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Abstract 
There exists great potential for improvement of existing methods for calculating the flexural and 
axial compressive resistance of longitudinally stiffened welded steel box-section members, to 
achieve gains in the accuracy of their representation of the limit states responses as well as 
greater generality and ease of their design application. A good quantification of the ultimate 
compressive resistance of longitudinally stiffened plates is crucial for accurate characterization 
of the flexural and axial compressive resistance of these member types. This paper summarizes 
the conceptual and theoretical development of new methods for characterization of the ultimate 
compressive resistance of longitudinally stiffened plates, and the flexural and axial compressive 
resistance of longitudinally stiffened welded box-section members. The proposed method for 
calculating the plate compressive resistance is derived using an orthotropic plate idealization, but 
is expressed as a designer-friendly, intuitive column on elastic foundation model. This model 
considers the contributions from longitudinal stiffener flexure, transverse plate bending, and 
plate torsion. The proposed method for calculating member flexural resistance recognizes the 
inability of longitudinally stiffened flange plates to sustain large inelastic compressive strains 
beyond their maximum resistance, and therefore limits the flexural resistance of box sections 
with a longitudinally stiffened compression flange to the first yield of the compression flange in 
the effective cross-section. For sections involving early yielding of the tension flange, the 
member response is addressed rigorously via the direct calculation of the yield moment to the 
compression flange, considering the early yielding on the tension side of the neutral axis, and 
considering hybrid web, slender web and unstiffened slender or longitudinally stiffened 
compression flange effects as applicable. The paper presents a parametric study of longitudinally 
stiffened welded box columns whose failure mode involves combined flexural and local 
buckling, for which there is no experimental or finite element simulation data in the literature. 
The predictions using the proposed methods correlate well with the results from finite element 
test simulations, and with data compiled from experimental tests. 
 
1. Introduction 
Noncomposite steel box-section members are highly efficient in resisting loads and are used in 
various important areas of highway bridge construction as well as in building construction. The 
applications include but are not necessarily limited to truss members, arch ribs and ties, rigid-
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frame members, columns, edge girders, floor beams and steel tower legs (see Fig. 1). For many 
of these types of components, longitudinal stiffening can provide material savings that justify the 
additional fabrication cost. For these types of members in larger bridges, longitudinal stiffening 
is essential to realization of the design. There is great potential for improvement of existing 
methods for design of these members to achieve gains in the accuracy of their representation of 
the limit states response as well as greater generality and ease of their design application.  

        
Figure: 1 Longitudinally stiffened box-section member applications (Chou 2011 and GSG 2013) 

Section 2 of this paper discusses a method for improved quantification of the ultimate compres-
sive resistance of longitudinally stiffened plates. Section 3 discusses an improved calculation of 
the axial compressive resistance of longitudinally stiffened welded box-section members. 
Section 4 discusses new methods for characterization of the flexural resistance of longitudinally 
stiffened welded box-section members. Section 5 provides summary and concluding remarks. 

2. Ultimate compressive strength of longitudinally stiffened plates 
A good prediction of the ultimate compressive resistance of longitudinally stiffened plates is 
crucial for obtaining accurate characterization of the axial compressive and flexural resistance of 
longitudinally stiffened welded steel box-section members. Section 2.1 explains the need for the 
proposed method. Sections 2.2 and 2.3 explain the proposed method and its salient features. 
Section 2.4 discusses the evaluation of the performance of the proposed method. 

2.1 Motivation 
The prediction of the compressive resistance of longitudinally stiffened plates involves two 
steps: 1) Calculating the buckling strength, 2) Calculating the ultimate compressive strength. 
Table 1 provides a broad summary of the approaches for these two steps in existing methods.  

The Eurocode (CEN 2006) and AISI (2016) effective width procedures use different 
combinations and forms of the methods listed in Table 1. The limitations of the approaches in 
AASHTO (2017) Article 6.11.8.2, Eurocode (CEN 2006) and AISI (2016) are discussed in detail 
in Lokhande (2018). They are summarized below, to explain the need for the proposed method. 

AASHTO (2017) Article 6.11.8.2  
The AASHTO (2017) method for calculating the ultimate compressive strength of longitudinally 
stiffened plates has the following shortcomings: 
1) For slender plate subpanels susceptible to local buckling, the strength is limited to elastic 
buckling of the subpanel between the longitudinal stiffeners. This neglects the significant 
postbuckling resistance of the longitudinally stiffened plate subpanels. 
2) The longitudinal stiffeners in wide plates with more than two longitudinal stiffeners tend to 
behave as unconnected struts. The key property influencing the compressive resistance of these 
types of plates is the moment of inertia of their longitudinal stiffeners. However, as pointed out 
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by King (2017), for these types of plates, the plate buckling coefficient in AASHTO, and hence 
the stiffened plate resistance, is expressed independently from this key property. 

Table 1: Summary of existing methods for calculating the buckling and ultimate compressive 
resistances of longitudinally stiffened plates 

Buckling resistance Ultimate compressive resistance  
1) Strut idealization: 
The strut model is based on treating a longitudi-
nally stiffened plate as a series of separate columns 
comprised of the longitudinal stiffener and an 
associated width of the plate. 
 
