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Abstract 

A generalized material model for wide-flange sections was developed based on m-p-plots of 

detailed fiber element models over a full range of moment, axial load and maximum residual stress 

conditions. Several different cross-sections were investigated to determine the appropriate 

exponent in the material model for approximating the stiffness reduction under major axis bending 

or minor axis bending conditions. The nonlinear material model was used as normalized tangent 

modulus expressions in MASTAN2 and ultimate load analyses were conducted on four benchmark 

frames. Using residual stress scale factor conditions of 0.6 and 1.4, the relative percent difference 

in the lateral load at collapse was investigated as the initial vertical load conditions were increased. 

The influence of residual stress was studied on three test frames with loads applied only at the 

beam-to-column joints and on one test frame with more realistic design conditions. Discussion is 

provided on the ability of the material model to approximate the stiffness reduction of wide-flange 

sections and on the conditions that produce an increased residual stress effect on the ultimate load 

capacity of steel frames. 

 

 

1. Introduction 

The non-uniform cooling rate of W-Shapes after the rolling process creates initial longitudinal 

residual stresses in the cross-section. The ends of the flanges and center of the web cool much 

faster than the intersections of the flanges and web. This differential cooling produces residual 

stress profiles that vary such that maximum compression stresses occur at the flange tips and web 

center, and maximum tension stresses occur at the flange-web intersections. The magnitude and 

pattern of the residual stresses vary depending on the method of manufacture, country of origin, 

cross-section shape and material properties (Shayan et al. 2014). Dating back to the 1950’s 

extensive laboratory testing has been conducted to measure the effects of residual stress on various 

structural steel shapes (Huber et al. 1954; Beedle et al. 1962; Spoorenberg et al. 2011; Shi et al. 

2012; Ban et al. 2012 and 2013; Gardner et al. 2016). In order to model the residual stress as a 

random variable in advanced analyses of steel frames, Shayan et al. (2014) fit established residual 

stress patterns to experimental measurements found in the literature for residual stresses over the 

cross-section. Using the ECCS (1984) residual stress pattern in Fig. 1, their approach used a 

random scale factor X using a total of 63 residual stress measurements. Scale factors were derived 
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by error minimization of the theoretical residual stress pattern and the non-dimensionalized 

experimental measurements.  A normal distribution was fit to histograms of the derived scale 

factors for the ECCS residual stress pattern, and statistics revealed a mean scale factor X  = 1.047 

and coefficient of variation COV = 0.210. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: ECCS residual stress pattern 

 

The purpose of this study is to investigate the effect of residual stress magnitude on the ultimate 

load capacity of steel frames. As depicted in Fig. 2, Shayan et al. (2014) performed their study 

based on scale factors that varied by a maximum of two standard deviations of the mean. Since X  

and COV are very close to 1 and 0.20, respectively, scale factors of 0.6 and 1.4 were chosen for 

their computer models, and thus they were also used in the current study. A mean residual stress 

of 0.3y was used for all cross-sections; thus the maximum residual stress r is 0.18y for the scale 

factor 0.6, and 0.42y for the scale factor 1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Residual stress statistics of ECCS model by Shayan et al.   
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2. Axial Compression m-p- Surface Plots 

The stiffness reduction (that results from yielding of the cross-section due to bending and axial 

load was studied in detail using a fiber element model for W-Shapes with an ECCS residual stress 

pattern as depicted in Fig. 1 (Rosson 2017). The model used 2,046 fiber elements over the cross-

section (400 fiber elements in each flange and 1,246 fiber elements in the web). For a given 

normalized moment m (M /Mp), axial load p (P /Py), and residual stress ratio cr (r /y), the stiffness 

reduction was carefully assessed for a W8x31 with cr = 0.3. Throughout the paper p is understood 

to be positive such that the sign on Py matches that of the applied axial load P. Bending about the 

minor axis is understood to have a normalized moment m = M /Mpy, and bending about the major 

axis is understood to have a normalized moment m = M /Mpx. 

 

Using the m and p results with increments of 0.01, over 7,000 data points were used to produce 

the m-p-surface plot in Fig. 3 for minor axis bending and axial compression, and in Fig. 4 for 

major axis bending and axial compression. 

