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Abstract 

Current provisions for shear design of slender, steel, plate girders do not account for effects from 

horizontal curvature, sometimes resulting in overly conservative designs. Excess transverse 

stiffeners are often specified and, since they are welded to the girder web, an increased risk of 

fatigue could exist. This manuscript summarizes a study that investigated horizontal curvature 

effects on shear behavior of steel plate girders having slender webs. Two shear buckling 

coefficients that include these effects are presented and compared against curved girder finite 

element models. Results show horizontal curvature increases shear buckling capacity and ultimate 

shear strength over a range of girder horizontal curvatures, web slenderness ratios and panel aspect 

ratios. These enhanced capacities could be utilized to reduce the number of transverse stiffeners 

needed to resist construction and service load demands. 

 

1. Introduction 

Due to increased fabrication and erection costs, steel bridges have had to become more structurally 

efficient over time to remain competitive. This is even true for specialized segments of the industry 

where steel had traditionally offered an advantage, such as for horizontally curved, plate girder 

bridges. In the United States, effects of horizontal curvature on plate girder behavior were 

extensively studied by the Consortium of University Research Teams (CURT) in the 1960’s 

(Culver, 1972) and by the Curved Steel Bridge Research Project (CSBRP) in the late 1990’s and 

early 2000’s (Hall & Yoo, 1998). Both of these projects naturally focused on how horizontal 

curvature affected flexural behavior. Horizontal curvature effects on shear behavior were largely 

ignored. Some studies outside of these efforts have examined horizontal curvature influence on 

shear behavior, including studies by Legget and Batdorf et.al. (Batdorf, Stein, & Schildcrout, 1947; 

Leggett, 1937), however, larger, parameterized examinations have not been identified in the 

literature. 

 

Classical formulations predicting the shear capacity of flexural members subject to small 

displacements were first developed by Barre de Saint-Venant in 1843 (de Saint-Venant, 1843; 

Hibbeler, 2005). In 1916, Rode developed a Pratt Truss formulation modeling post-buckling 

behavior of slender steel webs, termed Tension Field Action (TFA) (Rode, 1916). TFA was applied 

to steel girder design via Basler’s Pratt Truss Analogy in 1961. This version of Basler’s work 
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incorporated Vincent’s simplification of Bleich’s shear buckling coefficient (Basler, 1961; Bleich, 

1952; Vincent, 1969).  Vincent’s work simplified Bleich’s piecewise solution to a single equation 

for design implementation.  

 

While multiple studies have focused on predicting pre- and post-buckling shear capacity of steel 

plate girders having slender, straight, webs, limited research has focused on curved webs in shear. 

One of the more prominent studies was a series of tests completed by Jung and White (Jung & 

White, 2006). They examined four horizontally curved girders having a 36 ft (11.52 m) span length 

and web radii of 120.00 ft (36.57 m) and 208.75 ft (63.63 m).  The girders were tested as propped, 

simply-supported sections with simply supported spans of 24 ft (73.16 m) with 12 ft (36.58 m) 

cantilevered sections as shown in Figure 1.  Cross sections consisted of 0.34 in (8.53 mm) by 47.91 

in (1217.00 mm) webs and 21.52 in (546.60 mm) by 0.91 in (22.99 mm) flanges, resulting in a 

web slenderness ratio of 150.  Lateral bracing was provided at 12 ft (3.66 m) intervals with 

transverse stiffeners and connection plates placed to produce panel aspect ratios of 1.5 and 3.0 as 

shown in Table 1.  To generate larger shears over the interior support, loads were applied at the 

center of the simply supported span and the end of the cantilever, with the mid-span load being 3-

times the cantilever load. 

 
Table 1: Girder Parameters (Jung & White, 2006) 

Specimen Radius, ft (m) D/tw do/D do/R 

S1 208.75 (63.63) 142.59 3.0 0.0575 

S1-S 208.75 (63.63) 143.99 1.5 0.0300 

S2 120.00 (36.57) 146.51 3.0 0.1000 

S2-S 120.00 (36.57) 147.87 1.5 0.0500 

 

 
Figure 1: Test Setup (Jung & White, 2006) 

 

Jung and White reported linearly elastic behavior until the onset of web buckling in the high shear 

region. Shear strength continued to increase in a nonlinear fashion until ultimate strength was 

reached, followed by specimen softening. Jung and White established the critical shear buckling 

load using calibrated FEM eigenvalue buckling analyses. Their findings showed horizontal 

curvature had minor effects on shear capacity for the girders that were tested. 

