortional GI. Based on collected data, it was suggested that local imperfection 
be in the form of either Eq. 6a (in terms of plate width 𝑤) or Eq. 6b (in terms of plate thickness 𝑡) 
assuming 𝑤/𝑡 < 200: 

  
𝑑/ ≈ 0.006𝑤 (6a) 

   

  
𝑑/ ≈ 6𝑡𝑒\3]				(𝑑/	𝑎𝑛𝑑	𝑡	𝑖𝑛	𝑚𝑚) 

(6b) 

A similar expression for distortional imperfection magnitude (valid for w/t < 100) was proposed: 

  
𝑑3 ≈ 𝑡 (7) 
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where the thickness should be less than 3 mm for both Eq. 6 and 7 to be valid. Noticing a large 
variation in measured maxima, Schafer and Pekoz recommended more conservative maximum 
magnitudes. They presented the cumulative distribution function (CDF) values of 𝑑/ 𝑡⁄  and 𝑑3 𝑡⁄  
for the measured data (see Table 1) which are in good agreement with additional measurements. 
These percentile values enabled the connection between confidence level and a particular 
imperfection magnitude. To perform a more comprehensive study, they proposed the use of 
imperfection spectrum of the GI signal (along the member); See (Farzanian et al. 2018b) for further 
details. 
 

Table 1. CDF values for maximum imperfection (Schafer and Pekoz 1998) 

 Type 1 Type 2 

𝑃(∆< 𝑑) 𝑑/ 𝑡⁄  𝑑3 𝑡⁄  

0.25 0.14 0.64 

0.50 0.34 0.94 
0.75 0.66 1.55 

0.95 1.35 3.44 
0.95 3.87 4.47 

Mean 0.50 1.29 
St. dev. 0.66 1.07 

 
2.4 Sivakumaran and Abdel-Rahman (1998) 
Sivakumaran and Abdel-Rahman (1998) proposed GI patterns and magnitudes for specific CFS 
members and validated FE results through a test program. A set of perforated and non-perforated 
lipped channel stub-columns with different lengths under axial compression was examined. The 
columns were short enough to eliminate the global buckling mode but long enough to 
accommodate various size of perforations as well as to allow longitudinal propagation of local 
buckling mode. The length of non-perforated columns was selected to be 3 L𝑤 +𝑤gR 2⁄  with 𝑤 
the web width and 𝑤g  flange width. The length of perforated columns was then increased in 
proportion to the size of perforation. 
 
Inspired by local buckling shape of an individual plate and modifying Hancock's (1979) suggestion 
for distribution of plate imperfection in CFS columns, they seeded the GI profile only within the 
web (and not within the flange or the lip) as a double sine-wave distribution: 

 𝛿 = 𝛿< sin k
𝜋𝑥
𝑤 lsin k

𝜋𝑦
𝑤m l (8) 

with 𝑤m  the average of the web and flange widths. So, the GI pattern is one half-sine wave in 
transverse direction of web and multiple half-sine waves with a wave length of 𝑤m in its longitudinal 
direction. Also, 𝛿<, which is the imperfection magnitude at the central point of the web plate which 
was selected to be one-half of the upper limit recommended by BS 5950, i.e. 
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 𝛿<
𝑡 = 0.5 ∗ 0.145 k

𝑤
𝑡 l
q𝐹N
𝐸  (9) 

where 𝑡 is thickness, 𝑤 𝑡⁄  is slenderness ratio, and 𝐸 and 𝐹N are material properties of plate. 
 
