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Abstract 

The objective of this paper is to provide an overview of my research activity on structural stability in the 
last two decades, i.e., since I joined the Structural Stability Research Council (SSRC), back in 1997. After 
a few introductory words and a brief visit to my association with SSRC over the years, the paper presents 
the main findings obtained in several investigations in which I have collaborated on topics/problems 
dealing with the geometrically non-linear behavior of thin-walled structural members and systems − the 
common thread is the fact that the vast majority of these findings have been originally reported at a SSRC 
Annual Stability Conference and can be found in the corresponding proceedings. The various topics or 
problems addressed are presented in chronological order (as much as possible) and concern (i) the 
stability, non-linear strength and design of pitched-roof frames, (ii) the distortional post-buckling behavior, 
ultimate strength and Direct Strength Method (DSM) design of cold-formed steel columns and beams, 
(iii) the lateral-torsional stability of doubly and singly symmetric web-tapered beams, (iv) Generalized 
Beam Theory (GBT) formulations and applications, (v) the stability, failure and DSM design of cold-
formed steel equal-leg angle columns, and (vi) the post-buckling behavior, ultimate strength and DSM 
design of cold-formed steel columns and beams undergoing mode interaction phenomena involving 
distortional buckling, namely local-distortional, distortional-global or local-distortional-global interaction 
− analytical, numerical and experimental results are dealt with. In each case, the topic or problem under 
consideration is first outlined, by providing its key features and associated challenges. Then, the main 
goals of the research effort undertaken are described and followed by a necessarily brief presentation and 
discussion of the main results/findings obtained. Finally, the paper closes with a few concluding remarks. 
 
1. Introduction 

Although I had already heard about the Structural Stability Research Council (SSRC) in the early 80s, 
during my Ph.D. studies at the University of Waterloo (Ontario, Canada) under the supervision of the late 
John Roorda, it was not until 1990 that I had my first “live encounter” with this prestigious institution. 
This took place in Istanbul (Turkey), where I attended the “Fourth SSRC International Colloquium on 
Structural Stability (Mediterranean Session)”, organized by Gülay Aşkar (now Gülay Altay) from 
Boğaziçi University, a former Research Associate at Lehigh University. By an incredible coincidence 
(premonition…) the first person I talked with during the whole Colloquium was no less than…Lynn 
Beedle himself! I explain how this happened: after the Colloquium pre-registration, all participants 
boarded buses heading to the Colloquium Welcome Cocktail, held on the Boğaziçi University campus, 
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with a breathtaking view over the Bosphorus strait − during the whole trip (almost an hour, due to the 
very heavy Istanbul traffic), and completely by accident (fate…), I sat next to this lovely distinguished 
elderly gentleman who had the patience to talk with a “Portuguese kid” and encourage him to join SSRC, 
by describing enthusiastically its activities and the advantages of becoming a member. I must confess that, 
in my heart, I was “recruited” on that day (September 16, 1990)! I only talked with Lynn Beedle once 
more in my life, still in Istanbul, to ask him to sign the copy of the book “Stability of Metal Structures − 
A World View”, edited by him, which I had just purchased. To think that, almost 30 years later, I am 
receiving the SSRC Lynn S. Beedle Award is absolutely mind-boggling (much more so that you can 
possibly imagine…), completely beyond my wildest dreams. 
 
Even if Lynn Beedle’s advice never left my mind, it was not until 1995 that I “encountered” SSRC again, 
now in Budapest (Hungary) where I attended the SSRC-sponsored “International Colloquium on 
the Stability of Steel Structures”, organized by the late Miklós Iványi, from the Budapest University of 
Technology (today Budapest University of Technology and Economics − BUTE), and where I saw for 
the first time (as far as I can remember) Ted Galambos and Don Sherman. Then, in 1996, I attended in 
Rio de Janeiro the “Fifth SSRC International Colloquium on Structural Stability (Brazilian Session)”, 
organized by Ronaldo Battista from the Federal University of Rio de Janeiro. And, finally, I got to 
the “real thing” seven years after the first “encounter” with Lynn Beedle: I attended the 1997 “SSRC 
Annual Technical Sessions and Meeting” in Toronto (Ontario, Canada)2 and it was “love at first sight”. 
I enjoyed so much the familiar atmosphere, friendly discussions and creative scientific exchanges 
(I had so many “new ideas”) that I have been coming back ever since: I did not miss a single “SSRC 
Annual Technical Sessions and Meeting” (until 2000) or “SSRC Annual Stability Conference” (since 
2001, organized in the context of the AISC North American Steel Construction Conference − NASCC: 
The Steel Conference) up to now, which means 21 consecutive presences!3 
 
At this moment, I must say that I feel highly indebted to SSRC “twice”. First, to its Executive Committee 
for having selected me as the recipient of such a prestigious Award − really, the crowning of a research 
career and the possibility of entering a “room” filled with so many people I have always admired and 
looked up to. But, more important than that, for having played such an important role in my research 
career: I could never have made it without the leadership, encouragement, motivation and, most of all, 
friendship provided by the “SSRC environment and family” − Section 1.1 shows a quite astonishing 
“quantification” of the role played by SSRC in my career. Throughout the years, I have been permanently 
and anxiously looking forward to the next Annual Stability Conference, both for professional and 
personal reasons − and that will never change! 
 
1.1 The Role of SSRC in my Career 

Soon after concluding my Ph.D., in 1985, I was drafted into the Portuguese Air Force4, where I literally 
“did nothing” for over a year, before being able to return to my job of Assistant Professor at the Technical 
University of Lisbon5. There, I quickly found out the (completely illogical) hardships of “rookie life”: a 
very heavy teaching load, often involving two or more courses per semester, and a lot of administrative 
duties (that could not be refused) combined to vaporize all the momentum left from my doctoral work. In 
addition, I had virtually no access to graduate students, all “absorbed” by the most senior faculty members. 
                                                 
2 Afterwards I went to Waterloo to visit my former supervisor, John Roorda − the last time I saw him (without having to close my eyes). 
3 It should have been 22 presences in a row if SSRC had not “failed” me (for the first and only time): it did not organize the “Annual Technical 

Sessions and Meeting” in 1999. 
4 At that time, the military service was compulsory in Portugal, even if you could postpone it until your graduate studies were finished. 
5 The name changed to University of Lisbon in September, 2013. 
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The above difficulties, combined with my own flaws (lack of initiative and settlement in a kind of 
“Mediterranean comfort” groove…), help to explain why (i) the first M.A.Sc. and Ph.D. theses under my 
supervision were only completed in 1994 and 2001, respectively, and (ii) the second journal paper 
reporting my doctoral work was published only in 1993 − since I obtained my Ph.D. in 1985, there is 
absolutely no doubt that it is impossible to imagine a worse candidate for the MAJR Award…6 
 
During all this time, (i) I taught many courses, devoting a lot of time to the careful preparation of high-
quality notes7, (ii) I continued to do some research (almost single-handedly), always striving to achieve 
as much quality as possible, which allowed me to attend a few prestigious international conferences 
(it was essential to learn from the best), (iii) I participated in Technical Committees involved in developing 
and updating Eurocode 3 (“Steel Structures”), always looking for scientific collaborations8, (iv) I never 
stopped searching for research topics and problems (always dealing with structural stability), as well as for 
new ideas to tackle them, and, most of all, (v) I kept trying to find bright and passionate students and ways 
to motivate/attract them to opt for a research career9. My first attendance of a “SSRC Annual Technical 
Sessions and Meeting”, in 1997, somehow provided the “connection” between all these various scattered 
efforts and, all of a sudden, my research career literally took off (when I was already 44 years old!) 
and has been flying pretty steadily ever since. Just to “quantify” this assertion, the bar chart displayed in 
Figure 1 provides the evolution of the number of international journal papers I co-authored between 1983 
and 2018. It is obvious why the title of this paper mentions a “career shaped by SSRC”… 
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Figure 1: Evolution of the number of international journal papers I co-authored between 1983 and 2018 

 
I served SSRC in several roles over the years: (i) Portuguese Corresponding Member, (ii) Co-Chair (with 
Miklós Iványi) and Chair of Task Group 11 (“International Cooperation on Stability Studies”), (iii) 
Executive Committee Member and (iv) Chair of the Vinnakota Award Committee − it has been a great 
privilege and pleasure to perform these tasks, and I am indebted to SSRC for having trusted me to do so10. 
                                                 
6 Fortunately, the tenure research requirements at the Technical University of Lisbon were minute at the time… 
7 Part of these notes led to the publication, in 2000 by McGraw-Hill Portugal, of a book on “Structural Stability” (in Portuguese). 
8 Having obtained my Ph.D. degree in North America, I was considerably “isolated” as far as collaborative research contacts were concerned. I 

tried to alter this situation by looking for scientific collaborations with European and Brazilian researchers. 
9 When presenting research topics to prospective graduate students, I never made them look easy (indeed, I often warned them about the 

difficulties), but I always characterized them as challenging and exciting (and, therefore, potentially very rewarding) − following the priceless 
lessons received from Professor S.T. Ariaratnam, at the University of Waterloo, I used to tell them that “there is no joy comparable to 
mastering a difficult problem” and that “the amount of joy is proportional to the level of difficulty”. Naturally, this type of “joy” scared 
away most of the listeners, frequently all of them… − but those few (if any) remaining in the room were invariably outstanding. 

10 I am particularly thankful to Reidar Bjorhovde for having invited me to Co-Chair Task Group 11 when I was little more than “nobody”. 



 4 

It was also a great honor to organize the SSRC-sponsored “International Colloquium on Stability and 
Ductility of Steel Structures”11, held in Lisbon (Portugal) on September 2006, which made it possible to 
have the pleasure of watching the SSRC logo/banner proudly displayed above the entrance of the Civil 
Engineering Pavilion of Instituto Superior Técnico (IST) − University of Lisbon School of Engineering. 
 
Finally, I must acknowledge, from the bottom of my heart, the invaluable warmth provided by the SSRC 
membership during all these years, which “forced” me to come back to this conference over and over 
again. It is not at all surprising that several SSRC members are amongst my dearest and closest friends. 
 
1.2 Content and Organization of the Paper 

Since the content of this paper is intended to be presented in a lecture delivered during the session in which 
I receive the Lynn S. Beedle Award, granted because of a research career that has been so much influenced 
by my association with SSRC, I have decided to provide an overview of my research activity on structural 
stability in the last two decades, i.e., since I joined SSRC back in 1997. The paper presents the main 
results/findings obtained in several investigations in which I have collaborated on topics/problems dealing 
with the geometrically non-linear behavior of thin-walled structural members and systems. The common 
thread between these results/findings is the fact that practically all of them were reported at SSRC Annual 
Stability Conferences (or Technical Sessions & Meetings) before appearing in international journals − up 
to this year I have co-authored 66 papers published in SSRC proceedings (full list given in Annex A). 
 
The various topics/problems and results/findings, addressed in chronological order as much as possible, 
concern (i) the stability, non-linear strength and design of pitched-roof frames, (ii) the distortional post-
buckling behavior, ultimate strength and Direct Strength Method (DSM) design of cold-formed steel 
columns and beams, (iii) the lateral-torsional stability of doubly and singly symmetric web-tapered beams, 
(iv) Generalized Beam Theory (GBT) formulations and applications, (v) the stability, failure and DSM 
design of cold-formed steel equal-leg angle columns, and (vi) the post-buckling behavior, ultimate 
strength and DSM design of cold-formed steel columns and beams affected by mode interaction 
phenomena involving distortional buckling, namely local-distortional, local-distortional-global or 
distortional-global interaction − analytical, numerical and experimental results are addressed. In each 
case, the topic/problem under consideration is first outlined, by providing its key features and associated 
challenges. Then, the main goals of the research effort undertaken are described and followed by a 
necessarily brief presentation and discussion of the main results/findings obtained. Finally, the paper 
closes with a few concluding remarks − and it must certainly open with the acknowledgments! 
 
1.3 Acknowledgments 

In Engineering, research findings are invariably the fruit of collaborative efforts involving several people 
and combining original thinking, breakthrough ideas, solid analytical, numerical and/or experimental 
concepts and skills, hard work and a fair amount of discipline. Therefore, no single person or competence 
can “claim” the full credit for a given success (or failure…). In my particular case, I have been blessed by 
being surrounded by top-class individuals with outstanding talent during my whole research career. 
 
Everybody knows that the key ingredient leading to the success of a research endeavor is the quality of the 
graduate students collaborating in it. The research activities in which I have participated are no exception 
(on the contrary, they merely illustrate the above “rule”) − indeed, their outcomes were always decisively 
influenced by the amount and quality of the work carried out by the M.A.Sc. and Ph.D. students involved. 
Therefore, most of the credit for the findings reported in this paper belongs to Nuno Silvestre (M.A.Sc. 
                                                 
11 In 1999, it was decided to add the word “Ductility” to the Colloquium series title. 
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1997 and Ph.D. 2005), Rodrigo Gonçalves (M.A.Sc. 2000 and Ph.D. 2007), Luis Prola (Ph.D. 2001) 
Anísio Andrade (M.A.Sc. 2004 and Ph.D. 2013), Cilmar Basaglia (Ph.D. 2010), Rui Bebiano (Ph.D. 
2010), Rui Fena (M.A.Sc. 2011), Miguel Abambres (Ph.D. 2014), Danilo Cava (M.A.Sc. 2015), Renato 
Cruz (M.A.Sc. 2015) and André Martins (Ph.D. 2018) − Cilmar Basaglia (2010-2013) and Rui Bebiano 
(2013-2017) were also post-doctoral fellows after completing their Ph.D. degrees. Some of these graduate 
students and post-doctoral fellows were co-supervised by my colleagues Nuno Silvestre (University of 
Lisbon), Pedro Borges Dinis (University of Lisbon), Rodrigo Gonçalves (Nova University of Lisbon) and 
Alexandre Landesmann (Federal University of Rio de Janeiro), always playing instrumental roles in the 
success of the corresponding research activities12. 
 
Everybody also knows how important, for the success of a research endeavor, is the (more or less formal) 
collaboration with colleagues and peers − in my case, also dear friends. I am particularly indebted to 
Eduardo Batista and Alexandre Landesmann (Federal University of Rio de Janeiro), and, most of all, to 
Ben Young (University of Hong Kong), for having worked very closely with me in many occasions, 
often “filling the experimental gap” in my own research by carefully performing jointly planned test 
campaigns that provided clear experimental evidence and validation of the analytical and numerical 
findings unveiled in Lisbon − all the experimental results presented in this paper originated from Hong 
Kong or Rio de Janeiro. The friendly, enjoyable and fruitful discussions and exchanges of ideas with Ben 
Schafer (Johns Hopkins University), Greg Hancock and Kim Ramussen (University of Sydney), Ron 
Ziemian (Bucknell University), René Maquoi (University of Liège) and Leroy Gardner (Imperial College 
London) are also very gratefully acknowledged − their comments, criticisms and suggestions contributed 
to improve the quality of several research findings reported in this paper (as well as to prevent the 
publication of a number of mistakes…). 
 
The last words go to my “family” and my family. To my “sons” Cilmar and Alexandre, who combine the 
supreme Brazilian sense of humor with a surprising German work capacity, for the continuous support 
and gentle care. To my “brother” Pedro, the best person I ever met, for being everything to me during so 
many years (always with a smile in his face). To my Grandmother and Grandfather, who always live in 
my heart, for the gift of unconditional love and for making me believe that I was capable of doing 
anything I wanted. To my Father, the most intellectual, charismatic and sweet person I will ever come 
across, for having taught me the joy of learning, the importance of knowledge and the concepts of human 
dignity and “cleanliness of character”. And to Isabel, my better half, for the privilege of going through 
life at my side, filling it with love, tenderness and laughter, and for achieving the miracle of being, at the 
same time, the deep and solid roots ensuring stability at home, and the light and powerful wings helping 
to master and conquer instability at the office. 
 
2. Pitched-Roof Frames 

This section addresses the in-plane behavior of unbraced single-bay pitched-roof steel frames (see 
Fig. 2(a)) − due to the sloping rafters such behavior is qualitatively very different from its orthogonal 
(beam-and-column) frame counterpart (Silvestre & Camotim 2007). The findings reported concern the in-
plane stability, second-order effects and elastic design. Illustrative numerical results involving frames with 
fixed and pinned column bases are presented and discussed. 

                                                 
12 Nuno Silvestre and Rodrigo Gonçalves, both my previous M.A.Sc. and Ph.D. students, are nowadays highly distinguished colleagues. While 

Rodrigo is the recipient of the SSRC 2017 MAJR Medal (in that quality, he will deliver an invited presentation immediately after this one) 
and has a very bright future ahead, Nuno is already enjoying an extremely bright present, in spite of his relatively young age − it suffices to 
mention that he has been recently appointed editor of the international journal Thin-Walled Structures! Nuno and Rodrigo are the “living proof” 
that I have easily and brilliantly fulfilled the primary requirement of a good teacher/supervisor: “to be outperformed by your students”! 
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Figure 2: Pitched-roof frame (a) geometry, (b) stability loading and (c) in-plane loading 

 
2.1 In-Plane Stability 

Consider the symmetric pitched-roof frame depicted in Figure 2(a), exhibiting semi-rigid column bases 
(stiffness kc) and acted only by column (Nc) and rafter (Nr) axial compressive forces, also symmetric 
and related by RN=Nr/Nc − see Figure 2(b). The in-plane global buckling behavior of this frame is 
governed by the two buckling modes shown in Figure 3(a), with anti-symmetric (ASM) and symmetric 
(SM) configurations − both involve sway displacements (horizontal displacements of the column tops)13. 
Figure 3(b) summarizes the essential features of the pitched-roof frame in-plane stability behavior: 
note that the critical load parameter λcr=min{λAS; λS} (λAS and λS are the load parameters associated 
with anti-symmetric and symmetric bifurcation − ASB and SB) strongly depends on the (i) rafter slope θ 
and (ii) axial load ratio RN, as shown by the curves in Figure 3(b). They provide the Nc and Nr bifurcation 
values (both linearly dependent on λ − NAS

c.0, N
S
c.0, N

AS
r.0 and N S

r.0 are the bifurcation loads for RN=0 (column 
compression only) and RN=∞ (rafter compression only). Their observation prompts the following remarks: 

(i) While ASB (solid line) is independent from the rafter inclination, SB (dashed lines) exhibits a high 
dependence on θ − recall that the latter is mostly governed by the rafter instability. 

(ii) For low RN, λcr=λAS (no dependence on θ). For high RN, on the other hand, λcr=λAS or λcr=λS, 
depending on the value of the rafter inclination θ. 

(iii) The variation of λcr with RN involves either (iii1) both ASB and SB (e.g., θ=θ1) or (iii2) only ASB 
(e.g., θ=θ3). Note also that common frame geometries correspond to quite close λAS and λS values. 

 
In order to avoid the need to perform linear stability analyses to obtain λAS and λS, easy-to-use and accurate 
analytical expressions were developed in the context of frames with semi-rigid column bases (Silvestre & 
Camotim 1999). The bifurcation loads are provided by the expressions 
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with  ρc.0 and ρr.0 given by the formulae given in Table 1, where (i) NEc and NEr are the column and rafter 
Euler loads, (ii) Nc and Nr are column/rafter reference axial forces and (iii) R=Lr Ic /Lc Ir, RH=Lr sinθ /Lc 
and K=kc Lc /E Ic. The formulae for pinned and fixed-base frames are obtained by making K tend to 

zero and infinity, respectively14. 
 