2) Column on elastic foundation (CEF) 
idealization: 
The CEF model considers a longitudinal stiffener 
strut (i.e., the longitudinal stiffener and an associ-
ated width of the plate) resting on an elastic foun-
dation representing the transverse bending stiffness 
of the plate. Thus it avoids the limitation of the 
strut idealization of neglecting the transverse 
bending stiffness of the plate. This can be signifi-
cant especially in relatively narrow plates with one 
or two longitudinal stiffeners, which are common-
ly used in North America. 
 
3) Orthotropic plate idealization: 
The orthotropic plate idealization smears the stiff-
ness characteristics of the longitudinal stiffeners 
over the entire plate. Thus, it takes into account the 
longitudinal bending, transverse bending, and  
torsional stiffness of the plate. 

1) Column strength curve: 
Mapping to a column strength curve 
results in no consideration of the plate 
postbuckling resistance. Column strength 
curves have a short plateau (see Fig. 2). 
 
2) Plate strength curve: 
Mapping to a plate strength curve, e.g. 
Winter’s curve, results in a consideration 
of the plate postbuckling resistance. Plate 
strength curves have a longer plateau 
(see Fig. 2). 
 
3) Interpolation between column and 
plate strength curves: 
Because of the lack of an explicit  
compressive strength curve for longitudi-
nally stiffened plates, the Eurocode 
(CEN 2006) requires an interpolation 
between column and plate ultimate 
strength curves. Figure 2 clearly shows 
the higher compressive resistance for 
plates, due to postbuckling, and also the 
longer plateau for plate ultimate 
strengths compared to column strengths. 

 

 
Figure 2: Axial compressive strength curves 
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3) For plates with more than two longitudinal stiffeners, AASHTO suggests the use of transverse 
stiffeners and requires the longitudinal stiffeners to satisfy a minimum moment of inertia 
requirement. This limits the designer’s options in seeking the greatest design economy. 
4) AASHTO (2017) requires a spacing of transverse flange stiffeners less than three times the 
width of the stiffened plate for the stiffeners to be considered effective. It would be better to 
provide design engineers more flexibility in choosing the transverse stiffener spacing. 
5) AASHTO (2017) does not recognize the larger resistance of subpanels adjacent to the plate 
longitudinal edges. 
6) AASHTO (2017) does not provide any guidance to prevent torsional buckling of tee and angle 
section stiffeners about the edge attached to the plate, i.e., “tripping” of the stiffeners.  

AISI (2016)  
The AISI (2016) effective width method for calculating the ultimate compressive strength of 
longitudinally stiffened plates has the following drawbacks: 
1) The method is intended for plates containing formed stiffeners. It does not have any 
provisions addressing stiffener local buckling. 
2) The buckling coefficient is calculated as the minimum of the coefficients for buckling of the 
plate between longitudinal stiffeners and overall buckling of the plate along with the longitudinal 
stiffeners. Thus it does not account directly for any interaction between local buckling of 
subpanels and overall buckling of the plate involving transverse displacement of the stiffeners. 
3) The ultimate compressive strength of the stiffened plate is calculated by considering its 
postbuckling resistance using a form of Winter’s effective width equation for unstiffened plates. 
It is inappropriate to count on this postbuckling resistance in all cases. For example, in a wide 
thin plate with a large number of longitudinal stiffeners, the longitudinal stiffeners and the 
tributary widths of the plate tend to behave as unconnected stiffener struts, i.e., as columns.  

Eurocode (CEN 2006)  
The Eurocode (CEN 2006) method for calculating the ultimate compressive strength of 
longitudinally stiffened plates has the following limitations: 
1) Because of the lack of availability of an ultimate compressive strength curve for stiffened 
plates, it interpolates between a column strength curve (no postbuckling resistance and a short 
plateau length) and a nonlongitudinally stiffened plate strength curve (consideration of 
postbuckling resistance and a longer plateau length). As pointed out by King (2017), this 
interpolation can produce illogical results for slenderness values where the elastic buckling stress 
as a column approaches the elastic buckling stress as a plate. Furthermore, the calculations 
associated with this interpolation approach are relatively long and cumbersome.  
2) It accounts for larger resistance of the half-width of the edge subpanels closest to the edge 
supports by considering that they reach the yield stress. However, as discussed later in this paper 
and in detail in Lokhande (2018), the maximum resistance of the stiffened plate typically occurs 
before the half-width of the subpanel closest to the edge support reaches the yield stress.  

Hence, there is a need for a procedure that avoids the shortcomings of the existing methods.  