 

More extensive, computational studies of the effects of horizontal curvature on shear resistance of 

very slender webs (slenderness ratios above 300) occurred for the aircraft industry. Specifically, 

Batdorf et al. (Batdorf et al., 1947) developed a shear buckling coefficient for slender, steel panels 

utilizing energy principles that incorporated a trigonometric shape function and the Galerkin 
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method. However, as stated earlier, effects of horizontal curvature on slender, curved, webs have 

not been extensively examined parametrically.  

 

This paper provides an overview of a study that investigated effects of horizontal curvature on web 

shear behavior and corresponding shear capacity of steel plate girders. Summarized herein is 

research that developed simplified and a detailed equations for the shear buckling coefficient. The 

coefficients were developed in a form compatible with the current shear buckling coefficient 

equation used in the American Association of State Highway and Transportation Officials 

(AASHTO) LRFD Bridge Design Specifications (AASHTO, 2014). Developed coefficients were 

used to calculate capacities that were compared against results from a series of FEM models of 

plate girders having varying horizontal curvatures, web slenderness ratios and panel aspect ratios, 

showing favorable results. 

 

2. Simplified Shear Buckling Coefficient 

As stated earlier, computational studies have examined horizontal curvature effects on shear in 

slender, steel webs but not in the context of steel, plate girder webs. This study considered the 

behavior of panels with slenderness ratios up to the AASHTO limiting value of 300 and initially 

developed a simplified approximation of Batdorf’s shear buckling coefficient, which was 

subsequently reformulated to match current AASHTO specifications. 

 

As mentioned earlier, Batdorf (Batdorf et al., 1947) utilized energy principles to develop a curved 

web shear buckling coefficient. In doing so, he formulated the horizontal curvature parameter (Z) 

shown in (Eq. 1). This parameter combined important variables, including web slenderness, D/tw, 

girder radius, R, and Poisson’s ratio, ν, to quantify the extent of horizontal curvature coupled with 

the girder’s shear sensitivity to that curvature.  

 

Z=
D2

Rtw
�1-ν2. (1) 

 

Sinusoidal shape functions were developed to represent buckling modes and the Galerkin method 

was employed to approximate energy based solutions to resulting differential equations. A series 

of homogeneous, linear, algebraic equations were produced for an infinite number of buckled 

shapes. Minimization of these equations produced the critical shear buckling coefficient for each 

panel aspect ratio, do/D, where do is the panel length between stiffeners, and horizontal curvature 

parameter pair. Batdorf simplified the rigorous computational process by developing shear 

buckling coefficient curves as a function of Z and do/D. The curves are reproduced for panel aspect 

ratios greater than or equal to 1 as the dashed lines in Figure 2.  
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Figure 2: Comparison between Batdorf and Proposed Shear Buckling Coefficient Curves 

 

The current study initially reproduced Batdorf’s curves for horizontal curvature parameters 

between 1 and 1000. AASHTO (AASHTO, 2014) imposes geometric limits on girder horizontal 

curvature, web slenderness and panel aspect ratio. Consideration of these limits narrowed the range 

of applicable horizontal curvature parameters as summarized in Table 2, which shows a maximum 

Z of 30 when plate girder depths ranged between the common values of 48 in. (1219 mm) and 180 

in. (4572 mm). Consequently, Figure 2 only shows Batdorf’s curves through a Z of 100. 

 
Table 2: Horizontal Curvature Parameter (Z) for FEM Girders 

D, in (mm) tw, in (mm) D/tw R, in (mm) Z 

48 0.32 (8) 150 1800 (45720) 3.82 

(1219) 0.16 (4) 300 1800 (45720) 7.63 

84 0.56 (14) 150 1800 (45720) 6.68 

(2134) 0.28 (7) 300 1800 (45720) 13.36 

120 0.8 (20) 150 1800 (45720) 9.54 

(3048) 0.4 (10) 300 1800 (45720) 19.08 

156 1.04 (26) 150 1800 (45720) 12.40 

(3962) 0.52 (13) 300 1800 (45720) 24.80 

180 1.2 (30) 150 1800 (45720) 14.31 

(4572) 0.6 (15) 300 1800 (45720) 28.62 

 

 

The current study initially regressed Batdorf’s curves into an equation compatible with AASHTO 

shear design equations for Z between 1 and 30. Y-intercepts in Figure 2 represented the buckling 

coefficient for Z equal to 1, a “straight” girder. A polynomial regression function was used to 

approximate each curve with a resulting, generalized shear buckling coefficient equation 

formulated so it reduced to AASHTO’s coefficient equation for straight girders. Based on the 
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regression, an additional term was derived and added to the current AASHTO equation as shown 

in Eq. (2). When compared against Batdorf’s curves as shown in Figure 2, this equation showed 

good agreement.  