2.5 Sun and Butterworth (1998)  
Sun and Butterworth (1998) conducted FE analysis on steel single angle members under 
compression and eccentric loading applied to one leg. The nonlinear stress-strain curve with an 
elastic part, a perfectly plastic part, and a multilinear strain hardening, based on test data was used. 
For the initial GI pattern, they adopted several half-sine waves in the longitudinal direction and 
linear variation in the transverse direction resembling a typical local buckling mode. It should be 
mentioned that such GI shape implies the first buckling mode of this certain steel member. They 
used initial imperfection amplitudes of 0.167𝑡, 0.333𝑡, 0.5𝑡, and 0.667t in their analyses. The 
results were then compared with experimental tests to calibrate the amplitude for the prediction of 
LCC and buckling behavior. Equal leg struts (EA 90x90x6) with four lengths were chosen for 
tests. The high width/thickness ratio of the section gave rise to local buckling and the varying 
slenderness ratios from 50 to 150 lead to both elastic and inelastic buckling behavior. It turned out 
that the 0.333𝑡  amplitude was the best match for ultimate loads although the post buckling 
behavior was not predicted properly. Also, the effect of two different directions 𝑐+ (twisted first 
half-sine wave about the shear center in (anti)clockwise direction) of initial wave was investigated. 
Except for the most slender member, the impact was tangible for both load carrying capacity and 
post-buckling behavior. Finally, a parametric study on 200+ (un)equal leg struts was performed to 
compare the results with the nominal loads prescribed by NZS 3404 (1997) for a wide range of 
slenderness ratios (30 to 300) and scaling factors were proposed to adjust the values recommended 
by NZS 3404 (1997). 
 
2.6 Chou et. al. (2000) 
Chou et. al. (2000) examined the post-buckling behavior of  cold formed lipped channel and hat-
section stub-columns under axial compression. They compared the numerical results with 
experimental data by Zaras and Rhodes (1987) as well as BS 5950 predictions. For initial GI 
pattern they used exact linear buckling modes in contrast to their previous work (Chou and Chai 
1997) where they used small perturbation loads. For 𝛼+ values, they used 0.10𝑡, 0.50𝑡, 1.00𝑡 and 
Walker's (1969) expression for imperfection magnitude, 0.3L𝑃N 𝑃OP⁄ R<.T𝑡 , where 𝑡  is member 
thickness, 𝑃N  yield load, and 𝑃OP critical buckling load. They applied two safety factors (1.25 and 
1.18) in their proposed design procedure to reduce all overestimated numerical results to values 
bellow the test results. 
 
2.7 Gardner (2002) 
Gardner (2002) performed experiments and numerical simulations on cold-formed stainless steel 
members and compared the results with the predictions of Eurocode (EC 3: Part 1.4) to propose a 
consistent approach for the modeling of stainless steel structures. The investigated members 
comprised Square, Rectangular, and Circular Hollow Sections (SHS, RHS, and CHS respectively) 
under variety of loading and boundary conditions including stub-columns (37 specimens), pin-
ended columns (22 specimens), and simply-supported beams (9 specimens). Proper material 
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modeling assumptions including appropriate stress-strain behaviors and residual stresses were 
considered in the FE simulations to enable better replication of test results. 
 
To seed the initial GI, the eigenmodes obtained from elastic buckling analysis were used. For stub-
columns with SHS, RHS, and CHS sections, only the local buckling mode shape (the lowest 
buckling mode) was used. The short stub-columns (180	𝑚𝑚	 ≤ 𝐿 ≤ 450	𝑚𝑚) failed by local 
buckling, a failure mode that was in agreement with test experiments. However, for pin-ended 
columns (with SHS and RHS sections) that typically buckle into global mode shape, the 
superposition of both global and local modes obtained from the first few eigenmodes was proposed 
as the GI pattern. As for the seeding of GI in beam specimens, the lowest eigenmode in pure 
compression (similar to those selected for the corresponding stub-columns) was used; The in-plane 
bending failure mode for all beams was in the form of local buckling of the compression flange 
and the top portion of the web. 
 