                                                 
13 These displacements may be (i) both “inward” or “outward” or (ii) one “inward” and the other “outward” − only the latter is relevant 

in orthogonal beam-and-column frames. 
14 These formulae were included in a book by Trahair et al. (2006) on the design and behavior of steel structures. 
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Figure 3: Pitched-roof frame (a) anti-symmetric (ASM) and symmetric (SM) sway buckling modes, and (b) variation of the 
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Table 1: Formulae to evaluate ρc.0 and ρr.0 
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2.2 Second-Order Behavior 

Consider the pitched-roof frame displayed in Figure 2(a), now subjected to the horizontal (H) and vertical 
(w) loads indicated in Figure 2(c). Before addressing the geometrically non-linear behavior of this frame, 
it is important to recall some fundamental differences between the structural responses of pitched-roof 
and orthogonal (beam-and-column) frames (Silvestre et al. 1998): 

(i) In orthogonal frames, the sway displacements of the two column tops are always virtually identical. 
In pitched-roof frames, on the other hand, these displacements are only equal if the two horizontal 
applied loads are identical (due to the sloping rafter lateral stiffness). 

(ii) Symmetric (geometry and vertical loading) orthogonal frames have null column top displacements. 
Vertically loaded symmetric pitched-roof frames exhibit non negligible “outward” column top 
sway displacements (combined effect of the apex vertical displacement and rafter inclination). 

(iii) In symmetric orthogonal frames the first-order sway deformed configuration and bending moment 
diagram stem exclusively from the applied horizontal loads − this feature is very important, 
since the validity of the “sway amplification method” (SAM) is based on the similarity between 
these first-order results and their frame critical buckling mode counterparts (Horne 1975). As will 
be shown next, pitched-roof frames do not share this feature. 

 
It is possible to express the pitched-roof first-order deformed configuration and bending moment diagram 
as the sum of the following three components, shown in Figures 4(a)-(c) (Silvestre et al. 1998): 

(i) The non sway components dNS and MNS, due to the vertical loading and assuming that the sway 
displacements are prevented by horizontal reaction forces R − see Figure 4(a). 

(ii) The symmetric sway components dSS and MSS, which stem also from the vertical loading, through 
the application of horizontal forces opposite to the reactions R − see Figure 4(b). 

(iii) The anti-symmetric sway components dAS and MAS, due to the horizontal loads15 – see Figure 4(c). 
                                                 
15 If the horizontal loading is not anti-symmetric (right and left horizontal forces not equal in sign and/or value), both the symmetric 

sway and anti-symmetric sway components are affected. 
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Figure 4: Pitched-roof frame first-order deformed configuration and bending moment distribution components: (a) non-

sway (NS), (b) symmetric sway (SS) and (c) anti-symmetric sway (AS) 
 
The maximum MSS values are very often much larger than the MAS ones − the two charts presented in 
Figures 5(a) (fixed-base frames) and 5(b) (pinned-base frames) enable a straightforward evaluation 
of the φ=MSS.max /MAS.max ratio: for a given geometry (RL=Lr /Lc, RH=RLsinθ, R=IcLr /LcIr) and loading 
(VEd=wL, HEd=2 H) combination, determining φ just requires multiplying φ0 or φ∞, (read from the chart) 
by (VEd /HEd) (RL cosθ /18) − in semi-rigid base frames (K=kcLc /EIc), φ can be approximately estimated 
by φS=(φ0 +φ∞ K) /(1 + K). The comparison between the frame (i) first-order sway deformed configurations 
dSS and dAS (see Figs. 4(b)-(c)) and (ii) symmetric and anti-symmetric buckling mode shapes (see 
Fig. 3(a)) shows a remarkable similarity. This fact, combined with (more or less) close buckling loads 
VAS and VS (total vertical loadings associated with λAS and λS), leads to conclusion that, in pitched-
roof frames, an approximate second-order analysis based on the amplification concept must involve the 
first and second buckling loads/modes − this is a major difference with respect to orthogonal frames, in 
which only the first buckling load/mode is involved. 
 
2.2.1 Sway displacement and moment amplification 

A sway amplification method to estimate second-order (i) lateral displacements and (ii) elastic internal 
forces and moments (IFM), in unbraced symmetric pitched-roof frames, involves the following steps: 
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Figure 5: Charts to estimate the ratio φ=MSS.max /MAS.max in (a) fixed-base and (b) pinned-base pitched-roof frames 
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(i) Determination of the first-order member axial forces due to the applied vertical loads only16. 

(ii) Evaluation of the frame sway mode buckling loads VAS= λAS VEd and FS= λS VEd, where VEd is 
the frame applied vertical loading. 

(iii) Identification of the first-order deformed configuration, bending moment diagram, shear force 
diagram and axial force diagram components associated with (iii1) the application of the vertical 
load in the braced frame, (iii2) the sway displacements due to the vertical load and (iii3) the sway 
displacements due to the horizontal loads (see Figs. 4(a)-(c)). 

(iv) Estimation of the second order displacement and IFM values, by means of the expressions 
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Concerning the above sway amplification method, the following comments are appropriate: 

(i) Unlike its anti-symmetric counterpart NAS, the axial force component NSS is not amplified − see 
Eq. (2)4. This is due to the fact that the signs of the equal-valued additional bending moments 
generated by the P-∆ effects at the column bases are the same in the first case and opposite in the 
second one (see Figs. 6(a)-(b)). Thus, no additional “axial force binary” N∆ is required to 
ensure equilibrium in the presence of the (M∆)SS − they are self-equilibrated. 

(ii) If the analytical expressions given in Eq. (1) and Table 1 are used to evaluate VAS and VS, it is 
possible to obtain second-order displacement and IFM estimates which including all relevant P-∆ 
effects and exclusively based on frame first-order results. 

(iii) Unlike the usual sway amplification method, the proposed one involves the amplification of 
two first-order displacement and IFM components (instead of just one). The differences between 
the second-order estimates yielded by the two methods depend (iii1) on VS /VAS and MSS.max /MAS.max 
ratio values and (iii2) on whether the symmetric sway component (not addressed in the usual method, 
most likely because it bears no relevance in orthogonal frames) is included in either the non-sway 
component (not amplified) or the anti-symmetric sway component (amplified by CAS). 

(iv) An extensive parametric study performed by Silvestre & Camotim (2007) showed that the sway 
amplification method yields very accurate and always safe second-order results for a wide variety 
of frame geometries and loadings. 

 

 
P−N∆ P+N∆ 

M∆ M∆ 

P P 

(b) 
P P 

M∆ M∆ 

P P 

(a)  
Figure 6: Equilibrium involving the additional (a) AS and (b) SS bending moments M∆ 

                                                 
16 Considering the column and rafter axial forces due to the horizontal loads has a negligible effect on the buckling load values. 
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2.3 Elastic Design 

A novel rational approach to estimate the IFM design values in unbraced single-bay pitched-roof frames is 
formulated. In order to comply with the Eurocode 3 (CEN 2005) methodology, it comprises (i) a frame 
classification, with respect to its susceptibility to second-order effects (under a vertical loading) and, in 
“susceptible frames”, (ii) the estimation of IFM design values incorporating the relevant P-∆ effects, by 
means of Eqs. (2)-(3). The frame classification is addressed next. 
 
The basic concept behind the frame classification criterion is that P-∆ effects need only be taken into 
account when the ratio between the maximum second and first-order moments exceeds 1.10 (i.e., if 
MII.max /MI.max ≥ 1.10) 17. In order to quantify of this concept, 36 pitched-roof frames were analyzed, all 
with E=210 GPa, HEB280 columns and Lc=5 m. The various frames correspond to all combinations of 
(i) IPE360-450 rafters, (ii) L=20-30-40 m, (iii) θ=6−12° and (iv) kc=0−8090 kNm-∞. For each frame: 

(i) ABAQUS was used to perform exact first and second-order analyses to obtain a large number of 
HEd and VEd values leading to a 10% moment increase due to P-∆ effects (MII.max /MI.max=1.10 
at node D − see Fig. 2(c)). 

(ii) For the VEd values determined in the previous item, linear stability analyses were performed to 
determine the corresponding VEd /VAS and VEd /VS values. 

 
The results of this parametric study made it possible to establish that virtually all pitched-roof frames 
with common geometries are associated with the region comprised between the two “dash-dot” straight 
lines depicted in Figure 7(a), defined by VS /VAS=0.9 and VS /VAS=7.0. On the other hand, the five 
sets of points included in Figure 7(b) provide a representative sample of the numerical results obtained, 
namely those concerning frames (i) acted by applied loads satisfying HEd /VEd=0-0.1-0.2-0.3-0.4 and 
(ii) such that MII.max /MI.max=1.10 − the limit value for neglecting the P-∆ effects. On the basis of 
the above numerical investigation, the following classification criterion for pitched-roof frames was 
proposed: a frame is only classified as “non-susceptible to P-∆ effects” when the conditions 
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Figure 7: Pitched-roof frame (a) common buckling load ratios and (b) proposed classification criterion 

                                                 
17 The methodology prescribed by Eurocode involves only VEd /VAS: a frame classified as “susceptible” or “non-susceptible” to P-∆ effects 

depending on whether VEd /VAS > 0.1 or ≤ 0.1, which means that (i) it is acceptable to underestimate the sway moments by about 11% 
and (ii) the relative magnitude of the non-sway and sway moments is completely ignored. Even if this last limitation cannot be avoided for 
arbitrary combinations of frame geometry and loading (it is not possible to quantify the ratio between non-sway and sway moments), it 
may be overcome in the particular case dealt with in this paper. 
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are satisfied − they define the shaded area shown in Figure 7(b) and ensure MII.max /MI.max ≤ 1.10. Note that 
this criterion (i) is quite conservative for many frame geometry-loading combinations and (ii) coincides 
with that prescribed in Eurocode 3 if symmetric sway buckling is omitted, which amounts to having 
VS=∞ − the second condition “vanishes” and the first one becomes equivalent to αcr ≥10. 
 
3. Distortional Behavior of Cold-Formed Steel Members 

This section addresses three topics dealing with the non-linear behavior and strength of distortional 
cold-formed steel columns and beams buckling in distortional modes − recall that such buckling modes, 
which are critical in intermediate members, involve in-plane and out-of-plane cross-section deformation, 
combining wall transverse bending with internal edge motions and warping displacements (Figs. 8(a)-(b) 
show illustrative distortional buckling mode shapes and buckled cross-sections of zed-section columns 
and beams). The findings reported concern (i) the stable post-buckling asymmetry (a surprising unique 
phenomenon in bifurcation theory) and (ii) the influence of the end support conditions on the Direct 
Strength Method (DSM) design of cold-formed steel columns and beams against distortional failures. 
 

    
(a) (b) 

Figure 8: Illustrative distortional buckling mode shapes and buckled cross-sections of zed-section (a) columns and (b) beams 
 
3.1 Post-Buckling Asymmetry 

Almost two decades ago, Prola & Camotim (2002a,b) investigated the elastic distortional post-buckling 
behavior of initially imperfect lipped channel columns and beams, by means of spline finite strip non-
linear analysis, and unveiled a highly surprising feature: the post-buckling strength may strongly depend 
on the (distortional) initial imperfection “sign”, i.e., on whether the compressed flange-lip assemblies 
move inward or outward18 − in other words, there exists a “distortional post-buckling asymmetry”19. 
Figure 9 illustrates this asymmetry, by showing the equilibrium paths of lipped channel columns (left 
side) and beams (right side) containing initial geometrical imperfections involving inward and outward 
motions, respectively − it is clear that the stiffer behavior is associated with inward motions of the 
compressed flange-lip assemblies20. A bit later, Yang & Hancock (2004) provided experimental evidence 
of this asymmetry, in the context of web-flange-stiffened lipped channel columns. However, these 
authors reported that the stiffer behavior was associated with outward flange-lip assembly motions, i.e., 
exactly the opposite that had been found for the plain lipped channel columns. 
                                                 
18 This finding was obtained virtually “by accident”: the “member distortional initial geometrical imperfection sign" was unintentionally changed 

and the post-buckling equilibrium path obtained differed significantly from the previous one. Until then, it had been tacitly assumed that the 
distortional post-buckling behavior was stable symmetric (like its local and global counterparts). 

19 This asymmetry is absent in zed-section columns, since one compressed flange-lip assembly moves inward and the other outward (see Fig.8(a)). 
20 The “cross-over” of the two beam equilibrium paths is due to the fact that the major-axis bending deformations “oppose”/”reinforce” the 

outward/inward compressed flange-lip motion. Thus, the post-buckling behavior associated with the outward compressed flange-lip motion 
appears stiffer in the early loading stages − this false appearance vanishes when the distortional buckling deformations become large enough. 
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Figure 9: Elastic distortional post-buckling equilibrium paths of lipped channel columns (left side) and beams (right side) 
containing initial geometrical imperfections involving inward and outward motions of the compressed flange-lip assemblies 

 
A mechanical explanation of the above post-buckling asymmetry and apparent discrepancy between the 
plain and stiffened lipped channel column behaviors is due to Silvestre & Camotim (2006). These authors 
performed similar GBT-based geometrically non-linear analyses of plain and web-flange-stiffened lipped 
channel columns buckling in distortional modes and (i) provided further numerical evidence of the post-
buckling asymmetry, (ii) confirmed that this asymmetry is opposite in the columns with the two cross-
section shapes (see Fig. 10, which also shows the deformed configurations of the stiffened columns) and, 
most of all, (iii) explained its origin: the normal stress distribution caused by the distortional deformations, 
which is opposite in the flanges and lips undergoing outward and inward motions − the post-buckling 
behavior is more or less stiff depending on whether the (quite high) stresses developing at the flanges and 
(mostly) lips are tensile or compressive, respectively. Figures 11(a)-(b) and 12(a)-(b), displaying the 
normal stress distributions (compressions are negative) developing at the plain and stiffened lipped 
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Figure 10: Distortional post-buckling equilibrium paths of plain and stiffened lipped channel columns associated with outward 

and inward flange-lip assembly motions, and (ii) deformed configurations of the stiffened lipped channel columns 
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Figure 11: Mid-span normal stress distribution in plain lipped channel columns: (a) outward and (b) inward flange-lip motions 
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Figure 12: Mid-span normal stress distribution in stiffened lipped channel columns: (a) outward and (b) inward flange-lip motions 
 
channel column mid-span cross-sections, attest the above assertion − note that high tensile or compressive 
stresses develop at the lip free end regions (the former associated with the stiffer post-buckling behavior in 
both situations). Naturally, the above post-buckling asymmetry is altered in members buckling in modes 
with more than one distortional half-wave: it either (i) vanishes, for even half-waves (equal outward and 
inward half-wave numbers), or (ii) becomes gradually less pronounced, for growing odd half-waves (the 
outward and inward half-wave numbers get progressively closer) − Figure 13, concerning a lipped channel 
column buckling in a three half-wave mode, illustrates the latter case. 
 
It is still worth noting the absence of guidelines to predict which flange-lip motions lead to the stiffer post-
buckling behavior in members with any given cross-section shape − e.g., in rack-section members the 
stiffer post-buckling behavior is associated with outward flange-lip motions (Prola & Camotim 2002c). 
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Figure 13: Distortional post-buckling equilibrium paths of plain lipped channel columns buckling in three half-wave modes, two 

of them exhibiting inward (I) and outward (II) flange-lip motions − the central half-wave “sign” is always “in minority” 
 
3.2 Column DSM Design 

In the course of a numerical investigation on the distortional post-buckling behavior and ultimate strength 
of pin-ended (simply supported) and fixed-ended lipped channel under fire conditions, Landesmann & 
Camotim (2011) “accidentally” found that, at least for the particular column geometries considered, 
the accuracy of the failure load estimates, at room temperature, yielded by the current DSM distortional is 
quite different for pin-ended and fixed columns: while the latter are predicted quite accurately, the former 
are clearly overestimated, particularly in the intermediate and high slenderness ranges21. This surprising 
finding provided the motivation to investigate whether the column end support conditions influence the 
safety and accuracy of the ultimate load estimates provided by the current DSM distortional design curve. 
 
Based on distortional failure load data concerning lipped channel (C), hat-section (H), zed-section (Z) and 
rack-section (R) cold-formed steel columns exhibiting (i) various combinations of geometry and yield 
stress, and (ii) four end support conditions, namely fixed (F), pinned-fixed (P-F), pinned (P) and fixed-free 
(F-F) columns, these authors (Landesmann & Camotim 2013) assessed the quality of the corresponding 
DSM estimates − Figure 14 depicts the distortional failure modes of a representative sample of C-H-Z-R 
columns. The four plots in Figure 15 make it possible to compare the current DSM distortional design 
curve with (i) the numerical failure loads of 648 columns (162 per plot, i.e., per end support condition 
considered)22 and (ii) the experimental failure loads reported by Schafer (2008), concerning exclusively 
F columns. The observation of these four plots prompted the following remarks: 
                                                 
21 Note that the calibration and validation of the current DSM distortional design curve involved almost exclusively columns with rigid plates 

attached to their end cross-sections. Although Schafer (2005) mentions that “they were tested in the pin-pin condition”, this statement concerns 
the column global behavior (the rigid plates usually rest on spherical hinges, knife edges or wedges) − as far as the distortional behavior is 
concerned the columns are fixed. Indeed, it is not easy to test columns with other than fixed supports (e.g., simply supported columns) that fail 
in distortional modes − it is extremely difficult to ensure that the column end sections are able to warp freely. 

22 It should be pointed out that some F (mostly) and P-F columns exhibit local-distortional interactive failure modes − those with yield stresses 
high enough to enable the “interference” of local buckling along the distortional post-buckling equilibrium path. However, the “quality” of the 
associated DSM failure load predictions remains perfectly in line with those concerning the columns exhibiting “pure” distortional 
failures. At this stage, it is worth noting that it was also recently found that the local-distortional interaction effects are fairly small when the 
critical local buckling exceeds its distortional counterpart (Martins et al. 2017a) Since, for the F and P-F columns analyzed by Landesmann & 
Camotim (2013), the ratio between these two critical buckling loads varies between 1.17 and 2.29, the above observation is not at all surprising. 
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Figure 14: Distortional failure modes of a representative sample of C-H-Z-R columns with the four support conditions considered 
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Figure 15: Comparison between the current DSM distortional curve and (i) the F, P-F, P and F-F column numerical failure loads 

obtained by Landesmann & Camotim (2013) and (ii) the F column experimental failure loads reported by Schafer (2008) 
 
(i) As expected, the DSM design curve provides accurate and mostly safe predictions of the (F column) 

experimental failure loads. Moreover, it also predicts reasonably well the F column numerical failure 
loads − the corresponding Pn.D /Pu ratio average, standard deviation, maximum and minimum values 
read 1.02-0.09-1.19-0.75. 
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(ii) Concerning the P-F, P and F-F columns, it is readily observed that their (numerical) failure loads 
are excessively overestimated by the DSM design curve in the moderate and high slenderness range 
(λD ≥1.5). Accurate (safe or slightly unsafe) predictions only occur for low-to-moderate slenderness. 

(iii) Although the DSM curve overestimations are qualitatively quite similar for the three “non-F” column 
sets, the number of Pu /Pn.D values slightly above or below 0.5 grows as one “travels” from P-F to P 
and F-F columns. It is interesting to notice that the Pu /Pn.D ratios below 0.5 do not concern any C 
column, but mostly H and R pinned columns and H, Z and C fixed-free columns − only one (R) 
pinned-fixed column falls in this category. The Pu /Pn.D averages, standard deviations, maximum and 
minimum values are 0.83-0.18-1.17-0.48 (P-F columns), 0.79-0.19-1.17-0.45 (P columns) and 
0.68-0.19-1.15-0.35 (F-F columns). 