 

ks=5+
5

�do

D
�2

+0.24
D2

Rtw
 where Z≤30. (2) 

 

 

An in-depth discussion regarding development of this shear buckling coefficient is provided in 

Frankl (Frankl, 2017). 

3. Detailed Shear Buckling Coefficient 

The second approach used to obtain the shear buckling coefficient initiated with Timoshenko’s 

energy-based derivation in the 1930’s. This approach was selected because Timoshenko’s 

derivation is the basis for shear buckling coefficients currently used in multiple bridge design 

standards and specifications, including AASHTO.  

 

The current, detailed formulation directly accounted for horizontal curvature in the web (shear) 

panel displacement function that was used to derive the shear strain energy and external work 

equations shown in Eq. (3) and Eq. (4). Directly accounting for horizontal curvature was 

accomplished by superimposing initial displacement functions onto Timoshenko’s functions as 

shown in Figure 3. 
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Figure 3: Shear panel displacement functions 

 

The resulting displacement function is comprised of two terms as shown in Eq. (3). The first term 

represents web displacement through its depth. The second term represents an initial out-of-plane 

displacement along the length, indicative of horizontal curvature.  
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w = � � fijsin
iπx

a
sin

jπy

b

n

j=1

n

i=1

+ � � fijωsin
iπx

a

n

j=1

n

i=1

 , (3) 

 

where i and j represent an even and odd mode shape order respectively, x and y represent horizontal 

and vertical coordinates within a web panel, fij is a mode shape scaling factor, and ω represents the 

magnitude of horizontal curvature across the panel length, ω=R-Rcos � a

2R
�. Work and strain energy 

equations appear as: 

 

Uw= -τxyt � �∂w

∂x

∂w

∂y
dxdy

b

0

a

0

 , 
(4) 

� = 
�2 � � 
������� + ������ ��� ���� ,
�

�

�

�
 

(5) 

 

where Uw is strain energy potential, V is work performed by the panel deformations under applied 

shear loads, τxy is the shear stress, Dt is the plate’s flexural rigidity (Dt=
Etw

12�1-ν2�) and E is the 

modulus of elasticity. Equating the two and applying energy minimization principles produces a 

plate buckling equation that can be reformulated to solve for the shear buckling coefficient. This 

is accomplished via application of simply-supported edge conditions and by grouping terms so the 

first term reproduces Timoshenko’s classical formulation for the buckling stress of an infinitely 

long plate. Additional, higher order, terms that result include horizontal curvature effects. When 

reformulated to determine ks, the equation appears as shown in Eq. (6). 

 

ks=
9π

2
Dtw

288do
2

�4�1+α2�2+
√128ω

π
�1+α2�4+4α2+8ω2�. (6) 

 

Timoshenko found that his infinite plate shear buckling solution overestimated experimental shear 

buckling capacities by approximately 15% and, as a result, reduced ks accordingly. A similar 

reduction was adopted for the first term in Eq. (6). Additional terms in the equation were calibrated 

via comparisons against a series of FEM analyses of girders having varying values for Z and web 

slenderness and panel aspect ratios, with variable ranges falling within AASHTO (AASHTO, 

2014) limits. Calibration steps are summarized in the paragraphs that follow. 

 

A total of 10 girders, shown in Table 3, were analyzed. Z fell between 2.6 to 28.6 for these girders, 

with web slenderness ratios between 143 to 300 and panel aspect ratios either 1.5 or 3.0. 

Corresponding web depths were between 47.9 in (1217 mm) and 180 in (4572 mm). The girders 

were modelled in ABAQUS CAE (ABAQUS/CAE, 2013) using 4-noded shell elements with 

reduced integration (S4R elements). The models included initial imperfections adopted from the 

American Welding Society (AWS) D1.1:200: Structural Welding Code – Steel (American Welding 

Society, 2015) and residual stresses taken from the European Convention for Construction 
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Steelwork (ECCS) (Issa-El-Khoury, 2010; Jung & White, 2006). The FEM model was calibrated 

against results from Jung & White’s tests and details are found in Frankl (Frankl, 2017). 