For imperfection amplitude, the measured values of local and global imperfections as well as 
empirical relations (Eq. 5 for cold-formed carbon steel members) were used in FE simulations and 
their results were compared with experimental tests. The linear regression analysis on measured 
local imperfection amplitudes for SHS and RHS stainless steel members showed the best fit for 
𝛽 = 7.3 ∗ 10\x  and 𝛾 = 0.023  in Eq. 5b and 5c, respectively. The results obtained from 
numerical simulations with imperfection amplitudes defined by Eq. 10 demonstrated accurate 
agreement with test results and therefore Eqs. 10 and 11 were suggested for local imperfection 
amplitude of SHS and RHS members, and CHS members: 

  
𝜔< 𝑡⁄ = 0.023(𝜎<.3 𝜎OP⁄ ) (10) 

  
𝜔< 𝑡⁄ = 0.2 (11) 

   
where 𝜎<.3  is the material 0.2%  proof stress, 𝜔<  is the imperfection amplitude, and 𝑡  is the 
thickness. For beam specimens, the local imperfection amplitude was selected similar to those of 
stub columns. Based on the parametric study and comparison with test results for SHS and RHS 
pin-ended columns, Eq. 12 for global imperfection amplitude was proposed: 
 

  
𝑣< 𝐿⁄ = 1 2000⁄  (12) 

   
where 𝑣< is the global imperfection amplitude in buckling direction and 𝐿 is the specimen length. 
 
2.8 Zeinoddini (2011) 
Zeinoddini (2011) adapted different approaches for GI modeling and nonlinear collapse analysis 
to examine failure mechanisms for CFS members. Different bracing configurations were used to 
invoke such failure modes as local, distortional, and felxural torsional for a 362S162-68 profile 
(SSMA 2011 nomenclature) of length 2.44	𝑚. As-measured imperfections were seeded in the 
form of perturbations in the perfect geometry and mechanical interpolation was used to extend the 
measured imperfections to the points with no measurement. In mentioned work, the data reported 
by Peterman and Schafer (2014) was applied to the member as displacement loading. A 
combination of the buckling mode shapes corresponding to the lowest eigenvalues (the traditional 
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modal approach) was also used to seed geometric imperfections. The mode shapes were obtained 
via CUFSM (Schafer and Ádány 2006) and were used as local, distortional, and (mixed) global 
imperfections with the latter encapsulating bow, camber, and twist imperfections which can be 
seeded separately as half-sine waves as well. Several (3G = 27) combinations for 𝑐+  equal to 
(−1,0,+1) with 𝑐+ = 1	(𝑐+ = −1) representing the existence of a mode with positive (negative) 
sign and 𝑐+ = 0 representing the absence of a mode, and all 𝛼+  values equal to 50%𝑖𝑙𝑒 of all 
measured data (Table 6-1 in (Zeinoddini-Meimand 2011)) were considered. Both 25% and 75% 
imperfection exceedance values with 𝑐+ = 1 were also examined to explore the effect of magnitude 
on response. More sophisticated approaches for simulating imperfections (e.g., spectral 
representation) were also used by Zeinoddini and Schafer (2012).  
 
3. Nonlinear shell buckling analysis: model setup and implementation details 
Owing to the complexity of nonlinear stability behavior of CFS members, numerical solution 
techniques such as FEM are often used to study their load carrying capacity and post-buckling 
response. This section describes the details required to setup FE models for nonlinear collapse 
analysis of CFS members using the general purpose commercial software package, ABAQUS, 
including the analysis types, material properties, element type and size, loading and Boundary 
Conditions (BCs), and most importantly the seeding of GI onto the perfect model. To facilitate the 
creation of input models, an in-house Python script (Farzanian and Shahsavari 2018) coupled with 
CUFSM software is employed to automate the repetitive tasks pertaining to model setup and 
implementation details, including those related to generating a multitude of GI models. Fig.1 
depicts a schematic of a 3D computational model (a lipped channel CFS member) with 
exaggerated magnitudes of GI encompassing five classified modal imperfections. 