(iv) The relevant differences between the F and “non-F” column distortional post-critical strengths are not 
properly captured by their distortional critical buckling loads. This means that it is necessary to find 
other DSM-based design curve(s) to predict adequately “non-F” column distortional failure loads. 

 
Guided by the failure load data acquired, Landesmann & Camotim (2013) proposed a (preliminary) 
additional single DSM design curve (P*

n.D), which only modifies the current one for λD ≥1.188 and retains 
the failure load prediction accuracy and safety for the less slender columns23 − it reads 
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Figure 16 compares this design curve with the previous P-F, P and F-F column numerical failure loads, 
and leads to P*

n.D /Pu averages, standard deviations, maximum and minimum values 1.11-0.11-1.41-0.93 
(P-F columns), 1.10-0.10-1.39-0.95 (P columns) and 1.11-0.12-1.52-0.91 (F-F columns) − to avoid 
overestimating the failure loads of a few very slender (λD >2.0) F-F columns, the design curve clearly 
underestimates many slender (λD ≥1.5) P-F, P and F-F column failure loads. Further developments 
on this topic must be preceded by the performance of carefully planned experimental investigations. 
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Figure 16: Comparison between the DSM distortional curve proposed by Landesmann & Camotim (2013) and the P-F, P and 

F-F column numerical failure loads obtained by these authors 

                                                 
23 For simplicity, a single design curve covering P-F, P and F-F columns was sought − a further refinement is possible for the P-F and P columns. 
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3.3 Beam DSM Design 

The current DSM distortional design curve was developed essentially on the basis of experimental failure 
moment data concerning 4-point bending tests, involving uniformly bent beam segments (i) laterally 
restrained, (ii) with “warping continuity” at their end cross-sections, i.e., end support conditions lying in-
between “free warping” and “prevented warping”, and (iii) exhibiting small-to-moderate distortional 
slenderness (λD ≤1.5) (Yu & Schafer 2006, Schafer 2008). More specifically, these failure moments were 
reported by 17 researchers who tested (i) lipped channel beams bent about the major-axis, (ii) zed-section 
beams under skew bending (axis parallel to the flanges) and (iii) hat-section and trapezoidal beams 
(with or without intermediate stiffeners) bent about the minor-axis. Figure 17, adapted from Schafer 
(2008), plots, against the local or distortional slenderness, the 574 normalized failure moments considered 
to develop the current local and distortional beam DSM design curves. In this figure, λmax=(My /Mcr)

0.5, 
where Mcr is the beam critical/lowest (local or distortional) buckling moment − this “mixed slenderness” 
was used because to difficulties in distinguishing between local and distortional failures, due to the bracing 
and support conditions. These difficulties led Schafer to perform tests on beams designed to exhibit clear 
local (Yu & Schafer 2003) and distortional (Yu & Schafer 2006) failures. However, the latter beams 
exhibited again small-to-moderate distortional slenderness values (between 0.68 and 1.53). In view of 
what was mentioned above, it is not surprising that the current DSM beam distortional design curve 
(MND) yields quite good estimates for beams such that λD ≤1.5. 
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Figure 17: DSM beam local and distortional design curves and experimental local/distortional failure moments (Schafer 2008) 

 
Recently, numerical simulations reported by Landesmann & Camotim (2016) provided solid evidence that 
MND overestimates the failure moments of simply supported lipped channel beams with intermediate 
and high slenderness values. They also showed that the amount of overestimation depends on the beam 
cross-section geometry (dimension ratios) and end support conditions. Moreover, very recent work on the 
distortional post-buckling behavior of simply supported lipped channel beams (Martins et al. 2018a) has 
shown that minor-axis flexural and torsional deformations emerge at the vicinity of the critical distortional 
buckling moment level and gradually grow as loading progresses − they stem from the stress redistribution 
occurring in the compressed/top half cross-section, caused by the increasing distortional deformations. 
Restraining (reducing) these flexural-torsional deformations, which are intrinsic to the distortional post-
buckling behavior and responsible for the associated beam rapid stiffness erosion, certainly leads to 
a failure moment increase. Therefore, these authors concluded that the discrepancy between the numerical 
distortional failure moments and their DSM-based predictions stems from three features of the specimens 
tested to obtain the experimental failure moments used to develop the MND strength curve: (i) low-to-
intermediate slenderness values (λD ≤1.5), (ii) warping restraint and (iii) lateral restraint. 
 
The above facts led Martins et al. (2017b) to carry out a detailed numerical investigation on the behavior 
of simply supported uniformly bent cold-formed steel beams exhibiting different cross-sections shapes 
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and failing in pure distortional modes. This study involved over 4000 beams with three cross-section 
shapes, namely (i) lipped channels bent about the major-axis (C), (ii) zed-sections under skew bending 
causing uniform flange compression (worst case) (Z), and (iii) hat-sections subjected to either major-axis 
(HM) or minor-axis (Hm) bending (compressed lips in the latter case) – Figures 18(a)-(d) show the various 
cross-section shapes, buckled in beam distortional modes. Two end support conditions were considered, 
differing in the warping and local displacement/rotation restraints, either completely free (SCA) or fully 
prevented (SCB) − see Figures 19(a)-(b). The beams analyzed had several cross-section dimension ratios 
and lengths, in order to assess their influence on the distortional post-buckling behavior and ultimate 
strength – particular attention was paid to (i) the web-flange and flange-lip width ratios24, and (ii) the 
critical (distortional) half-wave number. In addition, the beams had different yield stresses, making it 
possible to cover wide slenderness ranges (0.25-4.00 intervals). 
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Figure 18: Uniformly bent beam cross-sections buckled in distortional modes: (a) lipped channel (major-axis bending), (b) hat-
section (major-axis bending), (c) hat-section (minor-axis bending) and (d) zed-section (skew bending − horizontal neutral axis) 
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Figure 19: Loading and (a) SCA and (b) SCB support conditions of the beams analyzed by Martins et al. (2017b) 

 
This investigation showed that the elastic and elastic-plastic distortional post-buckling behaviors of 
SCA and SCB beams sharing the same geometry and yield stress are markedly distinct in stiffness and 
strength. For instance, unlike their SCB beam counterparts, the non-stocky SCA beams exhibit practically 
no elastic-plastic strength reserve and, therefore, their failure moments are fairly well predicted by the 
elastic buckling strength curve. Moreover, it was also clearly shown/confirmed that (i) the current DSM 
distortional design curve is unable to predict adequately the failure moments of both the SCA and SCB 
simply supported beams analyzed by Martins et al. (2017b) with intermediate and high slenderness, 
(ii) the same DSM-based design curve cannot handle the two beam support conditions considered and 
(iii) beams bent about the major and minor axis must be treated separately. Therefore, it was necessary to 
develop novel DSM strength curves to provide better quality predictions of all the numerical failure 
moments available. This was done by means of the following procedure: 
                                                 
24 In the context of columns, Silvestre et al. (2005) showed that the cross-section dimensions influence the distortional post-buckling behavior. 
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(i) Definition of the initial “plateau”, on the basis of the numerical failure moment data concerning the 
stocky beams, whose collapse is governed exclusively by plasticity (negligible instability effects) − 
it was decided to keep the plateau of the current curve (λD=0.673). 

(ii) Determination of a “Winter-type” curve, cast in the form25 
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 where parameters a, b and c are obtained from the solution of an optimization problem. 
 
It was found that the failure moments of the C, HM and Z beams with the same end support conditions 
may be estimated through single design curves defined by a=0.28, b=1.60, and c=1.85 (SCA beams) or 
a=0.25, b=1.40, and c=1.40 (SCB beams). On the other hand, the Hm beams must be handled separately, 
by means of design curves defined by a=0.27, b=1.70, and c=1.92 (SCA beams) or a=0.30, b=1.60, and 
c=2.10 (SCB beams). Figures 20(a)-(d) compare the obtained MU /My values, concerning SCA and 
SCB C+HM+Z and Hm beams26 with the current and proposed DSM distortional design curves. Their 
close observation prompts the following remarks: 

(i) Almost all MU /My values are well aligned along “Winter-type” curves with a small “vertical 
dispersion” (although more pronounced in the SCB beams). 
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Figure 20: Comparison between the obtained MU /My values, concerning (a) C, (b) HM, (c) Z and (d) Hm beams, and the 
current and proposed DSM design curves 

                                                 
25 Following the work carried out by Shifferaw & Schafer (2012), the strength curve initial horizontal plateau was replaced by an inclined straight 

line in the latest version of the North-American specification (AISI 2016), thus accounting for the beam cross-section inelastic strength reserve. 
26 For each beam geometry selected, 17 distortional slenderness values were generated randomly, following a continuously uniform distribution 

in the interval [0.25, 4]. 
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(ii) As anticipated, the current DSM design curve provides very large failure moment overestimations 
for beams with moderate and high slenderness (λD >1.25), including the SCB beams – the HM+SCB 
MU /My values are those lying closer to this curve. 

(iii) The consideration of the inelastic strength reserve for λD≤0.673, recently included in AISI (2016), 
may lead to unsafe designs, particularly in Z-beams. In fact, the work of Shifferaw & Schafer (2012), 
which is at the root of this design feature, dealt only with C and Z-beams with end support conditions 
simulating those exhibited by the central beam segment in a 4-point bending test arrangement. While 
the C+SCB beam results evidence the presence of an additional strength reserve, the same is not true 
for their Z-beam counterparts – note also that the Z-beams analyzed in this work have their top 
flanges uniformly compressed, a more severe loading condition. As for the HM and Hm beams (SCA 
and SCB), they exhibit a non-negligible inelastic strength reserve, naturally higher in the SCB beams. 

(iv) Concerning the SCA beams, it is noted that, for λD>1.0 and regardless of the beam type, the MU /My 
values are fairly well predicted by the elastic buckling curve (1/λD) 

2. This is because failure 
is reached almost simultaneously with the onset of yielding (no visible elastic-plastic strength reserve 
is available), making it logical that the elastic buckling curve provides good failure moment estimates. 

(v) A clear failure moment prediction is achieved by the proposed design curves, along the whole 
distortional slenderness range considered, as attested by the associated MU /MND value statistical 
indicators: averages, standard deviations, maximum and minimum values of 1.13-0.11-1.59-0.90 
(C+HM+Z SCA beams), 1.09-0.12-1.54-0.83 (C+HM+Z SCB beams), 1.11-0.13-1.34-0.84 (Hm SCA 
beams) and 1.10-0.07-1.20-0.86 (Hm SCB beams). 

(vi) The “vertical dispersion” is much higher in the SCB beams, due to the different post-critical strength 
reserve exhibited by the various beam types − such strength reserve is absent in all SCA beams. 

(vii) The proposed DSM design curves are more adequate than the current one to estimate the failure 
moments of simply supported beams failing in distortional modes. However, it is recognized that 
there is dependence on the cross-section dimensions and length (through the critical distortional 
buckling mode half-wave number) that cannot be explicitly accounted by the DSM without “soiling” 
its roots and elegance, since such dependence cannot be captured only by the distortional slenderness 
– this implies unavoidable excessive failure moment underestimations. 

 
Lastly, Figure 21(a) revisits Fig. 17 and adds the two strength curves proposed by Martins et al. (2017b), 
thus making it possible to compare the quality of their experimental failure moment predictions with that 
of the current strength curve. Figure 21(b), on the other hand, plots, against the λD, the experimental and 
numerical failure moments reported by Yu & Schafer (2006). The observation of these results shows that: 
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Figure 21: DSM beam distortional design curves (current and proposed) and experimental distortional failure moments (a) used 
to develop the current strength curve and (b) reported by Yu & Schafer (2006) (both figures adapted from Schafer 2008) 
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(i) The overwhelming majority of the tests results considered to calibrate the current strength curve are 
also fairly well predicted by the two proposed curves, even if a bit more on the safe side for λD >1.0 
(see Fig. 21(a)). Most of these test results concern rather stocky beams, for which the failure moment 
predictions yielded by the current and proposed strength curves differ by small amounts. 

(ii) The two proposed curves underestimate considerably the failure moments of a small number of 
reasonably slender beams – this may be due to the bracing arrangement adopted in the tests, which 
restrains lateral-torsional deformations (in the central span) that are intrinsic to the distortional post-
buckling behavior, thus leading to higher failure moments. 

(iii) Figure 21(b) readily shoes that the two proposed design curves underestimate a considerable fraction 
of the experimental results reported by Yu & Schafer (2006) by larger margins than the current 
strength curve. However, note that none of these results concerns beams with slenderness above 1.5, 
the range for which the current strength curve has been shown to be inadequate. Moreover, there is a 
quite significant variability in the experimental test results, mostly likely due to the influence of the 
cross-section dimensions on the ultimate strength of these beams. 

 
Finally, one last word to mention that further developments on this topic, namely the codification of an 
improved DSM beam distortional design curve, must be preceded by experimental studies − experimental 
test campaigns focusing on slender beams (λD >1.5) failing in distortional modes are clearly needed. 
 
4. Lateral-Torsional Stability of Web-Tapered Beams 

Tapered members are widely used in the steel construction industry, because of their (i) structural 
efficiency (leading to significant material savings), (ii) ability to meet architectural and functional demands 
and (iii) competitive fabrication costs. However, designers can only take full advantage of the benefits 

of beam tapering if they are able to accurately predict the tapered member structural behavior, 
without needing to resort to computer effort prohibitive for routine applications. 
 
The structural behavior of most laterally unrestrained beams, either prismatic or tapered, is governed by 
lateral-torsional stability/buckling (LTB), which combines minor-axis bending and torsion. For the sake 
of uniformity and ease-of-use, it is desirable to have design methodologies valid for both prismatic 
and tapered beams. In order to achieve this goal, the most “logical” approach is to modify the currently 
codified rules and procedures for prismatic beams, extending their range of validity to tapered beams. 
One crucial aspect is the need to have efficient (i.e., as accurate and “simple” as possible) methods to 
evaluate the elastic critical load factor of any given tapered beam, indispensable step to determine its 
normalized slenderness. Andrade & Camotim (2005) proposed a one-dimensional model to analyze the 
elastic LTB behavior of singly symmetric tapered thin-walled open beams, which can be viewed as an 
extension of Vlassov’s theory (applicable to prismatic bars) − subsequently, the model was extended to 
account for the influence of the pre-buckling deflections (Andrade & Camotim 2004). The elastic critical 
load factors and corresponding buckling modes provided by this model, numerically implemented by 
means of the Rayleigh-Ritz method and later put to test to corroborate its underlying assumptions and 
LTB predictions (Andrade et al. 2007), made it possible to show that: 

(i) The LTB behaviors of prismatic and tapered beams are, in general, qualitatively different. Indeed, a 
certain geometrical feature of tapered beams (see Section 4.1) makes it impossible to capture their 
LTB behavior by analyzing piecewise prismatic beams − the results of the latter do not converge 
to the solution of the former, regardless of the number of prismatic segments considered. 

(ii) For a specific beam (tapered) geometry and loading conditions, the minimum buckling resistance is 
not necessarily associated with the beam containing the least amount of material. 
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Next, the paper briefly addresses the one-dimensional model to analyze the elastic LTB behavior of singly 
symmetric tapered thin-walled open beams that was originally developed and subsequently validated and 
improved by Andrade & Camotim (2004, 2005) and Andrade et al. (2007, 2010), focusing on the specific 
geometrical and mechanical characteristics exhibited by web-tapered beams. Then, a few illustrative 
numerical results are presented and discussed, highlighting the most surprising and “non-intuitive” features 
associated with the LTB behavior of this type of beams. 
 
4.1 One-Dimensional Model 

The central objective of any beam theory is to achieve a one-dimensional characterization (i.e., have the 
parameter of a certain curve as the only independent variable) of the behavior of bodies with two 
characteristic dimensions much smaller than the third one (the length). The need for tractable and accurate 
lower-dimensional theories stems from the formidable mathematical obstacles (analytical and numerical) 
posed by the three-dimensional continuum models. Nevertheless, it must be emphasized that beam models 
are intrinsically approximate, since the actual bodies dealt with are three-dimensional. The so-called 
technical/engineering beam theories are typically obtained by incorporating a set of a priori assumptions 
into a three-dimensional continuum model. Such assumptions, which concern mostly the “form” of some 
unknowns (displacement/stress components), are more or less realistic and always lead to simplifications, 
even if some inconsistencies may possibly arise. 
 
Next, the assumptions underlying the one-dimensional model developed and numerically implemented by 
Andrade & Camotim (2004, 2005), to characterize the elastic LTB behavior of singly symmetric tapered 
thin-walled open beams (see Fig. 22(a)) are briefly presented. Note that thin-walled open beams have a 
wall thickness an order of magnitude smaller than the cross-section mid-line length and resist torsion 
as a spatial system: the cross-sections exhibit out-of-plane warping, generally varying along the beam axis 
and, thus, causing non-negligible longitudinal normal strains and stresses. First, it is assumed that both 
the strains and displacement derivatives are small (negligible with respect to unity) and the tapered beam is 
(i) made of a St. Venant-Kirchhoff material (Young’s modulus E and Poisson’s ratio v) and (ii) subjected 
to the generic system of conservative loads depicted in Figure 22(b), which act initially on the 
undeformed beam plane of symmetry and are proportional to a single load factor λ. 
 

     

 (a) (b) 
Figure 22: Symmetric tapered I-section beam (a) geometry and (b) generic external conservative loading 

L 

plane 
⊥⊥⊥⊥ to e1 

 x 

 y 

 z 

 e2 
 e3 

 e1 

 
 O 

 x  y 

 z 
qz 

 Q z 0 

Q z L 

M y 0 

MyL 

 z Q 0 

 zQL 

 z q 



 23 

The beams are regarded as membrane shells, upon which the following kinematical constraints are 
imposed: (i) the projection of each cross-section mid-line on a plane perpendicular to the beam axis 
experiences no distortion throughout the whole deformation process and (ii) the mid-surface shear strains 
are negligible. These kinematical constraints extend, to tapered beams, the classical Vlassov’s hypotheses 
commonly adopted in prismatic thin-walled open beams. Note that the first constraint inevitably implies that 
the beam is constrained to buckle in a “pure” global mode (LTB), i.e., the transverse motion of any given 
cross-section mid-line is described by rigid-body kinematics − it may be broken down into a rotation Φ 
about e1, followed by a translation with components V and W along e2 and e3, respectively (see Fig. 22(a)). 
As for the second constraint, it enables expressing the mid-line displacements along e1 as a function of 
V, W, Φ, to within an uniform longitudinal displacement U. Concerning the beam strain energy, which is 
the sum of the membrane and uniform torsion strain energies, it is worth noting that the latter contribution, 
completely disregarded in the membrane shell model, is added separately by means of the expression 
valid for prismatic beams, but accounting for the variation of the cross-section property J along the beam 
axis − this procedure is backed by both theoretical and experimental evidence (Lee & Szabo 1967). 
 