 
Table 3: Girder Parameters 

Girder D,in (mm) 
tw, in 

(mm) 
do, in (mm) R, ft (m) D/tw do/D Z ks 

S1 
47.91 0.336 144 208.75 

143 3.0 2.6 6.2 
(1217) (9) (3658) (63.62) 

S1-S 
47.95 0.333 72 208.75 

144 1.5 2.6 7.9 
(1218) (8) (1829) (63.63) 

UNL1 
75 0.25 225 400 

300 3.0 4.5 6.7 
(1905) (6) (5715) (121.92) 

UNL2 
75 0.25 112.5 400 

300 1.5 4.5 8.4 
(1905) (6) (2858) (121.92) 

UNL3 
75 0.25 225 150 

300 3.0 11.9 8.6 
(1905) (6) (5715) (45.72) 

UNL4 
75 0.25 112.5 150 

300 1.5 11.9 10.2 
(1905) (6) (2858) (45.72) 

UNL5 
126 0.42 378 150 

300 3.0 20.0 10.6 
(3200) (11) (9601) (45.72) 

UNL6 
126 0.42 189 150 

300 1.5 20.0 12.3 
(3200) (11) (4801) (45.72) 

UNL7 
180 0.6 540 150 

300 3.0 28.6 12.8 
(4572) (15) (13716) (45.72) 

UNL8 
180 0.6 270 1800 

300 1.5 28.6 14.4 
(4572) (15) (6858) (45720) 

 

 

Girders S1 and S1-S were replicas of Jung and White’s girders. UNL1 to UNL8 were simply 

supported girders proportioned so they were governed by shear failure. Length and cross-section 

dimensions are shown in Table 4 and span configurations in Figure 4 (bf is flange width and tf 

flange thickness). 
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Table 4: Girder Cross-Sectional and Length Dimensions 

Test 
bf, in 

(mm) 

tf, in 

(mm) 

a, ft 

(m) 
b, ft (m) L, ft (m) 

S1  
21.50 0.91 12.00 12.00 38.00 

(546) (23) (3.66) (3.66) (11.58) 

S1-S 
21.90 0.90 12.00 12.00 38.00 

(556) (23) (3.66) (3.66) (11.58) 

UNL1 
18.00 1.25 6.25 18.75 51.00 

(457) (32) (1.91) (5.72) (15.54) 

UNL2 
18.00 1.25 6.25 9.38 32.25 

(457) (32) (1.91) (2.86) (9.83) 

UNL3 
18.00 1.25 6.25 18.75 51.00 

(457) (32) (1.91) (5.72) (15.54) 

UNL4 
18.00 1.25 6.25 9.38 32.25 

(457) (32) (1.91) (2.86) (9.83) 

UNL5 
30.00 3.25 10.50 31.50 85.00 

(762) (83) (3.20) (9.60) (25.91) 

UNL6 
30.00 3.25 10.50 15.75 85.00 

(762) (83) (3.20) (4.80) (25.91) 

UNL7 
48.0 4.5 15.75 47.25 127.00 

(1219) (114) (4.80) (14.40) (38.71) 

UNL8 
48.0 4.5 15.75 23.63 127.00 

(1219) (114) (4.80) (7.20) (38.71) 

 

 

 

(a)  Girders S1 and S1-S 
 

(b) Girders UNL1 to UNL8 
 

Figure 4: Girder Layout 
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An eigenanalysis was performed to determine each girder’s elastic shear buckling capacity 

followed by a fully nonlinear analysis to establish ultimate shear strength. Representative load-

deflection curves are shown in Figure 5. 

 

 
Figure 5: Applied Shear Force vs. Midspan Vertical Displacement 

 

Shear strengths provided by the FEM analyses were then normalized against predicted capacities 

to evaluate horizontal curvature influence. Capacities were determined using equations founded in 

three separate, classical models: (1) Basler (Basler, 1961); (2) Hoglund (Hoglund, 1971, 1997);  

and (3) what is termed the Cardiff Model (Evans, Rockey, & Porter, 1978; Porter, Rockey, & 

Evans, 1975). Since each model exhibited similar trends with respect to horizontal curvature, this 

paper will focus on Basler’s formulations. Additional information and comparisons can be found 

in Frankl (Frankl, 2017). 