 

 
Figure 1: Computational model with GI as (a) combination of 5 classified modes including: (b) bow (c) camber (d) 

twist (e) local (f) distortional 
 

3.1 Analysis types 
When it comes to shell stability analysis, commercial FE software packages such as ABAQUS 
offer a variety of analysis options. The linear-buckling analysis (also called eigenvalue buckling 
analysis, or bifurcation buckling analysis) is the most common and predicts the theoretical 
buckling strength (elastic buckling strength) which is of great importance specially for stiff 
structures with almost linear prebuckling response. Although the nonlinear behavior and post 
buckling response cannot be captured by eigenvalue analysis, the buckling modes extracted from 
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a bifurcation buckling analysis are typically used to inform the shape of geometric imperfections 
that are seeded into the perfect model for nonlinear analysis. Open source software packages based 
on semi-analytical techniques such as CUFSM are also an attractive alternative for eigenvalue 
buckling analysis as they provide a means to classify the buckling mode shapes to cross-sectional 
(local and distortional) and global modes. In a fully nonlinear collapse analysis aimed at estimating 
LCC and capturing the post-buckling behavior, however, concerns such as material nonlinearity, 
geometric nonlinearity prior to buckling, or unstable post-buckling response need to be addressed. 
Several approaches in ABAQUS allow for modeling the complex behavior in post-buckling 
regime where the load-displacement response shows a negative stiffness and the structure releases 
strain energy to remain in equilibrium. One alternative is to make recourse to dynamic analysis 
taking into account the inertia effects as the structure snaps. Another approach is to use artificial 
damping to stabilize the structure during a static analysis. ABAQUS offers an automated version 
of this stabilization approach for the static analysis procedures which is the one used for this study. 
Alternatively, static equilibrium path during the unstable phase of the response can be traced by 
using the modified Riks method (Crisfield 1981). The Riks method works well in snap-through 
problems (e.g., post-buckling problems with unstable behavior), those in which the equilibrium 
path in load-displacement space is smooth and does not branching (bifurcating). However, the 
exact post-buckling problem cannot be analyzed directly due to the discontinuous response at the 
point of buckling. To this end, it must be turned into a model with continuous response instead of 
bifurcation which is already satisfied for analyses of our imperfect models. Thus, to control the 
onset of buckling, special precautions need to take for choosing the magnitude of imperfections; 
in particular, for structures that show linear behavior prior to (bifurcation) buckling. Otherwise, in 
the absence of GI, buckling will be initiated by by discretization errors. 
 
3.2 Material properties 
Accurate modeling of the basic material properties is of crucial importance if the modeling of CFS 
member is to resemble the behavior observed in the lab. Although, the focus of this study is to 
provide a comprehensive review of GI modeling and its interplay with LCC, realistic material 
based on coupon tests performed at Johns Hopkins University Thin-Walled Structures Group 
(Vieira Jr and Schafer 2012) are used in all FE simulations; the stress-strain curve adopted from 
(Zeinoddini-Meimand 2011) is used and the Poisson's ratio is assumed to be 0.30. 
 
3.3 Element type and size 
CFS members are usually modeled with shell elements as through-thickness deformation and tri-
axial stresses are not expected to be significant. ABAQUS offers a wide variety of elements for 
shell modeling (e.g., S4, S4R, S4R5, S8R, etc.). Element type S9R5 is used in our study. Different 
mesh densities were examined to achieve convergence. The convergence study and the seeding of 
GI models were facilitated with our in-house Python code. Finally, to avoid element distortion in 
large deformations, the aspect ratio of elements is kept between 0.5 and 2 and orthogonal meshing 
aligned with the orientation of member's longitudinal axis is used. 
 
3.4 Loading and boundary conditions 
As mentioned in Section 3.1 to seed certain classes of GI, the imperfection shapes are borrowed 
from buckling modes of the perfect member which implies that the Boundary Conditions (BCs) in 
FE model used for nonlinear analysis and the model used for buckling analysis need to match. This 
issue needs to be addressed carefully in cases where a numerical technique other than FEM is used 
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for buckling analysis. For example in FSM, the semi-analytical technique that is the basis of 
CUFSM, the end constraints are enforced by adopting particular shape functions in the longitudinal 
direction that meet the end conditions a priori. Further details for the equivalent FE BCs matching 
FSM BCs, can be found  in (Ahmadi et al. 2018).  
 