Figure 3: W8x31 minor axis bending and axial compression m-p- surface plot perimeter conditions for cr = 0.30 

Figure 4: W8x31 major axis bending and axial compression m-p- surface plot perimeter conditions for cr = 0.30 
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2.1 Yellow line (m and p conditions at the limit of  = 1) 

The equation to determine the extent of   = 1 is found in the literature (Attalla et al. 1994; Zubydan 

2011) and is depicted in Fig. 5 for the minor axis bending and axial compression condition. The 

dashed blue lines represent the residual stress distribution, and the shaded region represents the 

final compression stresses across each flange after the bending moment and axial load have been 

applied. The left side of the diagram depicts the accumulation of three stresses: the residual 

compression stress r, the bending moment compression stress m, and the axial compression 

stress p. The extent of   = 1 is determined when the conditions of m and p cause all three 

compression stresses to sum to y. For a given residual stress ratio cr and axial compression load 

condition p, the maximum moment at which   = 1 is maintained is given as  

 

𝑚1 =
𝑆𝑦

𝑍𝑦
(1 − 𝑐𝑟 − 𝑝)                                                             (1) 

 

where Sy is the minor axis elastic section modulus and Zy is the minor axis plastic section modulus. 

Since this equation is based only on the accumulation of stress at the end of each flange, the 

assumed shape of the residual pattern does not affect Eq. 1 provided the maximum residual 

compression stress r occurs at the end of the flanges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Minor axis bending stress state in the flanges at the extent of  = 1 

 

The maximum moment at which   = 1 is maintained for the major axis bending and axial 

compression condition is determined in a similar manner and is found to be 
 

𝑚1 =
𝑆𝑥

𝑍𝑥
(1 − 𝑐𝑟 − 𝑝)                                                             (2) 

 

where Sx is the major axis elastic section modulus and Zx is the major axis plastic section modulus. 

Since this equation is based only on the accumulation of stress at the outer edge of the flange, the 

assumed shape of the residual pattern does not affect Eq. 2 provided the maximum residual 

compression stress r occurs at this location. 
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2.2 Purple line (m = 0 and p > 1 cr) 

The equation to determine the stiffness reduction when m = 0 is found by considering the stress 

state depicted in Fig. 6. The compressive stress p' that satisfies the equilibrium condition for a 

given p and cr condition provides the necessary information to determine the extent of yielding 

over the length hy at the ends of the flanges and over the length 2hy at the center of the web. To 

determine the stiffness reduction for a given p and cr condition, the minor axis moment of inertia 

of the remaining cross-section that has not yielded is divided by the original minor axis moment 

of inertia Iy. The relationship for  is found to be  

  

𝜏𝑝 =

2(√
1 − 𝑝

𝑐𝑟
)

3

+ 𝜆𝜆𝑜
2√

1 − 𝑝
𝑐𝑟

2 + 𝜆𝜆𝑜
2

                                                  (3) 

 

where  = Aw /Af  and o = tw /bf . For W-Shapes in which o
2 is very small compared to 2, a very 

close approximation to Eq. 3 excludes the effect of the web and is given as  

 

𝜏𝑝 = (√
1 − 𝑝

𝑐𝑟
)

3

                                                                  (4) 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Minor axis bending stress state in the flanges for m = 0 

 

The stiffness reduction for the major axis condition is determined in a similar manner and is 

found to be 

 

𝜏𝑝 =

𝜆𝜆1
2 [1 − (1 − √

1 − 𝑝
𝑐𝑟

)

3

] + √
1 − 𝑝

𝑐𝑟
[2 + 6(1 + 𝜆1)

2]

𝜆𝜆1
2 + 2 + 6(1 + 𝜆1)2

                              (5) 
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where 1 = dw /tf . Eqs. 3 through 5 are based entirely on the assumed shape of the residual pattern; 

therefore, the shape of the purple lines in Figs. 2 and 3 are unique to the ECCS residual stress 

pattern given in Fig. 1 (Rosson 2016 and 2017). 

 

2.3 Red line (m and p conditions for  = 0) 

Two equations are needed to determine the m and p conditions when   = 0 for both minor and 

major axis bending. For the minor axis bending with axial compression condition, one equation is 

needed when the plastic neutral axis is inside the web thickness, and the other equation is needed 

when it is outside the web thickness. Closed-form equations are given in the book by Chen and 

Sohal (1995); however, the same results can be obtained with fewer computations using the 

constants , o and 1 (Rosson 2016). 