The taper effect is dealt with through (i) additional, non-standard, mechanical properties *

ωψ
EI  and *

ψ
EI , 

and (ii) a modification of the minor-axis bending and warping rigidities by a “reduced flange thickness” 
* 3cos
f f

t t ϕ= , where ϕ  is the flange slope, related to the web taper parameter α through the relation 
tg ϕ =(1− α) h0 /L (h0 and L: reference web height and beam length) − asterisks identify the tapered beam 
properties. To help grasping the physical meaning of the above properties, Figures 23(a)-(f) show a 
comparison between the linearized warping-torsion behaviors of prismatic and web-tapered doubly 
symmetric I-beams (Andrade et al. 2010). The following aspects deserve to be specially mentioned: 

(i) In both cases, the linearized version of the aforementioned constraints, together with symmetry 
considerations, imply qualitatively similar cross-section mid-line displacement fields (see Fig. 23(a)): 
(i1) the mid-line rotates φ  about the centroidal x-axis and (i2) the flanges warp out of the plane, by 
rotating ± (h/2) φ,x about the z-axis. To reach this conclusion, recall that, in web-tapered beams, (i1) 
the displacements along z are obviously not orthogonal to the flange mid-planes, as shown in the 
zoomed detail in Figure 23(a), and (i2) the flange centroidal lines are not parallel to the x-axis, which 
implies that the derivatives with respect to these line arc-lengths and to x are not identical. Denoting 
the former and latter by (⋅),s and (⋅),x, respectively, the two are related by (⋅),s=± cos ϕ  (⋅),x − the 
sign depends on the flange centroidal line slope (recall that h,x= − 2 tg ϕ). 

(ii) The above displacement field can then be used to obtain the flange membrane extensions − see Fig. 
23(b). Comparing the ensuing strain-displacement relations for prismatic and web-tapered beams, it is 
readily observed that the latter contain a corrective factor (cos2

 ϕ) and an additional term. The same 
holds for the flange normal membrane forces, as shown in Figure 23(c). 

(iii) The flange membrane shear forces displayed in Figure 23(d) may be determined by considering the 
equilibrium of a “flange slice” acted by the previously obtained flange membrane normal forces. 

(iv) The membrane normal (shear) forces are statically equivalent to a bending moment (shear force) in 
each flange − see Figures 23(e)-(f). In web-tapered beams, the modified warping stiffness *

EI
ω

, 
calculated with the reduced flange thickness * 3cos

f f
t t ϕ= , and the non-standard mechanical 

property *
EI

ωψ
 arise naturally from this static equivalence. 

(v) Finally, note that, in web-tapered beams, the flange bending moments have an axial component that 
(v1) features *

EI
ωψ

 and *
EI

ψ
, and (v2) contributes to the total torque. This added torque contribution 

is obviously absent in prismatic beams (see Fig. 23(e)) and cannot be captured if a web-tapered beam 
is replaced by a piecewise prismatic one (regardless of the number of segments considered). 
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Figure 23: Linearized warping-torsion behaviors of prismatic and web-tapered doubly symmetric I-beams compared: (a) linearized cross-
section mid-line displacement field, (b) flange membrane extensions and (c) flange membrane normal forces (Andrade et al. 2010) 
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Figure 23 (cont.): Linearized warping-torsion behaviors of prismatic and web-tapered doubly symmetric I-beams compared: (d) 
flange membrane shear forces, (e) flange bending moments Mf and (f) flange shear forces Vf (Andrade et al. 2010) 
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E=200 GPa 

G=77.2 GPa 

L=6096 mm 

b=152.4 mm 

t f =12.7 mm 

hmax=609.6 mm 

tw =9.5 mm 

α ∈ [0.3, 1.0] 

zQ = 0 or  − hmax / 2 

Figure 24: Simply supported beam geometry, loading and material constants 
 
and a linearly tapered web of constant thickness, and (ii) is acted by a mid-span vertical point load applied 
at either the web mid-height or the top flange mid-line (Andrade & Camotim 2005). The beam (i) has two 
longitudinal planes of symmetry (equal flanges and symmetric tapering slopes) and (ii) exhibits different 
tapering parameter values α (ratio between the mid-span and end cross-section web heights, measured 
between flange mid-lines). Since the x and polar axes are chosen to be coincident and defined by the 
intersection of the two longitudinal symmetry planes, they contain the line segment uniting the cross-
section centroids and shear centers (in the undeformed configuration), which means that *

yS  (and *

Gz ), 
*

zIω , *

zIψ  and *

yβ  are identically zero. 
 
Two different analyses were performed: (i) one employing the one-model model developed specifically 
for web-tapered beams and (ii) the other equivalent to a prismatic beam FE analysis (adopting a fine 
enough mesh). It is still worth noting that only half a beam is analyzed, due to the following symmetries 
with respect to x = L / 2: (i) undeformed beam configuration, (ii) loading and (iii) critical buckling mode − 
this last symmetry implies that only odd-number shape function terms need to be retained. The curves 
presented in Figure 25 show the variation of Qcr = 4 Mcr / l with the tapering parameter α. The observation of 
these curves, and their comparison with results reported in the literature, leads to the following comments: 

(i) When the one-dimension model developed/implemented is employed, the two curves Qcr vs. α (i1) 
are clearly non-linear, (i2) virtually coincide with those available in the literature (Yang & Yau 1987, 
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Figure 25: Variation of Qcr with α for the simply supported beams analyzed 
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 Boissonnade & Muzeau 200127) and (i3) exhibit a minimum value for α ≈ 0.4 − this last observation 
means that the beam with the least amount of material does not have the minimum Qcr. This 
surprising last result can be explained by the variation of the stiffness values as α increases: while 
(i1) the average values of G J, *

ωIE , *
ψωIE  increase, (i2) 

*
ψIE , constant along the x-axis, 

decreases and (i3) 
*
zIE  remains constant − as a result of the joint influence of the above two 

conflicting variations, the minimum Qcr value occurs for an intermediate α value. 

(ii) When a prismatic beam FE analysis is carried out, (ii1) the variation of Qcr with α becomes almost 
linear and (ii2) the correct Qcr value is considerably overestimated − the error goes up to about 25%, 
for α = 0.5 and top flange loading. 

(iii) The Qcr values are significantly reduced when the load is applied at the top flange (zQ < 0), a 
well-known effect in prismatic beams that is due to the additional destabilizing torque (about the 
shear center line) exerted in the adjacent configuration. 

(iv) In order to achieve convergence to the results displayed in Figure 25, it was necessary to approximate 
the critical buckling mode by means of between 2 and 12 shape functions. It was found that, when 
the tapering effects are fully taken into account, the rate of convergence gradually decreases as the 
flange slope increases. On the other hand, when the prismatic beam FE model is used, the flange 
slope does not affect convergence. 

 
5. Generalized Beam Theory (GBT) 

It seems very fair to argue that I am the recipient of the 2018 Lynn S. Beedle Award mostly due to the 
research activity carried out at the University of Lisbon on Generalized Beam Theory (GBT) in the last 15 
years, which contributed decisively to the “scientifically resurrection” and worldwide dissemination of 
this theory among the technical/scientific community working with thin-walled members and structural 
systems, particularly cold-formed steel ones28. Indeed, this unique approach to the structural analysis of 
prismatic thin-walled members had significant impact in the academic world and provided great impetus 
for many research efforts “inspired” by the GBT modal concepts and procedures − this assertion can be 
readily attested by the growing number of publications on a wide variety of topics that either are devoted 
to develop new GBT formulations/applications or use GBT-based results/approaches to tackle particular 
structural engineering problems29. 
 
Although the available GBT formulations and applications cover (i) different types of structural analysis 
(first-order, buckling, post-buckling, vibration, dynamic), (ii) several materials (carbon steel, stainless 
steel, aluminum, steel-concrete composite, FRP composites), mainly modeled by means of elastic or 
elastic-plastic constitutive laws, (iii) thin-walled profiles with distinct cross-section shapes (open, closed, 
arbitrary flat-walled, curved) and (iv) various structural elements/systems (isolated members, continuous 
beams, trusses, frames), this paper addresses only work dealing with the two structural analyses most 
related to the SSRC activity (buckling and post-buckling analyses) and all the illustrative numerical 
results presented concern (i) the buckling behavior of isolated members or simple frames and (ii) the post-
buckling behavior of isolated steel members, always involving open cross-sections. In addition, a few 
paragraphs are devoted to the cross-sections analysis, which constitutes the first step and “trademark” of a 

                                                 
27 The last authors only analyzed beams acted by loads applied at mid-height. 
28 A procedure initiated a few years earlier by Prof. J. M. Davies, at the Universities of Salford and Manchester (Camotim et al. 2004). 
29 About 10 years ago, an overwhelming majority of the publications addressing or using GBT originated from the University of Lisbon. 

This situation has drastically changed in the last few years, following the fast growth of the amount of research word devoted to or involving 
GBT − even if the number the publications on GBT coming from the University of Lisbon has not diminished, nowadays they are 
only a decreasing fraction of the total number (as it should be). 



 28 

GBT analysis30, and leads to the determination of cross-section deformation modes with well-defined 
structural/mechanical meanings. 
 
5.1 Cross-Section Analysis 

As just mentioned, the purpose of the Cross-Section Analysis is to obtain the cross-section deformation 
modes and associated mechanical properties through a systematic procedure − its most recent version, 
applicable to arbitrary flat-walled cross-sections, has been described in detail by Gonçalves et al. (2014) 
and Bebiano et al. (2015). After specifying the cross-section nodal discretization, involving (i) natural 
intermediate, (ii) natural end and (iii) intermediate (user-defined) nodes, the associated deformation 
modes and corresponding mechanical properties are automatically computed − they may be grouped into 
3 main families: (i) Vlassov modes, with null membrane transverse extensions and shear strains, (ii) Shear 
modes, with non-null membrane shear strains (and null transverse extensions) and (iii) (linear) Transverse 
Extension modes, with non-null membrane transverse extensions (these families can still be further 
divided into three sub-families each −see Table 2). 
 

Table 2: GBT deformation mode families and sub-families 

Family Sub-family Mechanical characteristics 
   

Global 
4 classic rigid-body modes (extension, major/minor-axis bending and torsion). In cross-
section with closed cells, the torsion mode integrates the cell shear flow sub-family 

Distortional Warping and wall transverse bending, including in-plane fold-line displacement Vlassov 

Local Only wall transverse bending (no fold line displacements) 
   

Global Warping shear deformations 

Cell Shear Flow Constant shear flows on the cross-section cells (including torsion) Shear 
Local Localized warping shear deformations 

   

Global Wall transverse extensions 

Distortional Transverse extensions and closed cell distortions 
Transverse 
Extension 

Local Localized transverse extensions  
 
Figure 26 shows the deformation modes of a lipped channel, corresponding to the nodal discretization 
indicated, which involves 21 nodes, namely 4 natural intermediate, 2 natural end and 13 intermediate (9 in 
the web, 3 in the top flange, 1 in the bottom flange and none in the lips). This discretization is intended for 
the local post-buckling analysis of a beam subjected to positive major-axis bending (Martins et al. 
2018b), which explains why (i) the web is heavily discretized and (ii) the top flange has more intermediate 
nodes than the bottom one − naturally, a discretization intended to analyze the post-buckling behavior of a 
lipped channel column is symmetric with respect to the major-axis. It is worth noting that Figure 26 
includes quadratic transverse extensions modes, which are needed to overcome membrane locking 
problems and do not stem from the cross-sections analysis procedure (Gonçalves & Camotim 2012) − 
each of them involves a single wall segment and makes it possible to account more accurately for the 
“bowing effect” associated with the transverse bending of that wall segment. 
 
Depending on the particular problem under consideration, the user may select any sub-set of deformation 
modes to be included in the structural analysis, making it possible to (i) reduce the number of degrees of 
freedom and (ii) specify the nature of the deformations to be considered. This last capability is particularly 
                                                 
30 The performance of a GBT structural analysis of a thin-walled member involves (i) the cross-section analysis, leading to the determination of 

the deformation mode shapes and corresponding modal mechanical properties, and (ii) the member analysis, which consists of solving the 
equilibrium equation system governing the behavior under consideration. 
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Figure 26: Lipped channel nodal discretization and most relevant displacements of the (ii) Vlassov and Transverse Extension 
(linear and quadratic), and (iii) Shear deformation modes 

 
useful when employing the DSM to design cold-formed steel members, since it is necessary to determine 
buckling loads/moments associated with “pure” local, distortional or global modes. Finally, one last word 
to mention that the most recent version of the freely available GBT-based code GBTUL

31 (Bebiano et al. 
2018a) performs the cross-sections briefly outlined in this section. 
 
5.2 Buckling Analysis 

The buckling results presented and discussed in this section are intended to illustrate GBT developments 
dealing with loading and support conditions, extension to structural systems, namely frames, and design 
applications − these developments are first succinctly described (a more detailed account can be found 
in Camotim & Basaglia 2013). Concerning the loading conditions, the developments make it possible to 

                                                 
31 Acronym for “Generalized Beam Theory at the University of Lisbon”. 
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perform rigorous GBT buckling analyses of members subjected to loadings (i) causing non-uniform 
internal force and moment diagrams, namely variable bending and/or torsional moments, and (ii) including 
transverse forces applied away from the cross-section shear center − the locations of the such forces points 
of application are known to heavily influence the beam buckling behavior and, moreover, may be 
responsible for localized buckling phenomena (e.g., web crippling). In this case, the differential 
equilibrium equation system governing the member buckling behavior must include terms that account for 
the geometric stiffness stemming from the pre-buckling (non-uniform) (i) longitudinal normal stresses, 
(ii) shear stresses and (iii) transverse normal stresses (Bebiano et al. 2007, Basaglia & Camotim 2013). 
Figure 27 displays all the pre-bucking stresses that are taken into account in the most general GBT 
buckling analyses − their accurate determination requires the performance of preliminary GBT first-order 
analyses, usually including all the deformation modes (unlike the ensuing buckling analyses, often carried 
out with only a fraction of the deformation modes determined) (Bebiano et al. 2018b). 
 
 

σxx τxs σss 

q 

 
Figure 27: Pre-buckling stresses incorporated in the geometric stiffness of the most general GBT buckling analysis: non-uniform 

longitudinal normal stresses (σxx), shear stresses (τxs) and transverse normal stresses (σss) 
 
Concerning the support conditions, (i) continuous members (with intermediate supports) and (ii) members 
exhibiting arbitrary combinations of global and/or local displacement or rotation restraints can now be 
analyzed. Indeed, it is possible to handle members with rigid or flexible localized supports, thus enabling 
the simulation of bracing systems and/or discrete connection arrangements (e.g., bolted connections) − 
Figure 28 illustrates localized support conditions that can be modelled with GBT (Camotim et al. 2008). 
These localized supports are incorporated into the buckling analysis through constraint conditions 
involving displacements or rotations of member points and expressed in “modal language” − the buckling 
eigenvalue problem is then solved subject to the satisfaction of those constraint conditions. 
 

 
 (a) (b) (c) 

Figure 28: Localized supports modeled with GBT: (a) bolted connections, (b) rigid/flexible bracings, and (c) batten plates 
 
The possibility of analyzing the buckling behavior of thin-walled reticulated structures, such as trusses 
or frames, constitutes another significant GBT advance. When addressing structural systems formed by 
members with distinct orientations, it is necessary to model rigorously the displacement compatibility 
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between the two (or more) end cross-sections converging at a structural system joint − in the case of the 
warping displacements due to torsion, such compatibility is ensured through the “warping transmission” 
concept (Basaglia et al. 2012). The performance of this task requires (i) transforming the modal degrees of 
freedom of the connected end cross-sections into generalized nodal displacements of the point where the 
joint is deemed materialized (often the intersection of the connected member centroidal axes), which can 
be done by resorting to a “joint element” concept (Basaglia et al. 2008), and (ii) establishing restraint 
conditions to simulate the compatibility between the displacements, due to wall transverse bending and 
cross-section distortion, at the connected end cross-sections (Basaglia et al. 2009). In thin-walled frames, 
kinematic models were developed to simulate the structural behavior of joints (i) connecting two or more 
I, U and C-section members, and (ii) exhibiting the various configurations depicted in Figure 29 − 
unstiffened, diagonal-stiffened, box-stiffened and diagonal+box-stiffened connections. 
 

                                               
 (a) (b) (c) (d) 

Figure 29: Localized supports modeled with GBT: (a) bolted connections, (b) rigid/flexible bracings, and (c) batten plates 
 
Some of the most recent cold-formed steel design codes (e.g., AISI 2016) either allow or prescribe the 
determination of a thin-walled member ultimate strength by means of the Direct Strength Method (DSM 
− e.g., Schafer 2008, Camotim et al. 2016). Since its application requires knowing the member critical 
buckling loads/moments, as well as the nature of the associated buckling modes, GBT is ideally 
suited to equip designers with easy-to-use tools to obtain accurate buckling results. In this context, it is 
worth noting the derivation of analytical formulae to obtain approximate (but accurate) distortional 
buckling loads and moments of cold-formed steel lipped channel, zed-section and rack-section columns, 
beams and beam-columns with four support conditions (Silvestre & Camotim 2004a-c) − the formulae 
are based on buckling analyses involving one (columns) or two (beam and beam-columns) deformation 
modes and Figure 30 illustrates this concept for lipped channel beam-columns. Moreover, as already 
mentioned, the computer code GBTUL (Bebiano et al. 2018a) has been continuously developed in the 
last few years and is freely available at http://www.civil.ist.utl.pt/gbt/. 
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Figure 30: Lipped channel beam-column distortional buckling mode: linear combination of the GBT deformation modes 5 and 6 

(symmetric and anti-symmetric distortion) 
 
5.2.1 Illustrative numerical results 

The illustrative numerical results presented and discussed concern the buckling behavior of (i) a two span 
I-section beam (Basaglia & Camotim 2013) and (ii) an L-shaped frame built with lipped channel members 
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(Camotim et al. 2010). For validation purposes, most GBT-based critical buckling loadings and mode 
shapes are compared with values yielded by ANSYS shell finite element analyses. 
 
The symmetric two-span beam (i) has length L=400cm (2×200cm) and an I-section with web height 
hw=300mm, flange width bf=150mm and wall thickness t=5mm, and (ii) is acted by two identical mid-span 
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Figure 31: Two-span beam with top and bottom loading: critical buckling mode shapes yielded by (a) ANSYS and (b) GBT 
analyses, and (c) GBT modal amplitude functions 



 33 

 

 - 0.447185 

 - 0.396808 

 - 0.346013 

 - 0.284877 

 - 0.229832 

 - 0.178985     

 - 0.127437 

 - 0.072876 

 - 0.018637 

   0 

 - 0.475487 

 - 0.418465 

 - 0.361443 

 - 0.304421 

 - 0.247399 

 - 0.190377     

 - 0.133354 

 - 0.076332 
 - 0.019310 

   0 

  0 

  0.019310 

  0.076332 

  0.133354 
  0.190377     

  0.247399 

  0.304421 

  0.361443 

  0.418465 

  0.475487 

     

   0 

   0.018637 

   0.072876 

   0.127437 

   0.178985     

   0.229832 

   0.284877 

   0.346013 

   0.396808 

   0.447185 

ANSYS 

ANSYS 

GBT 

GBT 

 
Figure 32: ANSYS and GBT mid-span region pre-buckling transverse normal stresses caused by top and bottom flange loading 

 
transverse point loads F, applied at either the top or bottom flange-web corner. Concerning the support 
conditions, (i) the end sections are locally/globally pinned and can warp freely, and (ii) all in-plane cross-
section displacements are fully restrained at the intermediate support. The critical buckling loads obtained 
are Fcr=250.96kN (GBT) and Fcr=244.69kN (ANSYS), for top flange loading, and Fcr=644.37kN (GBT) 
and Fcr=652.56kN (ANSYS), for bottom flange loading − differences of +1.75% and −1.26%, respectively. 
Figures 31(a)-(c) display three representations of the two beam critical buckling modes: (i) ANSYS and 
GBT 3D views, and (ii) GBT amplitude functions concerning the participating deformation modes (φk(x)). 
It is observed that the two buckling mode representations are remarkably similar (recall that the GBT 
views in Fig. 31(b) are 3D representations of buckling modes yielded by beam finite element analyses). 
The closeness between the critical buckling loads and modes obtained from the ANSYS and GBT analyses 
stems from the ability of the latter in capturing the pre-buckling web transverse normal stresses accurately 
− Figure 32 shows these stress distributions, in the beam mid-span region, as provided by the ANSYS and 
GBT first-order analyses. Finally, the GBT results show that the local deformation modes (5, 6, 7, 10, 11) 
have visible contributions to the beam critical buckling modes − while the instability of the beam loaded 
at the top flange is triggered by localized web buckling occurring close to the loaded cross-sections, that 
of the beam loaded at the bottom flange is governed by the local deformation of the web and compressed 
flange local near the intermediate support. 
 