2.2 Proposed method 
The proposed method is based on the developments by King (2017). Sections 2.2.1 and 2.2.2 
explain the calculation of the buckling and ultimate compressive resistance for longitudinally 
stiffened plates with equally-spaced and equal-size longitudinal stiffeners. Section 2.2.3 explains 
restrictions on the longitudinal stiffeners to prevent local buckling and tripping of the stiffeners.  
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2.2.1 Buckling resistance 
The proposed method is based on an orthotropic plate idealization. Thus it considers all three 
contributions to the buckling resistance - longitudinal bending stiffness, transverse bending 
stiffness, and torsional stiffness. The differential equation of equilibrium for an orthotropic plate 
simply supported on all four edges and subjected to uniform longitudinal compression is 

4 4 4 2

4 2 2 4 2
2 x

x y
sp

P
D H D

x x y y b x

      
   

    
    (1) 

where: 
x is the longitudinal direction of the plate; 
y is the width direction of the plate; 
 is the transverse displacement of the plate; 

/x sD EI w    (2) 

= flexural stiffness for bending about the y axis, where sI is the moment of inertia of an 

individual stiffener strut composed of the stiffener plus the tributary width of the longitudinally 
stiffened plate, w, taken about an axis parallel to the face of the plate and passing through the 
centroid of the gross area of the stiffener strut;  

 
3

212 1
spEt

H





= torsional stiffness    (3) 

 
3

212 1
sp

y

Et
D





= EIp = flexural stiffness for plate bending about the x axis  (4) 

xP  is the elastic buckling load of the longitudinally stiffened plate; 

E  is the modulus of elasticity; and  
Figure 3 illustrates the dimensional and area variables employed above and in the subsequent 
discussions for a representative longitudinally stiffened plate. 

 
Figure 3: Illustration of variables for a longitudinally stiffened plate 
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Assuming the buckling mode of the stiffened plate is the same as that of an unstiffened plate of 
overall width spb  between simply-supported edges, 

max sin sin a b
sp

m x q y
eS S

b

   


     (5) 

where   is the buckling length, taken as the smaller of the transverse stiffener spacing, a, and the 
characteristic buckling length, c , explained below. Substituting this displacement solution, 

which satisfies Eq. (1) and the specified boundary conditions, one can write: 
2 42 4 2

2x
a b x a b a b y a b

sp spsp

q qP m m m
e S S D e S S He S S D e S S

b bb

                                  
  (6) 

Taking 1m   and 1q  ,  
2 42 4 2

2x s
p p

sp spsp

P EI
EI EI

b bb w

                                  
  (7) 

Since   
 1spb n w     (8) 

where n is the number of longitudinal stiffeners, the elastic buckling load of the longitudinally 
stiffened plate may be expressed as 

 
2 4 22

1 2x s sp p sp p
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P n EI b EI b EI
b b

 


                      




                                                        (9) 

This buckling load also can be conveyed as an intuitive and easy-to-use column on elastic 
foundation model, as explained below. 

The buckling load per stiffener may be expressed as 

     
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                                   (10) 
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where: 
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For an infinitely long plate the characteristic buckling length, c , is the length that results in the 

minimum value of esP . Therefore, 

2 2
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0

s c
p
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c c

EI
d k

dP

d d
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 
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1/44
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p
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k

 
  
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           (16)                

2.2.2 Ultimate compressive resistance 
Knowing the elastic buckling load , es esF esTP P P the ultimate compressive strength of a 

longitudinally stiffened plate with equally spaced and equal size stiffeners can be calculated as 
2nsp ns nRP P P                                                                             (17) 

where: 

nsP 0.15nsF esT yesP P P    = nominal compressive resistance of an individual stiffener strut com-

posed of the stiffener plus the tributary width of the longitudinally stiffened plate (18)                         

nsFP  = nominal flexural buckling resistance of an individual stiffener strut determined by 

mapping the elastic flexural buckling load esFP to the AASHTO column curve as shown below: 

If 2.25ys

esF

P

P
  , then   

      0.658
ys

esF

P

P
nsF yesP P                                                             (19) 

Otherwise,  

      0.877 esF
nsF es

gs

P
P A

A
                                                                            (20) 

1 0.45ns nsns
yspnR gR yeR yeR

yes yeses

P PP
FP A P P

P PA

           
    

= compressive resistance provided by an 

individual laterally-restrained longitudinal edge of the longitudinally stiffened plate (21) 

Equation 21 recognizes that the edge stress is larger than the ultimate stress of the stiffener strut 
and it also takes into account the observation by Lokhande (2018) and King (2017) that the edge 
stress is typically less than the yield stress at the ultimate strength condition. Equation 21 is a 
simple linear interpolation between (1) the yield load of the edge, PyeR, based on the plate 
effective width tributary to the edge, in the limit that Pns is equal to Pyes, and (2) the compression 
force given by a weighted average of Fysp and the maximum compression stress on the adjacent 
stiffener strut, ,ns esP A  acting on AgR, in the limit that Pns becomes small. Figure 4 shows the 

stress distribution and the corresponding effective width when Pns is equal to Pyes, which 
corresponds to a plate local buckling mode. Figure 5 shows the stress distribution and the 
corresponding effective width when Pns becomes small, which corresponds to an overall 
buckling mode. 
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 2yeR ysp e spP F w t  = effective yield load of an individual laterally-restrained longitudinal edge 

of the longitudinally stiffened plate (22) 

yes ysp esP F A = effective yield load of an individual stiffener strut                          (23)                         

 2yR ysp spP F w t  = yield load of an individual laterally-restrained longitudinal edge of the 

longitudinally stiffened plate (24) 

ys ysp gsP F A = yield load of an individual stiffener strut  (25) 

es s e spA A w t  = effective area of an individual stiffener strut  (26)                         

 2gR spA w t  = gross area for the laterally-restrained longitudinal edge of the plate (27) 

gS s spA A wt  = gross area of an individual stiffener strut  (28)                         

As = gross area of an individual longitudinal stiffener, excluding the tributary width of the 
longitudinally stiffened plate;  
Fysp = specified minimum specified yield strength of the longitudinally stiffened plate; 
we  = effective width of the plate between the longitudinal stiffeners or between a longitudinal 
stiffener and the laterally-restrained longitudinal edge of the longitudinally stiffened plate, as 
applicable, calculated using the modified Winter’s effective width equation given in Lokhande 

and White (2017) with Fcr taken as Fysp and with λr taken as 1.09 yspE F (in.)    