3.5. Initial geometric imperfection   
To seed a particular GI into a computational model, three ingredients forming Eq. 1 need to be 
determined; i.e., imperfection shape, magnitude, and combination coefficient (see Section 2). We 
note, however, that regardless of the approach adopted, the imperfect member is always assumed 
stress-free at the onset of analysis. A common approach to choose the shape of GI is to use simple 
spatial variations resembling individual plate buckling modes. Our in-house Python code adjusts 
the positions of the individual nodes in FE models to replicate the known mode shape. Another 
approach is to use the lowest mode shapes for the whole member which can be directly obtained 
from a linear buckling analysis using, say, ABAQUS. Such eigenmodes are multiplied by a scaling 
factor (imperfection magnitude 𝛼+) before they are superimposed to the perfect model. The third 
approach is perturbing the perfect model with certain classes of imperfections including cross-
sectional and global imperfections which can be obtained from elastic buckling analysis using a 
semi-analytical software, say CUFSM, which has the ability to categorize and reduce the 
complicated deformations through projecting them onto a set of basis forms. This approach, on 
one hand allows for direct application of buckling modes as GI patterns and on the other hand 
makes it easier to connect the magnitude of GI to measured data. This is of particular importance, 
considering the fact that geometric imperfections are a result of fabrication and other processes. In 
fact, to inform an analysis-based design framework that relies on the data from the field, the 
approach adopted for GI modeling should allow the seeding of a wider set of geometric 
imperfections beyond the oversimplified models in first approach or the fundamental (or lowest) 
eigenmodes in second approach. In other words, for a specific CFS member, the lowest 
eigenmodes obtained from FE analysis may or may not contain a particular mode which is further 
explained in Section 4.  
 
In addition to aforementioned GI models, the nodal coordinates of imperfect CFS members can be 
obtained from measuring the geometry of real samples directly. To identify these coordinates in 
FE modeling, appropriate data processing and geometric transformations--that depend on the 
measurement platform; see (Zeinoddini-Meimand 2011, Peterman 2012, Zhao et al. 2015, Zhao et 
al. 2017)--are required. The LCC results of proposed GI models can then be compared with those 
of the FE models with as-measured imperfections. Such measured imperfections can also be used 
to develop data-driven stochastic framework and validation metrics for careful examination of 
geometric imperfections (Farzanian et al. 2018b). 
 
4. Classic modes   
The first buckling mode of a whole CFS member depends on both its cross-section and length. 
Herein, we characterize three representative CFS lipped channel sections with different expected 
dominant buckling modes (see Fig. 2) using FSM and cFSM (Li and Schafer 2010) stability 
solutions in order to provide arbitrary classified modal imperfections for any CFS member. The 
Simple-Simple BC is adopted for all cases. 
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Figure 2: Geometry of three CFS lipped channels cross-sections (a) Case 1 (b) Case 2 (c) Case 3 

 
Fig. 3 represents the conventional FSM stability solutions augmented with pure mode cFSM 
solutions for three cases (panels a-c in Figure 3 correspond to cases 1-3 in Figure 2). Each panel 
contains the signature curve (𝑚 = 1 only, in red), the single term stability solutions up to 𝑚 = 15 
(in green), and the so called “many-term” solution comprising all 15 terms (black dashed line), all 
obtained using CUFSM. The signature curves (red) often provide the necessary information for 
the local, distortional, and global buckling modes assuming one half-sine wave along the member. 
For example, in Fig. 3a, the two local minima at half-wavelengths of 116 and 570	𝑚𝑚 correspond 
to critical local and distortional buckling modes, respectively, and the descending branch at longer 
lengths (~	𝐿 > 1500	𝑚𝑚) corresponds to global mode. The same values for Case 2 (Fig. 3b) are 
84 and 353	𝑚𝑚 and the lengths higher than ~750	𝑚𝑚. However, for particular cross-sections, 
similar to Case 3 in Fig. 3c, the signature curve may fail to identify the buckling modes. In such 
cases, to warrant the extraction of pure buckling mode shapes for the aim of imperfection seeding, 
constraint FSM (cFSM) analysis can be used. The pure local (blue), distortional (black), and global 
(orange) buckling modes are shown in Fig. 3, as well. One can utilize the cFSM solutions and 
superimpose any combinations of pure mode shapes (global mode is mixed) with arbitrary half-
wave length along the CFS member as GI. The black dashed line curves in Fig. 3 are similar to the 
lowest eigenvalues obtained from FE analysis.  
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Figure 3: Stability solution of FSM augmented with pure mode cFSM solutions for (a) Case 1 (b) Case 2 (c) Case 3 
 