The L-shaped frame analyzed is formed by two orthogonal lipped channel members A and B (LA=70cm 
and LB=105cm) with identical cross-sections (web height hw=200mm, flange width bf=120mm, lip width 
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bl=15mm and wall thickness t=0.7mm) and exhibits the geometry and loading displayed in Figure 33. The 
members are connected with flange continuity and acted by axial compressive forces only: NA=P 
and NB=0.5P. The end supports of members A and B are (i) fixed with prevented warping and (ii) pinned 
(locally and globally) with free warping, respectively. 
 

member A

member B
L  =70cmA

BL  =105cm

          

Y

AX
XZ

BX

N =PA

N B

BN =0.5P

 
Figure 33: L-shaped frame: geometry, loading and boundary conditions 

 
While Figures 34(a)-(b) display the corresponding representations obtained by means of GBT and ANSYS 
analyses, Figure 35 provides the member A and B modal amplitude functions describing the frame 
critical buckling mode − note again that Figure 34(a) is a 3D representation of beam finite element 
results. The two frame critical buckling loads practically coincide again: Pcr=4.177kN (GBT) and 
Pcr=4.196kN (ANSYS) − 0.45% difference, even if the numbers of degrees of freedom involved are orders 
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Figure 34: L-shaped frame: (a) GBT and (ii) ANSYS 3D critical buckling mode representations 
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Figure 35: L-shaped frame: member A and B modal amplitude functions φk(X) 

 
of magnitude apart: (i) 164 (GBT − 12 elements in member A and 5 in member B) and (ii) 10500 (ANSYS). 
It is also observed that the two buckling mode shapes are remarkably similar, even if the GBT model has 
only 13 equations constraining the joint displacements (involving solely 9 end section nodes: 4 lip end 
and 5 intermediate nodes). The frame buckles in a local mode triggered by member A (shorter but more 
heavily compressed), involving also member B and with participations from deformation modes 5 
(distortional) and 7, 9 (local). There are major contributions from modes 7 and 5 in member A, whose 
maximum values occur at about 1/4-span from the joint and at the joint itself. Only mode 5 has a visible 
contribution in member B, which decreases from the joint to the support − the small participations from 
modes 7 and 9 have maximum values at the joint and virtually vanish as the 1/4-span mark is reached. 
 
5.3 Post-Buckling Analysis 

The first relevant work concerning development of a GBT geometrically non-linear formulation is due to 
Silvestre & Camotim (2003), who included the presence of arbitrary initial geometrical imperfections and 
adopted a total Lagrangian kinematic description. This formulation, based on a strain decomposition into 
Green-Lagrange membrane terms (some of them disregarded) and small-strain bending terms, was later 
extended to cover members with “non-standard” support conditions by Basaglia et al. (2011). A few 
years ago, Gonçalves & Camotim (2012)32, in the context on non-linear elastic-plastic GBT analysis, 
found that several non-linear membrane strain terms previously disregarded play an important role in 
the non-linear behavior of thin-walled members, particularly in the moderate-to-large displacement range, 
and, therefore, must be included in the non-linear analysis. Very recently, Martins et al. (2018b), prompted 
by the need to tackle mode interaction problems, which often unavoidably involve moderate-to-large 
displacements, developed and implemented an enhanced GBT geometrically non-linear formulation able 
to provide accurate results in this displacement range. It includes (i) the whole set of non-linear membrane 
strain terms, adopting an approach equivalent (but not similar) to that employed by Gonçalves & Camotim 
(2012), and (ii) the non-linear bending strain terms − these last terms were subsequently found to have 
virtually no impact inside the sought domain of validity (i.e., only matter in the large displacement range). 
 
Back in 2012, Gonçalves & Camotim (2012) developed and implemented the first GBT formulations to 
conduct geometrically and materially non-linear analyses of prismatic thin-walled metal members, using 
two distinct approaches: either (i) the traditional stress-based approach, using small-strain J2-flow theory 
(von Mises’ yield criterion) with the associated flow rule and isotropic hardening, or (ii) a stress resultant-
based approach that uses a modified Ilyushin yield function. More recently Abambres et al. (2013, 2014) 
also developed a geometrically and materially non-linear GBT formulation for thin-walled metal members 

                                                 
32 These authors included, for the first time, quadratic transverse extension deformation modes in the GBT post-buckling analysis. 
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exhibiting isotropic hardening, based on J2-flow plasticity theory combined with the backward Euler 
return-mapping algorithm (as the traditional approach of Gonçalves & Camotim 2012). They applied it to 
study the non-linear behavior of carbon steel, stainless steel and aluminum members with several loading 
and/or support conditions and exhibiting a few constitutive laws (perfectly plastic, bi-linear or non-linear). 
 
5.3.1 Illustrative numerical results 

The illustrative numerical results presented and discussed concern (i) the elastic distortional post-buckling 
buckling behavior of a fixed-ended zed-column (Martins et al. 2018b) and (ii) the elastic-plastic 
distortional post-buckling buckling behavior of an I-section beam (Abambres et al. 2013). For validation 
purposes, most GBT results are compared with values yielded by ABAQUS shell finite element analyses. 
 
The first example concerns the “pure” distortional post-buckling behavior of a fixed-ended zed-column. 
The GBT nodal discretization adopted, which involves 15 nodes (4 natural intermediate, 2 natural end 
and 9 intermediate – 3 in the web and flanges), leads to (i) 17 conventional modes (4 global, 2 distortional 
and 11 local – modes 1-17), (ii) 14 shear modes (5 global and 9 local – modes 18-31), (iii) 14 linear 
transverse extension modes (1 global isotropic, 4 global deviatoric and 9 local – modes 32-45), and (iv) 
14 quadratic transverse extension modes (modes 46-59). Figures 36(a)-(b) show the column geometry and 
critical distortional buckling mode shape (exhibiting three half-waves), as well as the most relevant modal 
amplitude functions ( )

k
xφ  participating in it. As for Figures 37(a)-(b), they display (i) several equilibrium 

paths P/PcrD vs. (v+v0)/t, where v is the vertical displacement of the top flange-lip corner at the central 
half-wave and v0=0.94t defines is initial geometrical imperfection amplitude (associated with outward v), 
and (ii) the modal participation diagram associated with the most rigorous GBT equilibrium path (up to 
P/PcrD=1.50 − for comparison/validation purposes, the equilibrium path provided by a rigorous ABAQUS 
SFEA is also presented. The equilibrium paths displayed are obtained from “approximate analyses” that 
either (i) adopt 8 beam finite elements and include various sub-sets of the 59 deformation modes 
(including all of them) or (ii) adopt 16 beam finite elements and all the 59 deformation modes − the 
modal participation diagram shown in Figure 37(b) concerns this last analysis. In order to illustrate the 
capabilities of the GBT intrinsic modal nature, Figures 38(a)-(f) and 39(a)-(f) provide the evolutions of (i) 
mid-web transverse bending displacement profiles w(x), obtained with the contributions from modes 
2, 3, 5+6, 7-17, 32-45 and 1-59 (w1-59(x)≡w(x)), and (ii) top flange-lip corner vertical displacement profiles 
v(x), obtained with contributions from modes 2, 3, 4, 5+6, 32-45 and 1-59 (v1-59(x)≡v(x)). Finally, Figure 40 
displays GBT and ABAQUS column deformed configurations corresponding to P/PcrD=1.00, 1.25. 1.50. 
The observation of all these post-buckling results prompts the following remarks: 
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Figure 36: Fixed-ended zed-column (a) geometry and Pcr vs. L curve, and (b) critical mode and GBT modal amplitude functions 
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Figure 37: (a) ABAQUS and GBT P/PcrD vs. (v+v0)/t post-buckling equilibrium paths and (b) modal participation diagram (ne=16) 
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Figure 38: Zed-column w(x) displacement profiles due to modes (a) 2, (b) 3, (c) 5+6, (d) 7-17, (e) 32-45, (f) 1-59 (w1-59(x)≡w(x)) 
 
(i) Figure 37(a) makes it possible to assess the relevance of the quadratic transverse extension modes 

(46-59) in capturing the column distortional post-buckling behavior: their removal causes severe 
membrane locking effects and leads to overly stiff solutions (Gonçalves & Camotim 2012) – 
e.g., compare the solutions “1-45+ne=8” and “1-59+ne=8”. Moreover, note that the solutions obtained 
with 16 and 8 beam finite elements are virtually identical up to P/PcrD=1.50 − therefore, the “ne=8” 
results can be viewed as the “best GBT ones” within this loading/displacement range. 

(ii) The modal participation diagram of Figure 37(c) shows that, naturally, mode 5 (symmetric distortion) 
governs the column response – its participation remains practically constant along the equilibrium 
path, varying between 53% and 58% (the participation of mode 6 never exceeds 1%). As loading 
increases, mode 1 is gradually replaced by other modes − mode 4 (torsion) provides the largest 
contribution up until P/PcrD=1.50, while the remaining ones almost do not vary. 
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Figure 39: Zed-column v(x) displacement profiles due to modes (a) 2, (b) 3, (c) 4, (d) 5+6, (e) 32-45, (f) 1-59 (v1-59(x)≡v(x)) 
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Figure 40: GBT vs. ABAQUS zed-column deformed configurations at P/PcrD=1.00, 1.25, 1.50 (amplified twice) 

 
(iii) Figures 38(f) and 39(f) show that w(x) and v(x) are mostly due to mode 5 (see Figs. 38(d) and 39(d)), 

whose contribution involves three half-waves and is akin to the initial geometrical imperfection 
(see Fig. 36(b)). This modal contribution grows steadily as loading progresses, while retaining its 
configuration − this feature is shared by the contribution of mode 3 (minor-axis bending − one half-
wave) and 7-17 (local − five half-waves). Besides the small contribution from mode 2 (see Figs. 38(a) 
and 39(a)), it is clear that mode 4 (see Fig. 39(c)), exhibiting clockwise rotations, plays a significant 
role − it is responsible for the difference between the top and bottom flange-lip motions, a behavioral 
feature not occurring in singly symmetric columns (e.g., lipped channels). 

(iv) Lastly, Figure 40 provides clear evidence of the virtual coincidence between the column deformed 
configurations obtained with GBT (1D beam model) and ABAQUS (shell finite element model), 
despite the huge disparity between the numbers of degrees of freedom involved in each of them. 
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The elastic-plastic post-buckling analysis deals with a fixed-pinned I-section beam acted by a vertical load, 
uniformly distributed on the mid-span top flange area (see Figs. 41(a)-(b)), exhibiting a bi-linear material 
behavior, characterized by E=210GPa, ν=0.3, fy=235MPa and Esh=E/100, with length L=2850mm and 
the cross-section mid-line dimensions given in Figure 41(b). The beam contains critical-mode (lateral-
torsional) initial geometrical imperfection with a 3.02mm amplitude (maximum in-plane displacement). 
 

 
Figure 41: Fixed-pinned I-section beam (a) overall view and loading, and (b) cross-section dimensions. 

 
The cross-section discretization adopted is shown together with the transverse extension mode shapes 
in Figure 42 − this figure provides also the in-plane and out-of-plane configurations of the deformation 
modes most relevant for this analysis. It is worth mentioning that, out of the 202 deformations modes 
associated with the nodal discretization shown in Figure 42, the analysis includes only 137, namely 4 
global, 13 local, 81 shear and 39 transverse extension deformation modes. 
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Figure 42: I-section beam in-plane and out-of-plane configurations of the 12 most relevant GBTdeformation modes 
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Figure 43(a) shows the GBT and ABAQUS equilibrium paths λ(|δy|), where |δy| is the absolute value of the 
mid-span top flange node lateral displacement, indicated in Fig. 41(b). Figure 43(b) shows the GBT 
modal participation diagram concerning the evolution, as |δy| increases, of the beam most deformed (mid-
span) cross-section configuration. Lastly, Figure 44 shows the beam collapse mechanism (AP equilibrium 
state indicated in Fig. 43(a)). The observation of these results prompts the following comments: 

(i) The GBT and ABAQUS equilibrium paths are in very good agreement – the maximum difference is 
4.8% and occurs well into the descending branch (AP equilibrium state). 

(ii) Global deformation clearly governs the beam behavior, through the contributions from modes 2 
(15.4-60.7%), 3 (12.0-28.7%) and 4 (21.6-44.9%). The combined participation of the transverse 
extension modes 99 (web) and 100 (flanges) rises gradually along the equilibrium path, reaching 
13% in the descending branch − excluding these two deformation modes from the analysis would 
considerably “stiffen” the beam global behavior, by severely restraining the significant wall in-plane 
motions clearly observed in Figure 44. Finally, local modes 8 and 9, associated with the top/loaded 
flange transverse bending due to the patch loading (see Fig. 42 − note that the modes counteract each 
other in the bottom flange), only have perceptible contributions up to the peak load (their maximum 
joint participation is 4.3%). 

(iii) The dominant global behavior and the early onset of yielding (λ≈2.0, at the beam mid-surface) 
explain the absence of post-critical strength (λu / λcr=0.774). 

 

 (a)  

(b)       
|δy| 

Figure 43: I-section beam (a) GBT and ABAQUS equilibrium paths λ vs. |δy| and (b) GBT modal participation diagram 
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Figure 44: GBT and ABAQUS I-section beam collapse mechanism (AP equilibrium state) 
 
(iv) Besides the remarkable resemblance between the GBT and ABAQUS beam collapse mechanism 

representations, note (iv1) the yield-line at the most deformed cross-section top flange (close to the 
loaded area), and (iv2) the visible (not visible) top (bottom) flange warping at the pinned end support 
– the modes 3 and 4 warping contributions reinforce (oppose) each other at this support (see Fig. 42). 

 
6. Cold-Formed Steel Angle Columns 

The geometrical simplicity of angles is only matched by the complexity of their structural behavior, 
as attested by the fact that the design of angle members has provided a continuous challenge to researchers 
and designers for many decades − last year’s Beedle Award lecture (Lutz 2017) provides an excellent 
testimony of the hardships angle members have brought to the structural engineering profession! In the 
particular case of concentrically loaded cold-formed steel equal-leg angle short-to-intermediate columns 
(those buckling in flexural-torsional modes), their behavior, strength and design eluded the technical and 
scientific communities for a long time and prompted the use of specific design procedures (not used in 
columns with other cross-section shapes), very often involving safety factors higher than usual, which 
reflects the lack of knowledge about their structural behavior (e.g., Ganesan & Moen 2012)33. For 
instance, up until 2012 angle columns were not pre-qualified to be designed by means of the Direct 
Strength Method (DSM) in the North American Specification (AISI 2012) − although the concept of pre-
qualification was removed from the latest version of this specification (AISI 2016), no novel provisions or 
guidelines for the DSM design of angle columns were added (i.e., no new knowledge has been included). 
 
Up until quite recently, the most successful attempts to develop DSM-based design for equal-leg angle 
columns, namely those due to Young (2004), for fixed-ended columns, Rasmussen (2006), for pin-ended 
columns, and Silvestre et al. (2013), for fixed and pin-ended columns, were based on local strength 

concepts, in view of the belief that such columns fail in local-global interactive modes − therefore, they 
involved using either the current DSM local and global design curves or slightly modified (empirically) 
versions of these curves. In spite of the quite positive performance indicators of the above DSM design 
                                                 
33 Note that the structural behavior of (long) equal-leg angle columns buckling and failing in minor-axis flexural modes is perfectly understood. 

Therefore, the design of such columns is straightforward and performed through the usual procedure for compression members. 

GBT ABAQUS 
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approaches, it is now clear that they were founded on an erroneous mechanical model. Indeed, the 
findings of Dinis et al. (2012a) and Mesacasa et al. (2014) provided clear numerical evidence that the 
column failure stems from the interaction between major-axis flexural-torsional34 and minor-axis flexural 
buckling, a kind of unique global coupling phenomenon that (i) does not involve local deformations and 
(ii) is highly sensitive to the “sign” of the minor-axis flexural initial geometrical imperfections. Based 
on these findings, Dinis & Camotim (2015a) proposed a rational DSM-based design approach that was 
found to provide safe and reliable predictions of all available experimental and numerical failure loads 
concerning both fixed-ended and pin-ended columns. At this stage, it should be mentioned that these two 
support conditions only differ in the restraint of the end-section minor-axis flexural rotations, which are 
either fully restrained (fixed end) or completely free (pinned end) − in both cases, the columns are fixed-
ended with respect to major-axis flexure and have the (secondary) warping of their end cross-sections 
fully restrained. In the experimental studies, warping fixity is achieved by attaching thick/rigid plates to 
the column end cross-sections and the pin-ended support conditions correspond to “cylindrical hinges”. 
 
After briefly addressing the key features of the fixed-ended and pin-ended short-to-intermediate angle 
column buckling and post-buckling behaviors, the paper provides an overview of the above DSM-based 
novel design approach and presents the quality assessment of its failure load estimates. 
 
6.1 Buckling and Post-Buckling Behavior 

Figures 45(a)-(b) provide the signature curve Pcr vs. L (Pcr and L are the critical buckling load and length, 
the latter in logarithmic scale) and corresponding GBT modal participation diagram of fixed-ended (F) 
and pin-ended (P) columns with the cross-section dimensions indicated − note that the two Pcr vs. L. only 
differ for moderate and long columns. As for Figure 45(c), it shows the buckling modes of P columns 
with L=100; 364; 1000 cm and the in-plane shapes of the first 5 GBT deformation modes. It is clear that 
the “plateau” in these signature curves correspond always to flexural-torsional buckling − the amount of 
major-axis flexure (mode 2) is initially minute and increases visibly with L. Moreover, the flexural-
torsional buckling loads and mode shapes of F and P columns with the same length are identical. 
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Figure 45: (a) Pcr vs. L curves and (b) GBT modal participation diagrams (F and P columns), and (c) in-plane shapes 
of 3 buckling modes and first 5 GBT deformations modes (P columns) 

                                                 
34 In equal-leg angle columns, (i) local and torsional deformations are indistinguishable and (ii) the flexural-torsional buckling modes are 

predominantly torsional, which explains why they were erroneously viewed as “local”. 
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ABAQUS shell finite element (SFEA) analyses were used to investigate the elastic and elastic-plastic post-
buckling behavior of F and P columns (i) with lengths L1 =53cm, L2 =133cm, L3 =364cm and L4 =700cm 
(F1-F4 and P1-P3 columns), (ii) containing critical-mode (flexural-torsional) initial imperfections with small 
amplitude and, in the elastic-plastic case, (iii) with various yield-to-critical stress ratios. Figures 46(a)-(f) 
show the upper parts of the F1-F4 and P1-P3 column elastic equilibrium paths P/Pcr vs. β, P/Pcr vs. dM /t and 
P/Pcr vs. dm /t − β, dM and dm are the mid-span rigid-body torsional rotation and flexural displacements due 
to major and minor-axis flexure, respectively. These post-buckling paths prompt the following comments: 

(i) All post-buckling behaviors involve the occurrence of torsional rotations and flexural displacements. 
The relative importance of the latter has strong impact on the column post-critical strength reserve. 