Fysp

Fysp

we/2  
Figure 4: Stress distribution and the corresponding effective width when Pns is equal to Pyes 

0.45(Fysp + (Pns/Aes))

w/2  
Figure 5: Stress distribution and the corresponding effective width when Pns becomes small 

 
2.2.3 Restrictions on the cross-section of the longitudinal stiffeners  
The longitudinal stiffeners must satisfy the following requirements: 
 The yield strength of the stiffeners shall not be less than the yield strength of the plate to 

which they are attached. 
 The slenderness of the of the longitudinal stiffener cross-section elements is to be such that 

local buckling does not impact the resistance of the longitudinal stiffeners. 
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 Additionally, tee and angle section stiffeners must satisfy    5.0s ps yspJ I F E , which 

ensures that torsional buckling of these stiffeners about the edge of the stiffener attached to 
the plate is prevented. In this equation, Js is the St. Venant torsional constant of the 
longitudinal stiffener alone, not including the contribution from the stiffened plate, and Ips is 
the polar moment of inertia of the longitudinal stiffener alone about the attached edge. For 

flat plate stiffeners, this corresponds to a slenderness limit of 0.45 yE F , which is the 

nonslender plate limit specified in AASHTO (2017) Article 6.9.4.2.1. 
   
2.2.4 Extension to plates with unequally spaced/unequal size longitudinal stiffeners and 
transverse stiffener design 
An extension of the proposed method to calculate the buckling resistance and ultimate 
compressive resistance of longitudinally stiffened plates with unequally spaced and/or unequal 
size longitudinal stiffeners is explained in White et al. (2018) and Lokhande (2018). In addition, 
guidelines for design of transverse stiffeners provided to enhance the compressive strength of 
longitudinally stiffened plates, are also explained in these references. 
 
2.3 Salient features of the proposed method 
The salient features of the proposed method are as follows: 
1) It is derived using an orthotropic plate idealization and thus considers all three contributions to 
the buckling resistance-longitudinal bending, transverse bending, and torsional stiffness. 
2) The buckling resistance obtained using the orthotropic plate idealization is expressed as an 
intuitive and easy-to-use column on elastic foundation model. The elastic torsional contribution 
from the plate is included directly in the ultimate strength calculation, with a calibrated reduction 
factor of 0.15. This results in a longer plateau than that for the compression member buckling 
curve. As pointed out by King (2017), the plate torsional stiffness provides much of the stability 
to plates with a buckling resistance close to the yield stress. 
3) The explicit combination of the three contributions to the stiffened plate compressive re-
sistance facilitates design optimization since the relative importance of each effect is clear. 
4) The method is applicable to longitudinally stiffened plates with or without intermediate 
transverse stiffeners. 
5) The characteristic buckling length concept is familiar to the engineer. This allows the engineer 
to make a good decision about whether transverse stiffening is needed, and at what spacing to 
place transverse stiffeners if they are used. 
6) The method recognizes that the edge stress is larger than the ultimate stress of the stiffener 
struts, but it also takes into account the observation that the edge stress is typically less than the 
yield stress at the ultimate strength condition. 
7) The method recognizes the postbuckling resistance of the plate panels between the longitudi-
nal stiffeners, and/or between the longitudinal stiffeners and the laterally-restrained longitudinal 
edge of the stiffened plate. 
8) Unlike Eurocode (CEN 2006), the method does not resort to an interpolation between column-
type and plate-type curves to determine the extent of the plate-like behavior. 
9) The method also provides guidance for calculating the compressive resistance of plates with 
unequally-spaced and/or unequal-size longitudinal stiffeners. These recommendations provide an 
accurate to conservative estimate of the compressive resistance for more general configurations. 
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10) The method does not recognize extensive postbuckling resistance of longitudinally stiffened 
plates with relatively weak longitudinal stiffener struts that fail at low values of the compression 
stress. These types of configurations are a quite inefficient use of the additional longitudinal 
stiffener material plus the fabrication cost in the context of welded box-section member 
construction. Therefore, this is not viewed as a limitation.  
 
2.4 Evaluation of the performance of the proposed method 
Four non-dimensional parameters influencing the compressive resistance of a longitudinally 
stiffened plate are identified, and they may be used to generate the geometries for parametric 
studies. The identification of these non-dimensional parameters is discussed below. 