 

Ultimate shear capacities were determined using the shear buckling coefficient from Eq. 6 in 

Basler’s model. For a given panel aspect ratio, the proposed shear buckling coefficient was 

calibrated such that nondimensionalized strength ratios exhibited accurate or conservative 

horizontal curvature parameters (Figure 6). These steps produced Eq. (7).  For simplification 

purposes, Term 1, Term 2 and Term 3 correspond to the three bracketed terms in Eq. (6). 

 

kz=0.85�Term1�+
0.85�Term2+Term3�

Z0.1 �do

D
�  

(7) 
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Figure 6: Normalized Shear Strengths 

 

A version of Eq. (7) better suited to design application was developed via completion of an 

ANOVA over the studied range of horizontal curvature, web slenderness and panel aspect ratios. 

Similar to Eq. (2), Vincent’s shear buckling coefficient was expanded to include an additional term 

addressing horizontal curvature. The resulting equation is shown in Eq. (8). More detail can be 

found in Frankl (Frankl, 2017). 

 

kz=5+
5

�do

D
�2

+
3ω

�do

D
�2

!D

tw
"0.25

 (8) 

 

4. Shear Buckling Coefficient Comparisons 

To examine the accuracy of Eq. (2) and Eq. (8), Figure 7 compares buckling and ultimate shear 

strengths calculated using a modified Basler’s method that incorporated the simplified and detailed 

shear buckling coefficients to FEM results. These figures demonstrate the degree of conservatism 

of the theoretical shear buckling capacity using straight girder analysis, especially at higher Z. It 

is also shown that the Detailed Method produces higher shear buckling capacities as Z increases 

in comparison to the Simplified Method. This behavior shows that Figure 7(a) shows that the 

simplified approach accounts for curvature reasonably well while Figure 7(b) shows that curvature 

could have more of an effect. Figure 7(c) and Figure 7(d) evaluate accuracy of the ultimate shear 

buckling capacity, modified to include curvature using the simplified and detailed shear buckling 

coefficients, via comparisons against fully non-linear FEM analyses of the girders in Table 4. 

These figures show increased conservatism when predicting shear capacity as Z increases using 

current AASHTO equations. Inclusion of Eq. (2) or Eq. (8) improves shear capacity predictions, 

with the Detailed Method providing significantly improved predictions as Z increases. The 

increased shear strength could help reduce girder web dimensions or increase required transverse 

stiffener spacing. 
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(a) Shear Buckling (Simplified ks) (b) Shear Buckling (Detailed ks) 

  
(c) Basler Ultimate (Simplified ks) (d) Basler Ultimate (Detailed ks) 

Figure 7: Nondimensionalized Ratios 

 

Further examination of the effects of increasing transverse stiffener spacing on design optimization 

occurred via the completion of stiffener spacing designs for a series of girders. Designs were first 

completed using the current, straight girder, shear buckling coefficient and were repeated using 

the modified shear buckling coefficients developed herein. This process was completed for each 

of the ten girders in Table 4 and resulting spacings are plotted in Figure 8 for construction loads 

(shear buckling capacity).  The figure shows that larger shear stiffener spacing could be realized 

as the horizontal curvature parameter increases for construction loads. A similar trend was 

observed for service loads (ultimate shear strength).  
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Figure 8: Shear stiffener spacing (do/D = 1.0) 

 

 

5. Conclusions 

This paper presents results from a larger study that examined effect of horizontal curvature on steel 

plate girders with slender webs. One component of the study was the development of two shear 

buckling coefficients that accounted for horizontal curvature. One coefficient derivation was based 

on a simplified approximation of Batdorf’s (Batdorf et al., 1947) shear buckling coefficient curves. 

The other coefficient was obtained via the development of a detailed, energy-based, plate buckling 

solution founded in Timoshenko’s seminal work that incorporated horizontal curvature into the 

original displacement functions.  

 

Results from the study indicated that: 

 

1. Batdorf’s shear buckling coefficient can be approximated by adding a simplified 

horizontal curvature expression to AASHTO’s current equation (AASHTO, 2014). 

This behavior showed shear strength increased with an increase in horizontal curvature 

(reduced radii). 

2. Timoshenko’s shear buckling coefficient, modified to include horizontal curvature and 

simplified to match current AASHTO equations, indicated that shear capacity 

increased with an increase in horizontal curvature (reduced radii).  

3. Inclusion of horizontal curvature during shear design could increase capacity to a point 

where girder web plate sizes could be reduced and/or transverse stiffener spacing 

increased. 
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