Fig. 4 shows the modal participation curves for the three cases discussed above. In Fig. 4a, local 
buckling is the dominant mode of instability for a wide range of lengths (lower than 𝐿~3000	𝑚𝑚) 
in Case 1. This can also be deduced from Fig. 3a where it is observed that the “many-term” stability 
solution can be obtained by stitching the first local minima regions of single-term solutions. 
Similar to Case 1, modal participation curves for Cases 2 and 3 are depicted in Figs. 4b and 4c. It 
can be seen that Case 2 represents a predominantly distortional buckling behavior at least for a 
wide range of lengths (the length interval associated with the predominantly red part in Fig. 4b). 
Case 3, however, is more complicated as the dominant buckling mode is not identifiable. As 
mentioned before, for CFS members with the same behavior as Case 3 (local-distortional buckling 
behavior), cFSM has to be used for the purpose of modal identification. 
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Figure 4: Modal participation for (a) Case 1 (b) Case 2 (c) Case 3 

 
5. Comparative study 
Despite significant studies on the influence of GI on LCC of CFS members, the combinatorial role 
of different GI shapes forming Eq. 1 for a member with an arbitrarily dominant buckling mode has 
not been fully examined yet. In Section 5.1, we undertake such examination. Further, the responses 
of models with as-measured imperfections are presented in Section 5.2. Finally, in section 5.3, we 
provide a brief comparative study of some of the approaches to GI modeling discussed in this 
paper. By comparison of such multitude GI modeling, we demonstrate the noticeable variability 
in the load carrying capacity and post-buckling behavior that could stem from adaptation of a wide 
array of strategies to seeding geometric imperfections into FE analysis models. 
 
5.1 Coupled role of imperfection shape and combination coefficient 
The coupled effect of imperfection shape (𝜙+) and combination coefficient (𝑐+) on the LCC is 
investigated by excluding the role of imperfection magnitude (𝛼+) . The cross-section with 
distortional dominant buckling mode (Case 2) with length 𝐿 = 668	𝑚𝑚 is considered. The LCC 
for member without GI equals to 164075	N. Five imperfection magnitudes each corresponding to 
%80 of LCC for perfect model are identified from the construction of Knock Down Factor (KDF) 
curves for geometrically imperfect models each involving only one of the modal forms (local, 
distortional, ...); see Fig. 5.  



 14 

 
Figure 5: KDF curves and identified imperfection magnitudes corresponding to %80 LCC of perfect model:  

(a) Local (b) Distortional (c) Bow (d) Camber (e) Twist; Case 2 with 𝐿 = 668	𝑚𝑚 
 
The force-displacement curves obtained from nonlinear buckling analysis for all combinations of 
five 𝛼+ values and 𝑐+ = −1, 0, 1 (a total of 3T = 243 combinations) are depicted in Fig. 6. From 
the inset in Fig. 6, it can be observed that the coupled effect of 𝜙+ and 𝑐+ results in %37 variation 
(absolute values vary between 82 to 130 KN) in the load carrying capacity indicating the 
importance of combination strategy. It can also concluded from these results that GI models affine 
to only the first buckling mode shape may result in LCC values that are tangibly non-conservative.   
 

 
Figure 6: Force-displacement curves for 243 combinatorial GI models of Case 2.  