(ii) Two F-column and P-column post-buckling behaviors are identified: while (ii1) the shorter F1-F3 and 
P1 columns are clearly stable and exhibit minute displacements, and (ii2) the longer F4 and P2-P3 
columns are barely stable, exhibit significant displacements and have limit points − either abrupt and 
followed by a torsional rotation reversal (F4 and P2 columns) or smooth with no rotation reversal (P3 
column). The displacement magnitude plays a key role in separating the two post-buckling behaviors. 

(iii) In both the F and P-column equilibrium paths the dM values remain always very small (they grow 
with L and retain the fixed-ended critical buckling mode shape). However, the P column dm values are 
significantly higher (about ten times) than their dM counterparts − their magnitude are similar (both 
small) in F columns (before the interaction with minor-axis flexure buckling occurs, of course) 

(iv) The difference described in the previous item stems from the absence of minor-axis end bending 
moments in the P columns, making it impossible to oppose the minor-axis bending due the “effective 
centroid shift” effects caused by the normal stress redistribution (e.g., Young & Rasmussen 1999). 

 
Next, the influence of plasticity effects on the column post-buckling behavior and collapse is addressed. 
Figures 47(a1)-(a3) show the upper portions of the F3, F4 and P2 column elastic-plastic equilibrium paths 
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P/Pcr vs. β paths for yield-to-critical stress ratios fy /fcr≈1.3, 2.5, 5.0 (plus the elastic path). As for Figures 
47(b1)-(b3), they display plastic strain diagrams at the three equilibrium states indicated in Figures 47(a1)-
(a3), located on the fy /fcr≈2.5 equilibrium paths (including the collapse modes). It is worth noting that: 

(i) The F3 column failure load grows noticeably with fy − e.g., a fy /fcr increase from 1.3 to 5.0 more than 
doubles the load-carrying capacity. 

(ii) The longer F4 and P2 column failure loads are practically insensitive to fy, as their collapses are mostly 
due to geometrically non-linear effects − e.g., a fy /fcr rise from 1.3 to 5.0 entails only a 9.4% failure 
load increase in the P2 column. Indeed, for fy /fcr ≈2.5, 5.0 the F4 and P2 columns remain elastic up to 
failure − the onset of yielding only takes place well inside the equilibrium path descending branch. 

 
The markedly different elastic and elastic-plastic length-dependent post-buckling behaviors exhibited by 
the F and P short-to-intermediate angle columns implies significant differences between their failure loads 
Pu (for any given yield stress). Since all these columns have virtually identical critical buckling stresses, 
i.e., share a common critical slenderness λ=(fy /fcr)

0.5, the corresponding Pu /Py values are likely to be 
highly scattered for each λ value − this behavioral feature is adequately accounted for by the DSM design 
approach originally proposed by Dinis & Camotim (2015a), then slightly improved by Landesmann et al. 
(2016) and, finally, cast in a simpler form by Dinis & Camotim (2016a) − it is addressed next. 
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Figure 47: (a) P/Pcr vs. β elastic-plastic equilibrium paths, for fy /fcr≈1.3, 2.5, 5.0, and (b) plastic strain diagrams and 
collapse modes, for fy /fcr≈2.5, of the (1) F3, (2) F4 and (3) P2 columns 

 
6.2 DSM Design Approach 
The main aspects and characteristics of the DSM-based design approach are the following: 

(i) It is based on the fact that most short-to-intermediate angle columns fail in interactive modes 
combining major-axis flexural-torsional and minor-axis flexural deformations. 

(ii) It involves (ii1) the current DSM global strength curve and (ii2) genuine flexural-torsional strength 
curves (Pnft), developed on the basis of failure loads of columns with fully prevented minor-axis 

bending displacements (see Fig. 48(a)), which replace the current DSM local strength curve in the 
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currently codified design against local-global interactive failures, are applicable to F and P columns, 
and capture the flexural-torsional post-buckling strength drop as the column length increases. 

(iii) The effective centroid shift effects, which strongly influence the P column failure loads (not the F 
column ones), are incorporated through a “reduction parameter” β that only comes into play for P 
columns (idea put forward by Rasmussen 2006) and must reflect, as closely as possible, the length-
dependence of the difference between the P and F column flexural-torsional behaviors. 

 
Therefore, the DSM design approach requires (i) developing a set of genuine flexural-torsional strength 
curves, covering adequately the whole Pcr (L) curve plateau, and (ii) quantifying the effective centroid 
shift effects (in P columns), which was done through a “reduction factor” based on the relation between the 
elastic post-buckling strengths of otherwise identical P and F columns. The main concepts and procedures 
involved in the performance of these tasks are addressed next. 
 
6.2.1 Flexural-torsional strength curves 

Figure 48(a) plots, against λft, the Pu /Py values corresponding to the fairly large flexural-torsional failure 
load data obtained by Dinis & Camotim (2015a) − also displayed is the current DSM local strength curve. 
The clear and huge “vertical dispersion” of the Pu /Py values makes it easy to understand that no single 
Winter-type curve is able to predict safely and accurately all of them. It is also clear that a large number of 
those values fall well below the current DSM local strength curve. The above “vertical dispersion” is 
closely linked to the column length. Indeed, the Pu /Py values gradually drop as L increases along the 
Pcr (L) curve “plateau”, which is completely in line with the findings obtained for the unrestrained 
columns (see Figs 46(a)-(f)). Figure 48(b) illustrates the length-dependence of the restrained column 
post-buckling strength: the four elastic equilibrium paths displayed, concerning columns with increasing 
lengths L1-L4, evidence a very clear post-critical strength drop. 
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Figure 48: (a) Plot Pu /Py vs. λft (Pu are column flexural-torsional failure loads) and (b) elastic equilibrium paths P/Pcr 
vs. β of restrained 70×1.2mm columns with lengths L=98, 252, 500, 700 cm 

 
An in-depth study of the column pure flexural-torsional behavior unveiled that the participation of major-
axis flexure (mode 2) in the column critical buckling mode (i) increases gradually with L (see Fig. 45(b)) 
and (ii) is directly linked to the difference between the pure torsional (fbt) and flexural-torsional (fcrft − 
critical) buckling stresses, provided exactly by analytical expressions given by Dinis & Camotim (2015a). 
In view of these findings, it was decided to group the columns according to the percentage difference 
between fbt and fcrft (i.e., to ∆f=[(fbt − fcrft) /fbt]×100 − this parameter “measures” the relative importance of 
major-axis flexure on the flexural-torsional buckling behavior and, therefore, is ideally suited to quantify 
the length dependence of the column post-critical strength along the Pcr (L) curve plateau35. 
 
                                                 
35 This expression, proposed by Landesmann et al. (2016), differs slightly from the original ∆f definition put forward by Dinis & Camotim (2015). 



 46 

The proposed flexural-torsional strength curves (Pnft) are defined by “Winter-type” expressions, which 
incorporate parameter ∆f to account for the length-dependence and read (Dinis & Camotim 2016) 
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where each combination of parameters a and b36 leads to a different curve − the length-dependence is 
captured through these two parameters, both expressed in terms of ∆f. Note that a=0.4 and b=0.15 are 
adopted for ∆f =0, which amounts to saying that Eq. (7) coincides with the current DSM local strength 
curve for the very short columns (fbt /fcrft very close to 1.00). 
 
It was found that the proposed Pnft strength curve set is able to capture quite well the “vertical dispersion” 
of the numerical failure load data displayed in Fig. 48(a) − Figures 49(a)-(b), showing two individual 
flexural-torsional strength curves obtained from Eq. (7), associated with ∆f=1.80; 7.20, illustrate this 
assertion: the numerical failure loads of the columns exhibiting those ∆f values are reasonably well 
predicted by them − naturally, the prediction quality varies with ∆f (in this case, it is better for ∆f=7.20). 
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Figure 49: Plots of Pu /Py vs. λft and proposed flexural-torsional (Pnft) strength curves for columns with minor-axis bending 
displacements fully prevented such that (a) ∆f=1.80 and (b) ∆f=7.20 

 
Recalling that the mechanical reasoning behind the DSM design approach is based on the fact that the 
columns fail in global-global interactive modes, combing major-axis flexural-torsional and minor-axis 
flexural deformations, it is now possible to obtain strength curves providing the nominal strength against 
the above failures (Pnfte) of fixed-ended (F) short-to-intermediate angle columns. It suffices to replace Py 
by Pne (nominal failure load provided by the current DSM global design curve) in Eq. (7) − the ensuing 
strength curve set is expressed in terms of the “interactive” slenderness λfte=(Pne /Pcrft)

0.5. 
 
6.2.2 Reduction parameter β 

The next step consists of finding a length-dependent “reduction parameter” β that, when multiplied by 
the F column nominal strength Pnfte, provides its P column counterpart. The procedure adopted to search 
for this parameter is based on an “elastic reduction factor” concept and involves the following steps: 
                                                 
36 Do not confuse with the angle leg width, also designated as b. 
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(i) Perform elastic post-buckling analyses of identical F and P columns (same fbt/fcrft ratio, i.e., ∆f value), 
both containing critical-mode initial geometrical imperfections with amplitude L/1000, and record the 
evolution, as the applied load increases, of the maximum longitudinal normal stresses at mid-span 
(fmax) − the P vs. fmax curves of F and P columns associated with ∆f=0.16 are displayed in Figure 50(a). 

(ii) Calculate, for any given fmax value, the ratio between the F and P column applied loads causing it 
(PF and PP) − note that difference between PF and PP stems solely from the effective centroid shift 
effects, which make the interaction with minor-axis flexural buckling much more pronounced in the 
P column. If fmax is equal to the column yield stress (fmax=fy), the corresponding PP /PF ratio provides 
the strength reduction parameter at the column “elastic limit state”. 

(iii) Assume that the above PP /PF ratio is a good enough approximation of the sought strength reduction 
parameter at the column elastic-plastic failure (β ) − in other words, assume that β≈PP /PF. 

(iv) Take fmax as the column global nominal strength fne, which implies that its “interactive” slenderness is 
given by λfte=(fmax /fcrft)

0.5, making it possible to establish a relationship between β and λfte. Then, it is 
possible to obtain a set of length-dependent β  (λfte) curves, one per ∆f value − Figure 50(b) shows the 
β (λfte) curves of columns associated with ∆f=0.16, 0.84; 2.41. The differences between these curves 
clearly evidence the length-dependence of β (λfte) − β decreases substantially as L (i.e., ∆f) increases. 

(v) Using a “trial-and-error curve-fitting procedure”, search for “Winter-type” expressions relating β  to 
λfte − it was found (Dinis & Camotim 2016) that the simpler output of this search is 
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Figure 50: (a) P vs. fmax curves concerning F and P columns with ∆f=0.16, (b) numerically obtained β values, plotted 
against λfte, and (c) proposed β (λfte) curves relating P and F columns with ∆f=0.16, 0.84 and 2.41 
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6.3 DSM Design Proposal 

Combining now (i) the strength curves for F columns, previously obtained in Section 6.2.1 and consisting 
of Eqs. (7)-(8) with Py replaced by Pne, and (ii) the reduction parameter β, just obtained in Section 6.2.2, it 
is possible to propose DSM-based strength curves providing nominal failure loads (Pnfte) of short-to-
intermediate fixed-ended and pin-ended angle columns, which fail in interactive “global-global” modes 
combining torsional rotations with major- and minor-axis translations − they are defined by the expressions 
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where (i) a, b and c, d are given by Eqs. (8) and (10), and (ii) λfte=(fne /fcrft)

0.5 is the “interactive” slenderness. 
 
6.3.1 Merit assessment 

The above DSM-based strength curves provide quite accurate and reliable failure load predictions. Figures 
51(a)-(b) plot, against λfte, the exact-to-predicted failure load ratios (Pu/Pnfte) concerning the whole set of F 
and P column experimental and numerical failure loads assembled (either obtained or collected from the 
literature) by Dinis & Camotim (2016a) − the Pu/Pnfte performance indicators (average, standard deviation, 
maximum and minimum values) are also given in those figures, as well as the corresponding LRFD 
resistance factors φc, evaluated by means of the expression prescribed by AISI (2016). When both the 
experimental and numerical failure loads are considered, the LRFD resistance factors read φc=0.88 
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Figure 51: Plots Pu /Pnfte vs. λfte concerning the (a) F and (b) P column (1) experimental and (2) numerical failure loads 
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(F columns) and φc=0.91 (P columns). In view of these results, a DSM design proposal for fixed-ended 
and pin-ended equal-leg angle columns establishing that the nominal strength is Pn=min {Pne; Pnfte}, where 
Pne and Pnfte are provided by the current DSM global design curve and Eqs. (11)-(12), respectively, is 
ready for codification in the North American Specification (NAS) for the Design of Cold-Formed Steel 
Structural Members (AISI 2016) − moreover, it can be used together φc=0.85, thus completely unifying 
the treatment of compression members in this specification. 
 
7. Cold-Formed Steel Members Undergoing Mode Interaction 

The complex shape and high wall slenderness exhibited by the open thin-walled cross-sections commonly 
used in cold-formed steel (CFS) members make them highly susceptible to several instability phenomena, 
involving either individual and/or coupled buckling modes. The efficient design of such members is far 
from well established, as interactive buckling phenomena may emerge even when the associated critical 
buckling loads/moments are significantly apart. Thus, in order to assess the structural response of such 
members it does not suffice to acquire in-depth knowledge about their “pure”/individual buckling and 
post-buckling behaviors, since couplings involving two (or even three) buckling modes may occur. 
Naturally, such coupling effects may erode, to a smaller or larger extent, the member ultimate strength, 
thus leading to a high likelihood of reaching unsafe designs. Concerning mode interaction phenomena 
that may affect CFS members, those involving local and global buckling are, by far, the better understood 
− their effects are currently taken into account in the design of slender members, through either the 
classical “plate effective width” concept or the more recent Direct Strength Method (e.g., AISI 2016)37. 
However, in the context of the DSM, the picture changes for columns and beam undergoing interaction 
phenomena involving distortional buckling, namely local-distortional (L-D), local-distortional-global 
(L-D-G) or distortional-global (D-G) interaction, which are potential additional sources of failure load or 
moment erosion not yet adequately covered by any cold-formed steel specification around the world. This 
fact is particularly worrisome with the advent and progressively widespread use of high-strength steels, 
which makes mode interaction phenomena much more relevant, in the sense that are much more likely to 
govern the failure of non-stocky CFS members. 
 
An extensive research effort has been carried out in the last few years at the University of Lisbon on mode 
interaction in CFS columns and beams prone to distortional buckling. This investigation, comprising 
experimental tests (performed at the Federal University of Rio de Janeiro and University of Hong Kong 
− FURJ and UHK), numerical (shell finite element analysis − SFEA) simulations and design proposals, is 
intended to (i) acquire in-depth knowledge on the post-buckling behavior (elastic and elastic-plastic), 
ultimate strength and failure mode nature of CFS columns and beams experiencing L-D, L-D-G or D-G 
interaction, (ii) obtain and/or collect experimental and numerical ultimate strength data, and (iii) use this 
information to develop, calibrate, validate and proposes efficient (safe and accurate) DSM-based design 
approaches to predict the ultimate strengths of the members under consideration. 
 
In view of the really enormous amount of work available (and also under way) on this topic, it is virtually 
impossible to address in this paper more than a very small fraction of the results and findings obtained. 
Therefore, a lot of thought has gone into how to organize this section, so that it (i) projects a clear image of 
the whole ongoing research endeavor, (ii) provides an account as detailed as possible of the methodology 
employed to achieve the established goals and (iii) presents and discusses a representative (but small) 
                                                 
37 It should be pointed out that, currently, the DSM covers only the design of CFS columns and beams failing in local, distortional, global and 

local-global interactive modes. Concerning CFS beam-columns, a DSM-based design approach for “pure” failures is being sought by 
Torabian & Schafer (2018) − in view of the promising results already reported its codification should be expected for the not too distant 
future. Naturally, the DSM design of CFS beam-columns failing in interactive modes will only be addressed a bit further down the road. 
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sample of the knowledge acquired in the course of such an extensive investigation. The outcome of this 
“brain storming procedure”: after presenting a few fundamental concepts that are common to all the 
coupling phenomena investigated, (i) identify and characterize the main steps and procedures involved in 
the methodology adopted to study the various mode interaction behaviors addressed and, for each of 
those steps and procedures, (ii) provide an illustration concerning one member coupling phenomenon. 
This means that no complete account of the work carried out concerning a particular member interactive 
behavior will be presented − instead, the paper includes a “mix” of the results and findings obtained for the 
several member coupling phenomena addressed. Recall that these phenomena consist of (i) L-D, L-D-G 
and D-G interaction in simply supported and (mostly) fixed-ended columns, and (ii) L-D and D-G 
interaction in simply supported beams with the two end support conditions shown in Figure 19. 
 
7.1 Fundamental Concepts 

In order to illustrate mode coupling phenomena involving distortional buckling, Figures 52(a1)-(a3) display 
“signature curves” (Pcr vs. L in logarithmic scale) that concern simply supported lipped channel columns 
with particular cross-section dimensions and make it possible to identify lengths associated L-D, D-G and 
L-D-G mode interaction (Camotim & Dinis 2011) − note the virtually coincident local, distortional and/or 
global critical buckling loads, which ensure maximum interaction effects and characterize the so-called 
“true interactive behaviors”. As for Figures 52(b1)-(b3), they show possible critical buckling modes of 
the columns indicated in Figures 52(a1)-(a3), which combine the deformation patterns corresponding to the 
competing critical buckling modes: (i) 3 L half-waves + 1 D half-wave, (ii) 3 D half-waves + 1 G half-
wave and (iii) 19 L half-waves + 3 D half-waves +1 G half-wave. 
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However, it should be made clear that mode interaction involving distortional buckling may also occur in 
members exhibiting cross-sections and lengths such that either the competing local and/or distortional 
critical buckling stresses are visibly lower than the remaining one(s), provided that the yield stress 
exceeds the highest critical buckling stress by a large enough amount (i.e., fy  >fcr.max), which characterizes 
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the so-called “secondary bifurcation interactive behavior”. It is worth noting that, as shown by Dinis et al. 
(2012b) in the context of L-D-G coupling, no secondary bifurcation interaction takes place when global 
buckling is critical, due to the associated minute post-critical strength, which precludes reaching applied 
stress levels close to the critical local and/or distortional buckling stresses. Naturally, the most pronounced 
secondary bifurcation interaction effects arise when local buckling is critical, due to the ensuing large 
post-critical strength − when fcr.min=fcrD the post-critical strength is just moderate (but still visible). 
 