  

         𝑚0  = 1 −
𝑝2(2 + 𝜆)2

(2 + 𝜆𝜆𝑜)(2 + 𝜆1)
                                                   (6) 

 

𝑤ℎ𝑒𝑛 𝑝 ≥
2𝜆𝑜 + 𝜆

2 + 𝜆
                    𝑚0  =

4 − [𝑝(2 + 𝜆) − 𝜆]2

2(2 + 𝜆𝜆𝑜)
                                                    (7) 

 

For the major axis bending with axial compression condition, one equation is needed when the 

plastic neutral axis is outside the flange thickness, and the other equation is needed when it is 

inside the flange thickness. 

 

         𝑚0  = 1 −
𝑝2(2 + 𝜆)2

4𝜆𝑜 + 𝜆(4 + 𝜆)
                                                  (8) 

 

𝑤ℎ𝑒𝑛 𝑝 ≥
𝜆

2 + 𝜆
                  𝑚0 =

(2 + 𝜆1)
2 − [𝑝(2 + 𝜆) − 𝜆 + 𝜆1]

2

4 + 𝜆1(4 + 𝜆)
                               (9) 

 

Eqs. 6 through 9 do not depend upon the assumed shape of the residual pattern; therefore, the shape 

of the red lines in Figs. 2 and 3 are unaffected by the ECCS residual stress pattern (Rosson 2017). 

 

3. Material Model Based on m-p- Surface Plots 

The equations presented for the yellow, purple and red lines in Figs. 3 and 4 are used as a basis to 

develop an inelastic material model for wide-flange sections. The extent of the triangular-shaped 

plateau region at which  = 1 for a given p and cr condition is defined by m1 from Eqs. 1 and 2. 

The stiffness when m = 0 for a given p > 1 – cr condition is defined by 𝜏𝑝 from Eqs. 3 and 5, and 

the conditions at which  = 0 for a given p condition are defined by m0 from Eqs. 6 through 9. For 

the m and p conditions between  = 1 and  = 0, the shape of the 3D surface is dependent upon the 

given cr condition of the ECCS residual stress pattern in Fig. 1. Equations for  in this region 

require an iterative procedure, thus approximate nonlinear  expressions are used instead. Taking 

advantage of the closed-form equations for m1, 𝜏𝑝 and m0, the 3D surfaces for both the minor axis 

bending and major axis bending conditions are closely approximated using Eqs. 10 and 11. An 

appropriate value for the exponent n is selected based on the fiber element results for a given wide-

flange section and the axis about which bending occurs. 



7 

 

  

𝜏 = 1 − (
𝑚 − 𝑚1

𝑚0 − 𝑚1
)
𝑛

                                                        (10) 

 

𝑤ℎ𝑒𝑛 𝑝 ≥ 1 − 𝑐𝑟                   𝜏 = 𝜏𝑝 [1 − (
𝑚

𝑚0
)
𝑛

]                                                          (11) 

 

Various researchers have developed stiffness reduction models (Zubydan et al. 2011; Kucukler et 

al. 2014 and 2016); however, Eqs. 10 and 11 allow for direct input of the cr condition. For a given 

m, p and cr condition, the stiffness reduction can be easily evaluated from the m1, 𝜏𝑝 and m0 values 

from Eqs. 1, 3, 6 and 7 for minor axis bending, and Eqs. 2, 5, 8 and 9 for major axis bending. The 

ability of Eqs. 10 and 11 to approximate the actual m-p-surface conditions are illustrated in Figs. 

7 and 8 for a W8x31 with cr = 0.3 under major axis bending and minor axis bending conditions. 