The inset represents the dispersion points of LCC 
 
5.2 As-measured geometric imperfection 
To provide a general sense about the variability of LCC and stability behavior of of real CFS 
members, a set of the geometric imperfections as measured in (Peterman 2012) are considered. 
The samples are 40 studs, all with an identical cross-section (362S162-68) and length (2.438 m). 
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The numerical results of these imperfect studs with two different boundary conditions are 
presented in Fig. 7; For details on data processing of measured imperfections and model creations, 
see (Farzanian et al. 2018b).  
 

 
Figure 7: Force-displacement curves for as-measured imperfections with BC of (a) Fixed-Fixed (b) Pinned-Pinned 

 
The minimum, mean, and maximum values of LCC plus its coefficient of variation ares mentioned 
in the inset of Fig. 7. The results not only show the range of variation in LCC but also the impact 
of BC on load-displacement responses. 
 
5.3 Geometric imperfections proposed in literature 
To investigate the effect of GI model choice, a number of models discussed in Section 2 are 
considered. Again, the cross-section with distortional dominant buckling mode (Case 2) with 
length 𝐿 = 668	𝑚𝑚  is analyzed. The shape of GI’s are extracted from either ABAQUS or 
CUFSM packages. As can be seen from Fig. 8 and Table 2 the choice of GI model has a tangible 
impact on LCC of CFS member.  
 

 
Figure 8: Force-displacement curves for 15 GI models proposed in literature; Case 2  
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Table 2. Summary of LCC from ABAQUS collapse analysis for different GI models 
GI Models Shape Magnitude LCC (KN) 

GI 1 Mode1 1 0.333𝑡 131.89 
GI 2 Mode1 2 0.333𝑡 132.66 
GI 3 Mode1 3 0.333𝑡 133.45 
GI 4 Mode1 4 0.333𝑡 139.49 
GI 5 Mode1 5 0.333𝑡 135.76 
GI 6 Modes1 1 to 5 0.333𝑡 126.53 
GI 7 Mode1 1 𝛾L𝜎N 𝜎OP⁄ R 145.64 
GI 8 Loc2 𝛾L𝜎N 𝜎OP⁄ R 145.99 
GI 9 Mode1 1 𝑑/ = 0.006𝑤 132.25 

GI 10 Mode1 1 𝑑3 = 𝑡 113.03 
GI 11 Loc2 𝑑/ = 0.006𝑤 133.65 
GI 12 Dis2 𝑑3 = 𝑡 121.64 
GI 13 Loc+Dis+Bow+Cam+Tws2 50%𝑖𝑙𝑒 131.82 
GI 14 Loc+Dis2 50%𝑖𝑙𝑒 130.60 
GI 15 Bow (half-sine)2 L/960 158.59 

1. Fundamental mode shapes from ABAQUS 
2. Classified mode shapes (Local, Distortional, Bow, Camber, Twist) from CUFSM 

 
6. Conclusions   
In this study a brief review on characterizing and modeling of geometric imperfections in 
numerical simulations of cold-formed steel (CFS) members is performed. A general expression 
for imperfection profile is presented that can represent all studied imperfection models. The 
expression is comprised of three ingredients, i.e., imperfection shape, magnitude, and combination 
coefficient. An automated in-house set of Python and MATLAB scripts coupled with ABAQUS 
and CUFSM software packages are developed to generate the various imperfect models and are 
used to report a comprehensive numerical study on load carrying capacity (LCC) and buckling 
behavior. The studies on the different geometric imperfection modeling strategies reveal the 
following. For CFS members with a complicated dominant buckling mode, constrained Finite Strip 
Method or similar tools have to be used for modal identification. The choice of combinations   for 
geometric imperfection shapes results in tangible variation of LCC. Imperfections affine to only a 
particular buckling mode shape may result in non-conservative prediction of LCC. Choice of 
boundary condition affects the sensitivity of LCC to imperfections. Predicted variability of LCC 
based on as-measured imperfection models demonstrates the need for  providing probabilistic 
approaches in design guidelines. This work is part of an ongoing study to enable analysis-based 
design procedures for CFS members.   
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