In order to illustrate the difference between the two above mode interaction types, Figures 53(a)-(b) 
display the elastic equilibrium paths (f vs. d) and six cross-section buckled configurations concerning 
lipped channel columns exhibiting true and secondary distortional/global-bifurcation L-D-G interaction, 
respectively − the latter corresponds to fcr.min=fcrL and fcr.max=fcrD≈fcrG. In the first case, coupling starts at the 
early loading stages and evolves as loading progresses − local, distortional and global (flexural-torsional) 
deformations develop along the whole equilibrium path, provided that the column has initial geometrical 
imperfections with L, D and G components. In the second case, the deformation is essentially local up to 
the vicinity of the critical distortional/global buckling applied stress level, when visible distortional and 
global deformations emerge and develop. Of course, this only occurs in elastic-plastic columns if fy is 
“high enough” to allow for the above emergence and/or development (otherwise, plasticity kicks in and 
precipitates a local failure before distortional and global deformations become significant). 
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Figure 53: Equilibrium paths and cross-section buckled shapes of lipped channel columns exhibiting (a) true and (b) 
secondary distortional/global-bifurcation L-D-G interaction 

 
Finally, it must be pointed out that the column and beam D-G and L-D-G interaction phenomena 
addressed in this work often really involve flexural-torsional-distortional critical buckling modes, even if 
they are termed here “global” (Camotim & Dinis 2011, Martins et al. 2018c). In columns, the presence 
of anti-symmetric distortion (GBT deformation mode 6) is responsible for a significant decrease in post-
buckling stiffness, with respect to that of columns buckling in flexural-torsional modes − it may even 
cause unstable elastic behavior in columns that are not fixed-ended (Camotim & Dinis 2013). Beams, on 
the other hand, symmetric distortional deformations (GBT deformation mode 5) provide added post-
buckling stiffness, with respect to that exhibited by beams buckling in flexural/lateral-torsional modes. In 
addition, the design procedures developed for beams undergoing L-D or D-G interaction are based on the 
DSM-based distortional strength curve proposed by Martins et al. (2017b) and addressed in Section 3.3 
(instead of the currently codified design curve − AISI 2016). 
 
7.2 Methodology 

The investigation on the behavior and DSM design of columns or beams undergoing a particular coupling 
phenomenon involving distortional buckling comprises the performance of the following successive tasks: 
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(I) Member Geometry Selection. The first step in an investigation on a particular coupling phenomenon 
consists of selecting/identify column or beam geometries (cross-section shape/dimensions and 
lengths) prone to “true” or “secondary bifurcation” interaction. This selection is made through a 
“trial-and-error” procedure involving sequences of elastic linear buckling/bifurcation analyses 
involving members exhibiting a given cross-section shape and gradually varying cross-section 
dimension ratios and/or lengths. In most cases, such buckling/bifurcation analyses are performed 
using the code GBTUL (Bebiano et al. 2018a). 

(II) Determination of Most Detrimental Initial Geometrical Imperfection Shape. A very important issue 
in mode interaction investigations is the identification of the most detrimental initial imperfection 
shape, in the sense that it leads to the lowest member strength. Due to the presence of two or three 
competing critical buckling modes, the commonly used approach of considering critical-mode initial 
imperfections ceases to be well defined, since infinite shapes satisfy this condition. Therefore, it is 
necessary to obtain and compare equilibrium paths of members containing initial geometrical 
imperfections (i) spanning the whole critical-mode shape range and (ii) sharing a common amplitude 
(otherwise, no meaningful comparison can be made). A systematic approach to identify such initial 
geometrical imperfection shape has been devised and the interested reader can find its detailed 
description in the work of Camotim & Dinis (2011). It involves (i) determining the pure critical 
buckling mode shapes, normalized to exhibit a unit maximum displacement, (ii) scaling the above 
pure modes, so that they exhibit pre-established magnitudes, which may differ for local, distortional 
and global imperfections, (iii) obtaining sets of initial geometrical imperfection shapes that consist 
of linear combination of the scaled competing buckling modes shapes and span the whole critical-
mode (2-D or 3-D) space, and (iv) perform elastic post-buckling analyses of members containing 
the various initial geometrical imperfections obtained (all sharing the same amplitude). 

(III) Investigation on the Underlying Mechanics. In order to shed new light on the mechanics underlying 
a given coupling phenomenon, GBT-based geometrically non-linear analyses are performed. Taking 
advantage of their unique modal features, it is possible (i) to provide a structural characterization of 
the mode interaction under consideration, (ii) to make a clear mechanical distinction between the 
“true” and “secondary bifurcation” interactive behaviors, (iii) to make an in-depth assessment of 
the influence of the initial geometrical imperfection shape, and (iv) to detect and explain “false 
interactive behaviors” that are associated with the emergence of global deformations stemming from 
the normal stress redistribution due to high local/distortional deformations (e.g., Martins et al. 2018c). 
This knowledge is acquired through the in-depth study of the evolutions, as loading progresses, of the 
GBT deformation mode contributions to the longitudinal profiles of displacement components 
playing a key role in the member deformed configuration (Martins et al. 2018b). 

(IV) Assembly of Ultimate Strength Data. Once the mechanics underlying a given coupling phenomenon 
are well understood, on the basis of GBT-based numerical results38, it is essential to acquire 
experimental results, either collected from the literature or obtained from test campaigns planned and 
carried out with this specific purpose, intended to provide (i) experimental evidence of the interactive 
behavior under consideration and (ii) ultimate strength data to be used in the calibration of shell finite 
models and the search for efficient design approaches against the interactive failures. The calibrated 
numerical models are then used to perform parametric studies, aimed at gathering extensive ultimate 
strength data concerning members with a wide variety of geometries and covering large slenderness 
ranges − these data are essential to develop the aforementioned efficient design approaches. 

                                                 
38 Before the development and numerical implementation of the GBT non-linear formulation reported by Martins et al. (2018b), the knowledge 

on the coupling phenomenon mechanics was acquired through shell finite element results (naturally, less clarifying). 
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(V) Development and Assessment of DSM-Based Design Approaches. Finally, the experimental and 
numerical ultimate strength data assembled, concerning columns or beams undergoing a particular 
coupling phenomenon, are used to search for and assess the merits of efficient DSM-based design 
approaches capable to handle the associated interactive failures. Generally speaking, the search for 
such a design approach follows the procedure currently adopted in AISI (2016) for the design against 
local-global interactive failures, which was first suggested by Schafer (2002) and later carried a step 
further by Yap & Hancock (2011). The comparison between the gathered ultimate strengths and their 
estimates provided by the developed/proposed DSM-based design approach makes it possible to 
assess its merits (safety and reliability). In particular, the expressions included in the current North 
American Specification (AISI 2016) are employed to obtain the LFRD resistance factors φ associated 
with the available set of failure-to-predicted ultimate strength ratios. 

 
7.2.1 Geometry selection − beams under L-D interaction 

The identification of uniformly bent beam geometries prone to L-D interaction is quite straightforward, 
since there exist a fair number of short-to-intermediate beams with close local and distortional buckling 
moments. In order to illustrate the geometry selection procedure, Figure 54(a1) shows, for lipped channel 
beams bent about the major-axis with cross-section dimensions bw=100, bf=65, bl=12.5 and t=1.0mm 
and SCA boundary conditions (see Section 3.3), the variation of the single half-wave (Mb.1) and critical 
(Mcr) buckling moments with the length L (logarithmic scale). On the other hand, Figure 54(a2) displays 
the Mcr vs. L signature curve again, together with GBT-based “approximate” buckling curves obtained 
from analyses including three deformation mode sets, namely modes 7-17 (local), 5+6 (distortional) and 
3+4 (global: lateral-torsional). Since the first two analyses yield (i) practically exact critical local buckling 
moments and (ii) slight overestimations of the critical distortional buckling moments, respectively, Figure 
54(a2) readily shows that beams with lengths such that 45 < L < 250cm are highly prone to L-D interaction 
(the global critical buckling moments are much higher) – this quite large length interval evidences the 
relevance of this coupling phenomenon. Figure 54(b) shows the local and distortional critical buckling 
modes of the L=LDL=50cm beam, with very close local and distortional buckling moments (201kNcm vs. 
203kNcm) − they exhibit 8 and one half-waves, respectively. Naturally, the post-buckling behavior 
(elastic or elastic-plastic) of such beam is bound to be strongly affected by L-D interaction. Concerning the 
signature curve descending branch, it falls a bit below the solution obtained with only modes 3+4 (exact 
lateral-torsional buckling moments) – the gap reflects the fact that, for the associated lengths, the beam 
“global” critical buckling mode contains distortional deformations (see the last paragraph in Section 7.1). 
Moreover, beams with lengths close to the transition between the signature curve “horizontal plateau” and 
descending branch are prone to L-D-G interaction (the global critical buckling moments are much closer). 
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The output of this selection were 43 lipped channel, hat-section and zed-section beam geometries, which 
can be found in Martins et al. (2017c), both for SCA and SCB support conditions. All these beams (i) 
exhibit RDL=McrD /McrL values in the range 0.50 ≤ RDL ≤ 2.00 and (ii) have global buckling moments 
(McrG) much higher than both their local and distortional counterparts (McrG / Mcr.Max >> 1.0, where 
Mcr.Max=max{McrD; McrL}) and the yield moments (McrG / My.Max >> 1.0), thus ensuring that no interaction 
with global buckling occurs. Local buckling is always triggered by the compressed flange (most common 
situation in practice) and, in order to study the effect of strong (“true”) L-D interaction, 26 beams were 
selected in the 0.85 < RDL < 1.15 range – the remaining 17 beams were obtained by varying this ratio in 
0.10/0.05 steps up to 2.00 and down to 0.50, respectively, making it possible to investigate also 
“secondary (local or distortional) bifurcation” L-D interaction. 
 
7.2.2 Most detrimental initial imperfection − columns under D-G interaction 

The procedure outlined in Section 7.2 (item (II)) was applied to identify the most detrimental initial 
geometrical imperfection shape in columns affected by D-G interaction (Martins et al. 2018d). The 
numerical results presented concern fixed-ended zed-section columns with length L=625cm and cross-
section dimensions bw=140, bf=140, bl=13 and t=3.55mm, corresponding to very close critical distortional 
and “global”39 buckling loads (RGD=0.95 – strong “true” D-G interaction). The initial imperfection shapes 
considered consist of linear combinations of the normalized pure distortional (10 half-waves) and “global” 
(one half-wave) buckling mode shapes, and share the same overall amplitude. A given imperfection shape 
is associated with coefficients vD.0 and vG.90 lying on the ellipse depicted in Figure 55(a), which covers 
every possible combination − it lies on this ellipse and corresponds to an angle θ, measured counter-
clockwise from the vD.0 axis, so that vD.90=r sinθ and vD.0=r cosθ (r is the ellipse polar coordinate). The 
amplitudes of the pure distortional (θ=0º or θ=180º – Fig. 55(b)) and “global” (θ=90º or θ=270º – Fig. 
55(b)) initial imperfections are equal to 0.94t (50% probability that a random imperfection amplitude is 
below this value − Schafer & Peköz 1998) and L/1000, respectively. 
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Figure 55: Initial imperfection (a) vD.0 -vG.90 plane representation and (b) θ=0º, 90º, 180º, 270º shapes 
 
After having defined “the full set of possible initial geometrical imperfections”, it becomes possible to 
assess and compare the elastic post-buckling behaviors of columns containing them, in order to (i) obtain 
numerical evidence of the occurrence of D-G interaction, (ii) assess how the initial imperfection shape 
influences the column post-buckling behavior and (iii) identify the most detrimental one. This was done 
for 24 initial imperfection shapes (15º θ intervals, starting at 0º, in Fig. 55(a)) and Figure 56(a) shows the 
corresponding elastic equilibrium paths P/Pcr vs. (v+v0)/t (v is the mid-span top flange-lip corner vertical 

                                                 
39 This column critical buckling mode involves not only predominant minor-axis flexure (as expected) but also a small (but clearly visible) 

contribution from the symmetric distortional mode 5 − it is, in fact, a flexural-distortional mode (Martins et al. 2018d). 
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Figure 56: Zed-column (a) elastic post-buckling equilibrium paths P/Pcr vs. (v+v0)/t and (c) deformed configurations at advanced 
post-buckling stages for (b1) θ=90º + (v+v0)/t=30, (b2) θ=270º + (v+v0)/t=30, (b3) θ=0º + (v+v0)/t=10 and (b4) θ=0º + (v+v0)/t=25 
 
displacement and v0 the corresponding initial value) of the θ=0º, 15º,..., 345º columns. Moreover, Figure 
56(b) shows several column deformed configurations at advance post-buckling stages. The observation of 
these post-buckling results leads to the followings conclusions: 

(i) Most equilibrium paths are associated with deformed configurations combining a predominant 
“global” half-wave with several distortional half-waves, thus evidencing the occurrence of D-G 
interaction − e.g., Figures 56(b1)-(b2) show the θ=90º and θ=270º column deformed configurations at 
advanced post-buckling stages ((v+v0)/t=30). As expected, all these columns exhibit a very small 
post-critical strength and fail below the critical buckling load level (Pu /Pcr<1.0). 

(ii) The equilibrium paths can be divided into three groups: (ii1) θ=0º and θ=180º (discussed in the next 
item), (ii2) 195º≤θ ≤345º, associated with minor-axis flexural deformations towards the bottom flange 
(denoted “negative”) and (ii3) all the remaining ones (15º≤θ ≤165º), involving almost exclusively 
“positive” minor-axis flexural deformations. Note that distinct initial imperfection amplitudes may 
lead to significantly different column post-buckling behavioral features (Dinis & Camotim 2011). 

(iii) Surprisingly, the equilibrium paths of the columns with pure distortional initial imperfections (θ=0º 
and θ=180º) clearly differ from those of all the other columns. Figures 56(b3)-(b4) show deformed 
configurations of the θ=0º column at (v+v0)/t=10 and 25, providing evidence that these columns are 
affected by D-G interaction of a different nature, involving distortional deformations and torsional 
rotations. This type of interaction is not due to the closeness between the distortional and torsional 
buckling loads. In fact, GBT-based results (Martins et al. 2018e) show that torsional rotations may 
emerge in columns either exhibiting a pure distortional post-buckling behavior or affected by D-G 
interaction, even when the critical torsional and minor-axis flexural buckling loads are not very close. 

(iv) Since all equilibrium paths exhibit limit points prior to merging into “common curves” (except those 
addressed in the previous item), the most detrimental initial imperfection can be easily identified: that 
leading to the lowest failure load. Figure 56(a) shows that the θ=75º; 105º; 255º; 285º initial 
imperfections are the most detrimental (they correspond to Pu /Pcr=0.825). Nevertheless, it should be 
mentioned that Pu /Pcr is practically the same for the columns with pure “global” initial imperfections 
− therefore, for the sake of simplicity, it is perfectly acceptable to assume that the pure “global” 
initial imperfections are the most detrimental one. 
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7.2.3 Underlying mechanics − beams under D-G interaction 

A GBT-based investigation on the elastic post-buckling behavior of a simply supported lipped channel 
beam subjected to uniform major-axis bending and undergoing “secondary global-bifurcation D-G 
interaction” is addressed (Martins et al. 2018a). The results are obtained by means of geometrically non-
linear imperfect analyses based on a beam finite element formulation recently derived and numerically 
implemented by Martins et al. (2018b) and concern a beam with a critical (distortional) initial geometrical 
imperfection. This beam has length L=200cm and cross-section dimensions bw=190, bf=90, bl=10 and 

t=3.06mm, leading to a critical global-to-distortional buckling moment ratio RGD≈2.00 − critical buckling 
modes with 5 (distortional) and one (global) half-waves. The GBT nodal discretization adopted involves 
17 nodes (6 natural and 11 intermediate – 3 in the top/compressed flange, 1 in the bottom/tensioned 
flange and 7 in the web), corresponding to (i) 19 conventional (4 global, 2 distortional and 13 local – 1-19), 
(ii) 16 shear (5 global and 11 local – 20-35, (iii) 16 linear transverse extension (1 global isotropic, 4 global 
deviatoric and 11 local – 36-51), and (iv) 16 quadratic transverse extension deformation modes (52-67) 
− a total of 67 deformation modes. The beam critical distortional and global buckling modes contain 
essentially contributions from deformation modes 5+6 and 3+4, respectively. 
 
Figures 57(a)-(b) show two M /McrD vs. (v+v0)/t equilibrium paths of a beam containing initial geometrical 
imperfections akin to the critical distortional buckling mode, with amplitude 0.1t, and the associated 
modal participation diagram − for comparison purposes, ABAQUS SFE results are also included. As for 
Figures 58(a1)-(b4) and 59, they display (i) the evolution, as loading progresses, of the longitudinal profiles, 
due to various deformation modes/mode sets, of the top flange-lip corner vertical and mid-web transverse 
displacements, and (ii) beam deformed configurations at M     /McrD=0.507; 0.919; 0.701↓; 0.484↓ − the vertical 
arrows identify equilibrium states located on the equilibrium path descending branch. These post-
buckling results make it possible to draw the following conclusions: 

(i) There is an excellent agreement between the GBT-based equilibrium paths, obtained with all the 67 
deformation modes included, and that yielded by the shell finite element analysis − they are virtually 
coincident in the whole ascending branch and first part of the descending branch. In the second part 
of the equilibrium path descending branch, a GBT longitudinal discretization involving 16 finite 
elements (instead of 8) slightly improves the accuracy of the results. 

(ii) The modal participation diagram shows two clearly distinct regions, before and after the equilibrium 
path limit point (M /McrD≈0.919). Initially, the beam deformed configuration combines essentially 
participations from modes 2 (mostly) and 5+6 (stemming from the initial geometrical imperfections) 
− up to M /McrD=0.919, p2 decreases from 95% to 56% and p5+6 increase from 4% to 27%. At 
M /McrD=0.837, the mode 3 and 4 participations, barely perceptible until then, quickly rise from 1% 
each to 7% and 9%, respectively (at M/McrD=0.919). Along the equilibrium path descending branch, 
mode 2 is fast “replaced” by modes 3 and 4 − participations of 26% and 36% at M /McrD=0.473↓. 
Conversely, p5+6 reaches a peak value of 28% at M /McrD=0.900↓ and then decreases continuously 
until M /McrD=0.473↓ (p5+6=14.1%). As for the joint participation of the local and shear modes, it 
never exceeds 2%. Finally, the joint participation of all transverse extension modes becomes more 
relevant as loading progresses: it reaches a maximum of 5% at M /McrD=0.473↓ and consists mostly of 
contributions from modes 36 (1.7%), 39 (0.5%), 40 (1.3%). 