Based on Section 2.2, the buckling load of a longitudinal stiffener strut esP  may be expressed as 

  

32 2 2

2 2 3 1 1

sp
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n b
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 

 
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                                                        (29) 

For an infinitely long plate, where c  , PeSF may be written as 
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and PesT may be written as 
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                                                                           (31) 

Knowing gS s spA A wt  , the corresponding stresses esF esF gSF P A  and esT esT gSF P A can be 

written as 
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                                                                       (32) 

and  

   
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1 1 1

6 11
esT
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spsp

E
F
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wtt



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.                                                                           (33) 

Therefore, it is apparent that four non-dimensional parameters n , 
sp

w

t
, gS

sp

A

wt
 and   should be 

considered in parametric studies to evaluate the performance of the recommended calculations. It 
should be noted that both ( )gS spA wt and ( )s pI wI provide a measure of the contribution of the 

stiffener strut compared to the contribution from the associated plate width. The term ( )gS spA wt  

is selected over ( )s pI wI  as it appears in both the esFF and esTF  terms. Also, for esFF the influ-

ence of ( )gS spA wt is larger than ( )s pI wI  since ( )s pI wI appears under the radical. 
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The performance of the proposed method using data compiled from experimental tests and FE 
test simulations is evaluated in Lokhande (2018). It is shown that the predictions using the 
proposed method correlate well with benchmark results, and are significantly better than the 
predictions using the methods in AASHTO (2017), AISI (2016), and Eurocode (CEN 2006).     
 
3. Axial compressive resistance of longitudinally stiffened welded box-section members 
As mentioned earlier, a good prediction of the ultimate compressive resistance of longitudinally 
stiffened plates is crucial for obtaining a more accurate characterization of the axial compressive 
resistance of longitudinally stiffened welded steel box-section members. Section 3.1 explains the 
proposed method for calculating the axial compressive resistance of longitudinally stiffened 
welded steel box-section members using the method in Section 2 for calculating the ultimate 
compressive resistance of longitudinally stiffened plates. At the present time (2018), there is no 
experimental or finite element simulation data in the literature quantifying the interaction 
between flexural and local buckling on the axial compressive resistance of longitudinally 
stiffened welded steel box-section members. Section 3.2 shows the performance of the proposed 
method using the results of a parametric study performed using FE simulations. 
 
3.1 Proposed method 
The axial compressive resistance nP  is given as follows: 

n cr effP F A                                                                                    (34)                         

where: 

 effeff e c sp
nlsp c lsp

AA b t A      (35)  

in which the summations are over the nonlongitudinally stiffened plates, the corners of the 
box section, and the longitudinally stiffened plates;  
be = effective width of the nonlongitudinally stiffened element under consideration, 
determined as specified in Article 6.9.4.2.2b of AASHTO (2017) (for non-slender 
nonlongitudinally stiffened plate elements, be = b);  
t  =   thickness of the element under consideration; 
Ac = gross cross-sectional area of the corner pieces of a box section;   

 eff sp
A = Pnsp /Fysp = effective area of the longitudinally stiffened plate under              

consideration (36) 
Pnsp= nominal compressive resistance of the longitudinally stiffened plate element under 
consideration, calculated using the proposed method in Section 2. 

crF  is the axial stress on the cross-section effective area at the member nominal compressive 

resistance, calculated as follows: 

If 2.25os

e

P

P
  , then   

      
0.658

os

e

P

Pcr yF F 
 

                                                            (37) 

Otherwise,  
      0.877 /cr e gF P A                                                                            (38) 
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where: 

gA = total gross cross-sectional area of the member, including any longitudinal stiffeners; 

Pe = member elastic buckling load based on the gross cross-sectional properties; and 
      effos y y c ysp sp

nlsp c lsp

AP F bt F A F                                                                                    (39) 

Equation 34 captures the influence of the “local” strengths of the nonlongitudinally and 
longitudinally stiffened plates on the overall member axial compressive resistance. 
 
3.2 Evaluation of the proposed method performance 
The performance of the proposed method is evaluated below using the results from FE test 
simulations. Table 2 summarizes the parametric study design. Three non-dimensional parameters 
are investigated pertaining to the each of the flange and web plates. Also, the overall slenderness 
L/rmin is varied for these longitudinally stiffened box-section members.  
 
Table 2: Summary of parametric study variables for evaluating the performance of the proposed 
calculation of the axial compressive resistance for longitudinally stiffened box section members 

Case 
Numbers 

Flange plates Web plates Column 
minL r   spw t  n  

gS spA wt  spw t  n  
gS spA wt  

1, 2, 3 20 1 1.1 20 2 1.1 50, 80, 110 

4, 5, 6 20 1 1.1 20 2 1.4 50, 80, 110 

7, 8, 9 20 1 1.1 60 1 1.1 50, 80, 110 

10, 11, 12 20 1 1.1 60 1 1.4 50, 80, 110 

13, 14, 15 20 1 1.1 60 2 1.1 50, 80, 110 

16, 17, 18 20 1 1.1 60 2 1.4 50, 80, 110 

19, 20, 21 20 2 1.1 60 1 1.1 50, 80, 110 

22, 23, 24 20 2 1.1 60 1 1.4 50, 80, 110 

25, 26, 27 20 2 1.1 60 2 1.1 50, 80, 110 

28, 29, 30 20 2 1.1 60 2 1.4 50, 80, 110 

31, 32, 33 60 1 1.1 60 2 1.1 50, 80, 110 

34, 35, 36 60 1 1.1 60 2 1.4 50, 80, 110 

37, 38, 39 60 1 1.4 60 2 1.1 50, 80, 110 

40, 41, 42 60 1 1.4 60 2 1.4 50, 80, 110 

 
The dimensions of the 42 box-section members are obtained by setting the thickness of the 
flanges and webs as one inch. A range of column slenderness values are considered to study the 
interaction between local and global buckling of the members. Slenderness values minL r of 50, 