Figure 7: W8x31 major axis bending and axial compression m-p- surface plots for cr = 0.30 and n = 8 

Figure 8: W8x31 minor axis bending and axial compression m-p- surface plots for cr = 0.30 and n = 2 
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The ability of Eqs. 10 and 11 to approximate the stiffness reduction is further illustrated in Fig. 9 

for major axis bending over the full range of axial compression conditions. Comparing the 

moment-curvature diagrams based on the fiber element data with the approximate equation results, 

there is very close agreement when n = 8 is used. Since m1 and 𝜏𝑝 are in Eqs. 10 and 11, the 

moment-curvature plots will always match the fiber element results in the linear region up to the 

initial yield conditions, and since m0 is used, the approximate results will always converge to the 

fiber element results as the curvature increases for a given axial load condition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: W8x31 major axis bending and axial compression moment-curvature plots for cr = 0.30 

 

Fig. 10 illustrates the ability of Eqs. 10 and 11 to approximate the stiffness reduction for minor 

axis bending over the full range of axial compression conditions. Comparing the moment-

curvature diagrams based on the fiber element data with the approximate equation results, the 

closest agreement occurs when n = 2 is used. As before since m1 and 𝜏𝑝 are in Eqs. 10 and 11, the 

moment-curvature plots will always match the initial yield conditions, and since m0 is used, the 

approximate results will always converge to the fiber element results as the curvature increases for 

a given axial load condition. The reason for the difference between the fiber elements results and 

approximate results in Fig. 10 is illustrated in Fig. 11 where it is evident that the shape of the m-𝜏 

curves vary significantly depending upon the magnitude of the axial load. Comparing the fiber 

element results in Figs. 7 and 8, it is noticed that this variation occurs only for the minor axis 

bending condition. Thus approximating the reduced stiffness will always have more error 

associated with the minor axis bending condition than for the major axis bending condition. 

Selecting different values of n will tend to reduce the error over a certain range of axial load 

conditions, but it will also simultaneously increase the error over the remaining range axial load 

conditions. For the W8x31 under minor axis bending conditions, selecting n = 2 minimized the 

error as best as possible over the full range of axial load conditions. 
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Figure 10: W8x31 minor axis bending and axial compression moment-curvature plots for cr = 0.30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: W8x31 minor axis bending and axial compression m- plots for cr = 0.30 
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4. Influence of Residual Stress on the Ultimate Load Conditions of Test Frames 

The El-Zanaty (1980) and Shayan (2014) test frames were used to study the influence of the 

magnitude of residual stress on the ultimate load conditions of steel frames. All of the cross-

sections are assumed to be fully-compact and their out-of-plane behavior is fully restrained.  

 

4.1 Stiffness matrix used for modeling the distributed plasticity  

Since the bending moments usually vary along the length of the beam-column, the stiffness 

reduction over the member length must also be accounted for when yielding occurs. An easy and 

effective way of accomplishing this is to assume the tangent modulus varies linearly over the 

length of the element. In practice, the error introduced by this assumption is reduced by using 

multiple elements along the length of the beam-column. The closed-form stiffness matrix 

developed by Ziemian and McGuire (2002) was used for this study because the  values from    

Eqs. 10 and 11 can be used directly as the a and b terms in Eq. 12. The a term is the  condition 

based on the m and p conditions at the start of the element, and the b term is based on the m and p 

conditions at the end of the element. 

 

[𝑘] =
𝐸𝐼

𝐿

[
 
 
 
 
 
 
 
 
12

𝐿2
(
𝑎 + 𝑏

2
)   −

6

𝐿
(
2𝑎 + 𝑏

3
)  − 

12

𝐿2
(
𝑎 + 𝑏

2
)   −

6

𝐿
(
𝑎 + 2𝑏

3
)

                            4 (
3𝑎 + 𝑏

4
)        

6

𝐿
(
2𝑎 + 𝑏

3
)          2 (

𝑎 + 𝑏

2
)

                                                         
12

𝐿2
(
𝑎 + 𝑏

2
)       

6

𝐿
(
𝑎 + 2𝑏

3
)

            𝑆𝑦𝑚.                                                                 4 (
𝑎 + 3𝑏

4
)]
 
 
 
 
 
 
 
 

                                (12) 

 

The stiffness matrix in Eq. 12 is already a part of the nonlinear material capabilities of MASTAN2 

(2015). The computer program also contains incremental analysis routines for modeling the 

nonlinear geometric behavior. Eqs. 10 and 11 were implemented in a nonlinear material subroutine 

of MASTAN2. For a given wide-flange section, the constants , o, 1 and cr were input, and for a 

given p condition, Eqs. 1 and 2 were used to evaluate m1 (the limit on the extent of  = 1), Eqs. 3 

and 5 were used to evaluate 𝜏𝑝, and Eqs. 6 through 9 were used to evaluate m0 (the boundary that 

defines  = 0). With m1, 𝜏𝑝 and m0 defined, the m condition at each end of the element was used to 

generate the a and b terms in Eq. 12. 