(iii) All the displacement profiles displayed in Figures 58(a1)-(b4) are longitudinally symmetric, which is 
due to the fact that the critical distortional buckling mode (and the initial geometrical imperfection) 
has an odd half-wave number. Figure 57(b) shows that, at the early loading stages, the beam 
deformed configuration consists of a dominant single half-wave (downward) contribution from  
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Figure 57: (a) M /McrD vs. (v+v0)/t equilibrium paths of a lipped channel beam undergoing “secondary global-bifurcation D-G 
interaction” with a distortional initial geometrical imperfection, and (b) corresponding modal participation diagram 
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Figure 58: RGD=2.00 lipped channel beam profiles of (a) top flange-lip corner vertical displacements (1) v2(x), (2) v4(x), (3) v5+6(x), 
(4) v36-51(x), (5) v1-67(x)≡v(x), and (b) mid-web transverse displacements (1) w3(x), (2) w7-19(x), (3) w36-51(x), (4) w1-67(x)≡w(x) 
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Figure 59: Lipped channel beam GBT-based deformed configurations at loading stages M /McrD=0.507, 0.919, 0.701↓, 0.484↓ 
 
 mode 2 (Fig. 58 (a1)) and a 5 half-wave contribution from modes 5+6 (Fig. 58(a3)). As loading 

progresses, the distortional deformations become more pronounced, originating a stress redistribution 
that causes the emergence of modes 3 and 4 − this also occurs in beams exhibiting a “pure” 
distortional post-buckling behavior (Martins et al. 18a). This emergence favors the interaction with 
global buckling, since McrG /McrD is not high enough to preclude such interaction. Once these global 
buckling modes are triggered, they became progressively more relevant, as depicted in Figures 
58(a2)+(b1) (and also in Fig. 57(b)) – for M/McrD<0.919↓, the dominance of v4(x) (Fig. 58(a2)) in v(x) 
(Fig. 58(a5)) and of w3(x) (Fig. 58(b1)) in w(x) (Fig. 58(b4)) are very clear. Note still that, for 
M/McrD<0.919↓, the initially equal five distortional half-waves become progressively more unequal: 
the outward central half-wave is much more pronounced (see Fig. 58(a3)), due to the “attractive 
power” of the single half-wave mode 4 participation − i.e., the global buckling behavior plays a 
dominant role even when McrD <McrG. Finally, the tiny contributions from the local (Fig. 58(b2)) and 
transverse extension (Figs. 58(a4)+(b3)) deformation modes follow similar trends. 

(iv) There is no clear difference between the post-buckling behaviors of beams affected by “secondary 
global-bifurcation” and “true” and D-G interaction − the results concerning the latter can be found in 
Martins et al. (2018a). Indeed, modes 3 and 4, associated with McrG, emerge at fairly early loading 
stages for beams exhibiting either RGD >1.00 or RGD >>1.00 − in the latter case, exclusively due to the 
stress redistribution caused by the distortional deformations (not the closeness between McrG and 
McrD). This means that all these beams are affected by qualitatively similar D-G interaction effects, 
even if their origins may be distinct. This is why it was decided to term this type of D-G interaction 
as “secondary global-bifurcation D-G interaction” also when is does not stem from nearly coincident 
McrG and McrD values. This type of D-G interaction is always relevant for design purposes − in fact, 
much more so than anticipated (Martins et al. 2018c). 

(v) Despite the distortional initial geometrical imperfections, distortional deformations and torsional 
rotations become visible at approximately the same loading stages: see Figures 58(a2)-(a3) and 
the first two deformed configurations in Figure 59. Moreover, their visibility increases considerably 
and gradually along the equilibrium path descending branch: the last two deformed configurations in 
Figure 59 provide very clear graphic evidence of the occurrence of D-G interaction, as attested by the 
dominance of both the torsional rotations and the top flange distortional deformations. 

 
7.2.4 Ultimate strength data − columns under L-D interaction 

Although a few test campaigns were carried out with the specific aim of investigating L-D interaction in 
fixed-ended cold-formed steel columns, exhibiting both “plain” and intermediately stiffened lipped cross-
sections, the specimens providing clear experimental evidence of this coupling phenomenon and ensuing 
failure load erosion are fairly scarce – certainly, much less than those collected to propose/calibrate the 
existing L, D, G and L-G DSM design curves/expressions (Schafer 2008). The available experimental 
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studies on L-D interaction in fixed-ended CFS columns are due to (i) Kwon & Hancock (1992), Young & 
Rasmussen (1998), Kwon et al. (2009) and Young et al. (2013), for lipped channel (C) columns, (ii) 
Kwon et al. (2005), for hat-section (H) columns, (iii) Dinis et al. (2014), for rack-section (R) columns, 
(iv) Kwon & Hancock (1992), Kwon et al. (2009), Yap and Hancock (2011) and He et al. (2014), for 
web-stiffened lipped channel (WSC) columns, and (v) Yang & Hancock (2004), for web/flange-stiffened 
lipped channel (WFSC) columns – no zed-section (Z) column test results were found in the literature. 
Figures 60(a)-(d) concern tests carried out at the University of Hong Kong, which were carefully planned 
in close cooperation with researchers from the University of Lisbon and involved fixed-ended C and R 
columns. They provide (i) front and side views of the test rig and a typical set-up for testing a fixed-ended 
column, including the load application (through a servo-controlled hydraulic testing machine) and the 
transducers to measure mid-span cross-section displacements, and (ii) experimental evidence of the 
occurrence of L-D interaction in lipped channel and rack-section specimens (Young et al. 2013, Dinis 
et al. 2014). In “plain” cross-section columns, local buckling is almost always triggered by the web, 
where most of the L-D interaction takes place. This ceases to be true in the presence of web intermediate 
stiffeners (e.g., WSC columns), as local buckling is bound to be triggered by the flanges, thus altering the 
 

 
 (a) (b) 

 (c) (d) 

Figure 60: University of Hong Kong tests: (a) front and (b) side views of test rig and set-up, and experimental evidence of L-D 
interaction in (c) lipped channel and (d) rack-section columns 
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Table 3: Summary of the test results available in the literature on cold-formed steel columns undergoing L-D interaction 

 SLB N TI N SDB N 
       

PCS   Kwon & Hancock (1992) 
Kwon et al. (2005) 

5 
5 

Loughlan et al. (2012 

Kwon et al. (2009) 
20 
3 

WSC 
Yap & Hancock (2011) 
He et al. (2014) 

2 
4 

Kwon & Hancock (1992) 
Yap & Hancock (2011) 
He et al. (2014) 
Kwon et al. (2009) 

3 
9 
8 
7 

He et al. (2014) 
Kwon et al. (2009) 

5 
3 

WFSC   Yang & Hancock (2004) 5 Yang & Hancock (2004) 7 
Total  6  42  38 

 
L-D interaction features. Table 3, taken from Martins et al. (2017a), summarizes the above column test 
results. Using reported geometrical and material properties to obtain the critical local/distortional/global 
buckling and squash loads of the tested specimens, these results are divided into nine sets, according to 
the (i) cross-section geometry (plain, web-stiffened lipped channel or web/flange-stiffened lipped channel 
− PCS, WSC or WFSC) and (ii) L-D interaction nature (secondary local-bifurcation, true interaction or 
secondary distortional-bifurcation − SLB, TI or SDB) − N stands for the number of test results. It is 
readily concluded that there are only sizeable test result numbers for (i) PCS columns failing under SDB 
L-D interaction (23) and (ii) WSC columns collapsing due to TI L-D interaction (27) − otherwise, the 
test results are either scarce or null. It is worth noting that an experimental test program is planned to be 
carried out at the University of Hong Kong, involving WSC and WFSC columns with geometries selected 
to ensure SLB, TI and SDB L-D interaction − these test results will help “fill the gaps” in Table 3. 
 
Extensive parametric studies were performed in the last few years, by means of ABAQUS SFEA, in order 
to obtain numerical failure loads to complement the experimental failure load data presented in Table 3. 
The modeling issues involved in the above numerical parametric studies, not addressed here, can be 
found, for instance, in Silvestre et al. (2012). The set of columns analyzed comprises (i) C columns such 
that 0.9 ≤RDL=PcrD /PcrL ≤1.0 (TI) and 0.4 ≤RDL ≤2.4 (SLI, TI, SDI), reported by Silvestre et al. (2012) and 
Martins et al. (2015), respectively, (ii) H, Z and R columns such that 0.9 ≤RDL ≤1.0 (TI) and 0.4 ≤RDL ≤2.4 
(SLI, TI, SDI), reported by Dinis & Camotim (2015b) and Martins et al. (2015), respectively, (iii) 
WSC columns such that 0.4 ≤RD L ≤2.4 (SLI, TI, SDI), reported by Martins et al. (2016), and (iv) WFSC 
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Figure 61: (a) P/Pcr vs v/t paths of C columns with RDL=1.13 and containing D or L initial imperfections, and (b) failure modes 
and plastic strain diagrams of the (b1)-(b4) Ry=2.0+L, Ry=2.0+D, Ry=5.5+L and Ry=5.5+D columns 
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columns such that 0.4 ≤RDL ≤2.0 (SLI, TI, SDI), reported by Martins et al. (2017d) − a total of more 
than 2000 values, corresponding to critical (local or distortional) slenderness values ranging from 1.00 to 
3.50. Figure 61(a) shows the upper portions (P/Pcr>0.5) of the elastic-plastic P/Pcr vs v/t equilibrium 
paths concerning lipped channel columns with RDL=1.13 and exhibiting (i) distortional or local (critical) 
initial geometrical imperfections and (ii) six yield stresses, so that Ry=fy /fcr.max=1.4, 2.0, 3.5, 5.5, 8.0 and ∞ 
(elastic behavior). As for Figures 61(b), they show deformed configurations and plastic strain distributions 
near collapse concerning columns with (i) Ry=2.0 and L (Fig. 61(b1)) or D (Fig. 61(b2)) imperfections, 
and (ii) Ry=5.5 with L (Fig. 61(b3)) or D (Fig. 61(b4)) imperfections – the deformed configurations are 
amplified 10 or 2.5 times (D or L imperfections). The observation of these post-buckling results prompts 
the following remarks (Martins et al. 2015): 

(i) Unlike the columns with D initial imperfections, which always exhibit outward mid-span flange-lip 
motions (akin to the initial imperfection shape), all columns with L initial imperfections display 
inward mid-span flange-lip motions. This surprising feature is due to the presence of minor-axis 
bending, due to effective centroid shifts towards the web caused by stress redistribution (Young & 
Rasmussen 1999, despite the fixed end supports). The associated outward web curvature “attracts” 
mid-span inward distortional deformations, which explains the failure modes in Figs. 61(b1) and (b3). 

(ii) In the columns with Ry closest to 1.0 (Ry=1.4), yielding starts when the normal stress distribution is 
still “not too far from uniform” and, therefore, precipitates a rather abrupt collapse, which occurs 
for a load that is practically imperfection-independent. 

(iii) In the columns with Ry >1.4, on the other hand, first yielding takes place when the normal stress 
distribution is already “clearly non-uniform” and, therefore, does not lead to an immediate failure 
– collapse occurs either (iii1) after a snap-through phenomenon and subsequent strength increase up 
to a limit point (columns with D imperfections) or (iii2) following a fairly smooth stiffness decrease 
(columns with L imperfections). As Ry increases, the snap-through becomes less pronounced (it 
eventually disappears) and the elastic-plastic strength reserve grows considerably, because first 
yielding occurs at gradually more localized regions, thus impacting less the column stiffness − this 
can be confirmed by comparing the various Ry equilibrium paths of columns with D-imperfections. 

(iv) In the columns with D imperfections and Ry< 3.5 collapse occurs very soon after the yielding of the 
cross-section lips near the maximum outward distortional crest (e.g., Ry=2.0+D – see Fig. 61(b2)). 
As Ry increases, collapse occurs at a later stage, after the web-flange corner regions of the central L/3 
segment have already yielded − see Figure 61(b4). 

(v) Columns with L imperfections and Ry≤2.0 reach the ultimate strength when the lip free end regions of 
the outer half-wave most deformed cross-sections have yielded – e.g., see Figure 61(b1), concerning 
the Ry=2.0+L column. For higher Ry values, collapse occurs again at a later stage, when the lip free 
end and web-flange corner regions of the central L/3 segment have also yielded – see, for instance, 
Figure 61(b3), concerning the Ry=5.5+L column. 

(vi) Regardless of the initial imperfection shape and Ry value, all columns with Ry ≥2.0 exhibit visible L-D 
interaction. Moreover, note that the failure mode does not depend on Ry – e.g., compare Figures 
61(b2) and (b4), which show the collapse mechanisms of the Ry=2.0+D and Ry=5.5+D columns. 

 
7.2.5 DSM design − columns under L-D-G interaction 

In the first stages, the search for a DSM-based design approach to predict the ultimate strength of cold-
formed steel columns failing in local-distortional-global interactive modes focused exclusively on plain 
lipped channel columns (Dinis et al. 2017). All available failure load data concerning columns affected by 
this particular coupling phenomenon were assembled, comprising (i) 52 experimental failure loads, 
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reported by Young & Rasmussen (1998 − 2 tests), Kwon et al. (2009 − 5 tests), Santos et al. (2012, 2014 
− 12 and 16 tests, respectively) and Young et al. (2017 − 17 tests), and (ii) 893 numerical failure loads, 
obtained by Dinis et al. (2012b, 2017) and Cava et al. (2016). Then, following the procedure adopted in 
the currently codified DSM column design curve against L-G interactive failures (PnLG), which was first 
suggested by Schafer (2002), it is possible to develop a design approach to estimate the ultimate strength 
of columns failing in D-G interactive modes (PnDG), by replacing Py with PnG in the currently codified 
DSM column design curve against pure distortional failures. Moreover, Yap & Hancock (2011) carried 
this reasoning one step further and argued that it should be possible to predict the failure loads of CFS 
columns undergoing L-D-G interaction by means of PnLDG values, by replacing Py with PnDG in the 
currently codified DSM column design curve against pure local failures. Therefore, three expressions are 
available to evaluate column nominal strengths against interactive failures involving global buckling 
(L-G, D-G and L-D-G)− they read 
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Figures 62(a)-(b) compare the three above DSM-based column nominal strengths, plotted against λG
40, 

with the failure load ratios Pu/Py concerning the 52 experimental and 893 numerical failure loads. First 
of all, the observation of these results readily shows that both the numerical and experimental Pu/Py 
values correlate very well and are nicely aligned along a “Winter-type” curve with a small vertical 
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Figure 62: DSM design curves against interactive failures involving global deformations and plots of Pu/Py against λG for the 

column failure loads obtained (a) experimentally and (b) numerically 
                                                 
40 Naturally, the joint representation of the three design curves is made under the assumption that λL≈λD≈λG, which may be a crude approximation 

is some cases. A more accurate account would require a different plot for each design curve, thus making their comparison less clear. 
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dispersion. Note that the failure loads obtained during the first test campaign carried out by Santos et al. 
(2012) are generally lower than those reported by the other authors − this was due to the inability to 
ensure fully fixed ended support conditions during the tests (Dinis et al. 2017)41. 
 
Quite surprisingly, it was found that the currently codified DSM design curve against L-G interactive 
failures (PnLG) provides the best failure load estimation quality. Indeed, the corresponding failure load 
predictions are generally safe and mostly accurate, while the other two DSM-based design approaches, 
PnDG and PnLDG (none currently codified), were shown to provide excessively safe failure load predictions 
(Dinis et al. 2017) − more so the PnLDG values. Figure 63 plots, separately for the experimental and 
numerical failure loads, the failure-to-predicted load ratios Pu /PnLG against λG, making it possible to 
confirm the above assertion: the PnLG values provide mostly safe and reasonably accurate predictions of 
the experimental and numerical failure loads − the Pu /PnLG average, standard deviation, maximum and 
minimum values are 1.04-0.15-1.35-0.71 (experimental failure loads) and 1.15-0.10-1.45-0.95 (numerical 
failure loads). Although there are several overestimations, almost all of them concerning experimental 
failure loads, note that the most severe ones are associated with the values obtained by Santos et al. (2012) 
− their removal would improve visibly the failure load prediction quality. It is also noted that virtually all 
numerical failure loads are underestimated − the underestimation increases visibly with the global 
slenderness λG. The LRFD resistance factors obtained from the Pu /PnLG ratios either equal or exceed the 
value recommended in the North American Specification (AISI 2016) for compression members 
(φc=0.85). Indeed, the values obtained are φc=0.85 (experimental values), φc=1.00 (numerical values) and 
φc=0.99 (experimental and numerical values) − if the experimental failure loads due to Santos et al. (2012) 
were removed, the first and third resistance factors would increase to φc=0.92 and φc=1.00, respectively. 
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Figure 63: Plots, against λG, of the experimental and numerical failure-to-predicted load ratios Pu /PnLG 

 
The next step of the investigation consisted of assessing whether the above findings can be extended to 
cover CFS columns with other cross-section shapes that are affected by L-D-G interaction. On the basis 
of the results of a numerical investigation conducted by Dinis & Camotim (2016b), it was found that the 
PnLG values provide adequate estimates for the failure loads of zed, hat and rack-section columns − 
Figures 64(a)-(c) show the respective Pu /PnLG vs. λG plots. It is noted that these plots are perfectly in line 
with the conclusions drawn from the numerical and experimental study on lipped channel columns − the 
LRFD resistance factor obtained with these numerical Pu /PnLG ratios are φc=0.96, φc=1.08 and φc=1.03, 
respectively for zed, hat and rack-section columns. However, note that there are no experimental failure 
loads available for any of these columns, an important limitation that must be overcome in the future. 

                                                 
41 The authors themselves acknowledged this deficiency, which was corrected in a subsequent second test campaign (Santos et al. 2014). 
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Figure 64: Plots Pu /PnLG vs. λG concerning the (a) zed, (b) hat and (c) rack-section column numerical failure loads 
 
Finally, one last word to call attention to the failure load prediction accuracy provided by the PnLG values 
is clearly higher for zed and rack-section columns (see Figs. 64(a)+(c)) than for their lipped channel 
and rack-section counterparts (see Figs. 63 − numerical values − and 64(b)). In the latter, there are very 
significant failure load underestimations for λG >1.5, which become more severe as the slenderness grows. 
This fact, combined with the quite surprising finding that, apparently, the involvement of distortional 
buckling does not influence the failure load erosion of columns undergoing L-D-G interaction, prompted 
a numerical investigation on the accuracy of the currently codified DSM column global strength curve, 
since such accuracy (or lack of it) may be the source of the above unexpected features. The outcome of this 
study, which will be presented at this conference (Dinis et al. 2018), will certainly “force” a revisit to the 
available results on the behavior and design of columns affected by L-D-G (and also D-G) interaction. 
 
8. Concluding Remarks 

An overview of my research activity on structural stability in the last two decades (i.e., since I joined 
SSRC back in 1997) was provided. The main results and findings obtained in several investigations in 
which I have collaborated on topics/problems dealing with the geometrically non-linear behavior of thin-
walled structural members and systems were presented and briefly discussed − the common thread 
between them is the fact that virtually were reported at SSRC Annual Stability Conferences (or Technical 
Sessions & Meetings) before appearing in international journals. 
 
The various topics/problems and results/findings, which were presented in chronological order as much 
as possible, concerned (i) the stability, non-linear strength and design of pitched-roof frames, (ii) the 
distortional post-buckling behavior, ultimate strength and DSM design of cold-formed steel columns and 
beams, (iii) the lateral-torsional stability of doubly and singly symmetric web-tapered beams, (iv) GBT 
formulations and applications dealing with linear buckling and elastic post-buckling analyses, (v) the 
stability, failure and DSM design of cold-formed steel equal-leg angle columns, and (vi) the post-
buckling behavior, ultimate strength and DSM design of cold-formed steel columns and beams affected 
by local-distortional, local-distortional-global or distortional-global interaction − analytical, numerical and 
experimental results were addressed. 
 
I cannot close this paper without a last word to congratulate and pay tribute to SSRC for its invaluable role 
in fostering and disseminating research on Structural Stability topics/problems, and for putting together, 
year after year, such a unique conference42. Thank you very much and see you all again in St. Louis! 

                                                 
42 As far as the organization of the Annual Stability Conference is concerned, the funding, support and help of the American Institute of 

Steel Construction (AISC) is very gratefully acknowledged. Indeed, the “unique character” of the conference would be utterly impossible 
without the generosity and care of this prestigious institution (not even in dreams…). 
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