80 and 110 correspond to Fcr = 0.83 yF , 0.63 yF  and 0.41 yF  respectively; where 50yF ksi. Flat 

longitudinal stiffeners are used, and it is ensured that the slenderness of the stiffener plate does 
not exceed 0.48 yE F to prevent local buckling/tripping of the longitudinal stiffener. Details of 
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the finite element models are explained in Lokhande (2018). Figure 6 shows a comparison of the 
member test simulation strength to the strengths predicted using the proposed method and using 
the corresponding procedures from AISI (2016) and the Eurocodes (CEN 2005 and 2006). 
  

 
Figure 6: Comparison of the member strength from test simulation with the strength predcited 

using the proposed method 
 
The reasons for the under- and over-prediction of the axial compressive resistances by the 
proposed method are as follows:  
 
 It has been found that the plate resistance predictions using the method detailed in Section 2 

vary from accurate to somewhat conservative as spw t increases. There are two reasons for 

the under-prediction of the plate resistance when 60spw t  : 

o Conservatism of the modified form of Winter’s effective width equation in Article 
6.9.4.2.2b of AASHTO (2017) for large spw t . 

o The modified form of Winter’s effective width equation in AASHTO (2017) does not 
account for the restraint from the adjacent subpanels between longitudinal stiffeners. 
 

 For box section members with large spw t and minL r , the interaction between global flexural 

buckling of the member and local buckling of the component plates results in axial 
compressive resistances smaller than the predicted resistance. It can be observed that for 
Cases 1 to 6 in which all the plates have 20spw t  (theoretically no local buckling of the 

subpanels between longitudinal stiffeners) the proposed method gives an accurate to slightly 
conservative prediction. However, for cases in which 60spw t   and min 110L r   (e.g., 

Cases 9, 12, 21, 24) the strength is slightly lower than the predicted strength due to 
significant local-global buckling interaction.  
 

 Studies are underway to investigate additional potential cases where local-global buckling 
interaction may cause the greatest unconservatism. These include cases with L/rmin up to 120, 
which is the maximum limit in the AASHTO LRFD Specifications for primary members, 
with w/tsp up to 90, which is the maximum limit on the slenderness of longitudinally stiffened 
plate subpanels in the proposed provisions. It should be noted that for box columns subjected 
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to significant axial compression, the maximum w/tsp will commonly be limited to values 
closer to 40, since the recommended provisions disallow theoretical plate buckling under 
construction, service and fatigue loading conditions. Preliminary results indicate maximum 
unconservatism close to the values shown in Fig. 6.  

Generally, large spw t values will only be encountered in longitudinally stiffened box-section 

beams. These members may have a small axial force and hence an engineer may need to 
calculate the axial compressive resistance of these members with large spw t values. 

However, in these members because /u nP P  is small, the under-prediction of nP  will have a 

minor impact on the overall strength prediction for combined axial compression and bending.  

 Figure 7 shows a comparison of the member test simulation strengths to the strengths 
predicted using the proposed method (using the AISC/AASHTO column curve), and the 
proposed method using the Eurocode column curve b. Figure 7 clearly shows that the un-
conservatism of the strength prediction for columns with large L/rmin, as well as the 
dispersion in the resulting predictions, can be improved by using Eurocode column curve b 
instead of the more optimistic AISC/AASHTO column curve. 

 
Figure 7: Comparison of the member test simulation strength to the strengths predicted using the 
proposed method using the AISC/AASHTO column curve, and the proposed method using the 

Eurocode column curve b 
 
The unconservatism of the predictions using AISI (2016) and Eurocode (CEN 2006) methods 
(shown in Fig. 6) can be attributed to their optimistic prediction of the ultimate compressive 
resistance of longitudinally stiffened welded plates. This has been clearly shown in Lokhande 
(2018) where the ultimate compressive resistance of longitudinally stiffened welded plates 
obtained from FE simulations and experimental tests have been compared with the predictions 
using AISI (2016) and Eurocode (CEN 2006) methods. The drawbacks of the AISI (2016) and 
Eurocode (CEN 2006) methods for calculating the ultimate compressive resistance of longitudi-
nally stiffened plates have been discussed in Section 2.1.  
The accurate to conservative prediction of the resistance for cases 1, 4, 7, 10, 13, 16, 19, 22, 25, 
28, 31, 34, 37, 40, which have 0.83cr yF F and have component plates with different ultimate 

stress capacity, shows that the proposed method works well even for cases involving significant 
force redistribution between relatively weak and relatively strong plate elements (One extreme 
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example is Case 13, in which in the ultimate stress capacity of the web plate is 1/4th of the 
ultimate stress capacity of the flange plate).  

4. Flexural resistance of longitudinally stiffened welded box-section members 
With the goal of conceptual consistency with respect to the method for nonlongitudinally 
stiffened members recommended by Lokhande and White (2017), two methods for characteriz-
ing the flexural resistance of longitudinally stiffened box-section members are proposed. These 
are explained in detail in Section 4.2. Section 4.1 discusses the limitations of the existing 
methods for calculation of the flexural resistance of longitudinally stiffened welded steel box-
section members and thus highlights the motivation for the proposed methods. 

4.1 Limitations of existing methods 
The AASHTO (2017) provisions do not address noncomposite box sections with longitudinal 
stiffening. The AASHTO (2017) provisions restrict the maximum flexural resistance of compo-
site box girders to the yield moment of the compression or the tension flange. Similarly, the 
Eurocodes (CEN 2005; CEN 2006) limit the maximum flexural resistance of Class 4 sections to 
the yield moment of the effective elastic cross-section. However, based on the observations for 
nonlongitudinally stiffened box-section beams, there is significant reserve strength beyond the 
first yield of the tension flange. Section F2.4.1 of AISI (2016) allows the consideration of 
inelastic reserve strengths considering partial plastification, subject to certain restrictions 
including: 
 The flexural resistance is not allowed to exceed 1.25 times the yield moment 
 The ratio of the depth of the compressed portion of the webs to their thickness is not allowed 

to exceed 1.11 yE F . 

Based on the observations for nonlongitudinally stiffened box-section beams and also by 
considering that for nonlongitudinally stiffened webs the noncompact web limit rw  (Lokhande 

and White 2017) is more than two times the value of 1.11 yE F , it appears that the AISI rules 

are too prohibitive and would result in a failure to consider larger available resistances in I-
section members. In addition: 
 AASHTO (2017) does not address the possibility of lateral torsional buckling. 
 The Eurocode method requires an iterative or at least a two-step calculation for obtaining the 

effective cross-section for Class 4 sections. 
 According to AISI (2016), the flexural resistance is calculated using effective section 

properties where the effective section is obtained using an effective width of the flanges and 
webs, using the provisions in Appendix 1 of AISI (2016). However, Appendix 1 does not 
specifically have provisions for longitudinally stiffened webs subjected to a stress gradient. 

A good quantification of the ultimate compressive resistance of longitudinally stiffened plates is 
crucial for obtaining an accurate characterization of the flexural resistance of welded box-section 
members with a longitudinally stiffened compression flange. The limitations of the AASHTO, 
Eurocode and AISI approaches for calculation of the ultimate compressive resistance of a 
longitudinally stiffened plate have been discussed in Section 2. Therefore, clearly there is a need 
for a new method to obtain an improved quantification of the flexural resistance of these types of 
members. 
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4.2 Proposed methods 
Two methods for characterizing the flexural resistance of longitudinally stiffened box-section 
members are proposed in this section: 

Method 1, applicable to box-section members with a nonlongitudinally stiffened compression 
flange and longitudinally stiffened webs. The proposed method for characterizing the cross-
section flexural resistance of these member types is the same as that for nonlongitudinally stiff-
ened box-section members (Lokhande and White 2017) except the web load-shedding factor, Rb, 
should be calculated using the provisions recommended by Subramanian and  White (2017) for 
longitudinally stiffened webs, using awc determined with fc fcb t taken as 2effA , and Dc taken as 

Dce, where effA is the effective area of the compression flange calculated using the modified 

Winter’s equation given in Lokhande and White (2017). These provisions have been balloted and 
approved for the next release of the AASHTO LRFD Specification in 2020. The hybrid factor, 
Rh, should be calculated using AASHTO (2017) Eq. 6.10.1.10.1-1, but with Afn taken as one-half 
of the effective flange area, 2effA . 

Method 2, applicable to box cross-section members with a stiffened compression flange. There 
are two main differences between the proposed method for characterizing the flexural resistance 
of longitudinally stiffened box-section members with a stiffened compression flange and the 
method recommended by Lokhande and White (2017) for characterizing the flexural resistance 
of nonlongitudinally stiffened box-section members: 
1) Effective cross-section: Unlike box sections with a nonlongitudinally stiffened compression 
flange, the effective cross-section of a box section with a longitudinally stiffened compression 
flange is as shown in Fig. 8, where: 

. 2eff p nsp yspA P F                                                                             (40) 

nspP = ultimate compressive resistance of the longitudinally stiffened flange determined using the 

proposed method in Section 2. 
c = the distance of the centroid of the gross area of the flange plate and its longitudinal stiffeners 
from the top of the web plates. AISI (2016) uses a similar approach in which the resulting 
effective width of the plate is located at the centroid of the longitudinally stiffened compression 
flange plate.  
2) Unlike nonlongitudinally stiffened flange plates, longitudinally stiffened flange plates are 
unable to sustain large inelastic axial compressive strains beyond their maximum resistance. 
Therefore, the flexural resistance of box sections with a longitudinally stiffened compression 
flange is limited to the first yield of the compression flange in the effective cross-section. 
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Figure 8:  Effective box section considering the resistance of the stiffened compression flange 

 
The nominal flexural resistance nM  of a welded box section with a longitudinally stiffened 

compression flange is calculated as follows: 

If b pL L then: n csM M                                                                            (41) 

If p b rL L L  then:  2
b p

n b cs cs pt cs
r p

L L
M C M M M M

L L

  
         

                                         (42) 

where: 

csM  = cross-section resistance, calculated as follows: 

 For sections with xce xteS S ,  

cs b h yc xceM R R F S   (43) 

 For sections with xce xteS S , it is recommended that the yield moment of the compression 

flange be determined directly, considering the early yielding of the section on the tension 
side of the neutral axis, and considering hybrid web, slender web and longitudinally stiffened 
compression flange effects as applicable. This calculation is explained in detail in Lokhande 
(2018). Unlike the case with xce xteS S , it is recommended that the AASHTO hR expression 

should not be used to quantify the resistance of hybrid box sections for cases with xce xteS S . 

Rather, the hybrid web effect should be incorporated into the calculation of the yield moment 
to the compression flange. Similarly, bR cannot be used to address web bend buckling for 

cases with xce xteS S because bR is derived such that the position of the neutral axis is 

dependent only on the loss of effectiveness of the webs due to bend buckling; it does not 
account for the shift in neutral axis because of the early yielding of the tension flange and the 
spread of yielding in the tension zone. In summary, for cases with xce xteS S a strain 

compatibility analysis should be used to account for web bend buckling, hybrid web effects 
and inelastic strength reserve corresponding to the spread of yielding in the tension zone, in 
the calculation of Mcs.  
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2pt b yr xceM R F S  < Mcs                                                                           (44) 

Fyr = 0.5Fyc (45) 
Lp is obtained by back-solving for Lb by taking the elastic lateral torsional buckling moment Mcr 
equal to 15Mpe=19.5Myce, assuming Mpe=1.3Myce. 
Lr is obtained by back-solving for Lb by taking the elastic lateral torsional buckling moment Mcr 
equal to b yr xceR F S and taking 30% of that length. 

bR  is the web load-shedding factor explained in Subramanian and White (2017).  

hR is the hybrid factor. It should be calculated using AASHTO (2017) Eq. 6.10.1.10.1-1, but with 

Afn taken as one-half of the total effective flange area . 2 2eff pA . 

4.3 Salient features of the proposed methods 
The proposed new methods encapsulate a significant advancement in the understanding of the 
behavior of longitudinally stiffened welded steel box-section members subjected to flexure and 
provide a more accurate and conceptually unified characterization of their resistance. The salient 
features of these methods are as follows: 
1) They account for: 

o The different failure modes of a longitudinally stiffened compression flange plate. The 
methods do this by more accurately quantifying the flange ultimate compressive resistance 
(discussed in Section 2), which is then used to determine an effective cross-section. 

o Web bend buckling and the corresponding postbuckling resistance via the use of the Rb 
factor, or by using an effective cross-section as shown in Figs. 9 and 10, as applicable; this 
avoids the need to perform iterative or two-step calculations to obtain the effective cross-
section. 

o Lateral torsional buckling, including interaction with flange and web local buckling and 
postbuckling responses. 

2) They cover all ranges of component plate slenderness. 
3) They address singly as well as doubly-symmetric box sections. In bridges, it is common that 
fabricated boxes may be singly symmetric, and boxes with longitudinally stiffened compression 
flanges are inherently singly symmetric. 
4) They address box sections with hybrid webs. It is possible for steel box-section members 
subjected to flexure to have webs with lower yield strength than that of the flanges.  
5)  They recognize the inelastic reserve strength corresponding to the spread of yielding in the 
tension zone for cases with xce xteS S . 

6) They recognize the inability of longitudinally stiffened flange plates to sustain large inelastic 
axial compressive strains beyond the peak load without a substantial reduction in their load 
carrying capacity, and therefore they limit the flexural resistance of box sections with a 
longitudinally stiffened compression flange to the first yield of the compression flange in the 
effective cross-section. 
7)  They eliminate the need to consider a separate tension flange yielding (TFY) limit state. For 
sections with xce xteS S  , the member response is addressed rigorously via the direct calculation 

of the yield moment to the compression flange, considering the early yielding of the section on 
the tension side of the neutral axis, and considering hybrid web, slender web and longitudinally 
stiffened compression flange effects as applicable. 
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8) The proposed methods are conceptually consistent with the method proposed by Lokhande 
and White (2017) for determining the flexural resistance of nonlongitudinally stiffened box-
section members. 
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Figure 9: Stress distribution for box sections with unstiffened slender webs when 

xce xteS S (Lokhande 2018) 
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Figure 10: Stress distribution for box sections with longitudinally stiffened webs (with 
one longitudinal web stiffener in compression) and w rw  when xce xteS S (Lokhande 

2018) 
 
4.4 Evaluation of the performance of the proposed methods  
The performance of the proposed methods is evaluated using existing experimental data, and via 
a parametric study performed using FE simulations. The results of this study are discussed in 
detail in Lokhande (2018). 



 20

 
5. Summary and concluding remarks 
This paper summarizes the conceptual and theoretical development of new methods for an 
improved characterization of the ultimate compressive resistance of longitudinally stiffened 
plates, and the flexural and axial compressive resistance of longitudinally stiffened welded box-
section members. The methods described in the paper reflect a significant advancement in the 
understanding of the behavior of these member types. The predictions using these proposed 
methods correlate well with the results of parametric studies performed using finite element test 
simulations, and with data compiled from experimental tests. 
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