 

4.2 El-Zanaty portal frame 

The El-Zanaty (1980) portal frame as depicted in Fig. 12 was modeled using MASTAN2 with eight 

elements for all three members. Second-order inelastic analyses were conducted for conditions of 

cr = 0.18 and 0.42 to study the effect of residual stress on the ultimate load conditions of the frame 

under increasing magnitude of initial vertical load. The loading conditions were investigated by 

first applying the full vertical load P, then the lateral load H was applied in increments up to its 

maximum value when instability occurred in the columns. Both major axis bending and minor axis 

bending conditions were investigated using Eqs. 10 and 11 as the material model with the n values 

as given in Figs. 9 and 10. For this test frame condition, initial geometric imperfection was ignored. 

 

Fig. 13 illustrates the effect of residual stress on the ultimate load response under increasing 

magnitude of initial vertical load. The x-axis is normalized by dividing the sum of the vertical 

loads by the sum of the column yield loads ( pi = P /Py ). The y-axis is the relative percent 
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difference in the ultimate load H conditions and is calculated for a given pi condition by dividing 

the difference between the ultimate load factor for cr = 0.18 and 0.42 by the average of the two 

load factors. Fig. 13 reveals a significant residual stress effect for the El-Zanaty frame for both the 

major axis bending and minor axis bending conditions. As pi approaches the ultimate load 

condition due to the vertical loads only, the residual stress effect dramatically increases. For a 

given pi condition, the magnitude of residual stress has a larger effect on the ultimate load condition 

for minor axis bending than for major axis bending.  
 

 

 

 

 

 

 

 

 

 

Figure 12: El-Zanaty portal frame model for both major and minor axis bending conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: El-Zanaty frame relative percent difference in ultimate load H conditions for cr = 0.18 to 0.42 
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The El-Zanaty frame is particularly sensitive to second-order effects and nonlinear material 

behavior that leads ultimately to column instability. This frame explains the residual stress effect 

by considering the initial p in the columns and the different 𝜏𝑝 stiffness condition for cr = 0.18 

versus 0.42. When p > 1 – cr, there is a precipitous drop in stiffness from = 1 to 𝜏𝑝, and as 

illustrated by comparing the purple lines in Fig. 3 with Fig. 4, this effect is more pronounced for 

minor axis bending than for major axis bending. When cr = 0.42 and p > 0.58, the column stiffness 

prior to H being applied is considerably less than the column stiffness when cr = 0.18 and the same 

p condition. When p < 0.58, there is no initial yielding of the columns prior to H being applied for 

both cr conditions. Increments of lateral load eventually produce instability of the columns under 

a combination of axial compression and bending. At the lower values of p, stiffness reduction 

occurs primarily due to bending where the influence of cr has less of an effect.  

 

4.3 Shayan test frames 

Shayan et al. (2014) studied the effects of residual stress on the ultimate load capacity of four test 

frames by conducting nonlinear finite analyses. Three of their test frames were modeled using 

MASTAN2 and the material model in Eqs. 10 and 11. Figs. 14 and 15 illustrate the number of 

elements and the member properties of Shayan’s Frame 1 and Frame 2, respectively. Second-order 

inelastic analyses were conducted for conditions of cr = 0.18, 0.24, 0.30, 0.36 and 0.42 to study 

the effect of residual stress on the ultimate load conditions of each frame. Shayan investigated 

these two frames using only vertical loads (H = 0) and major axis bending conditions. The m-p- 

conditions of the 150UB14 were studied in detail using the same fiber element computer program 

as that used to study the W8x31. For both frames, initial geometric imperfection was modeled 

based on scaling the first eigenmode by the value of 0.00142L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Frame 1 model (E = 200 GPa, y = 320 MPa) 
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Figure 15: Frame 2 model (E = 200 GPa, y = 300 MPa) 

 

Fig. 16 illustrates the stiffness reduction of the 150UB14 with residual stress conditions of                

cr = 0.18, 0.30 and 0.42 under major axis bending and axial compression. Comparing the stiffness 

reduction of the three cr conditions, it is noticed that the greatest difference occurs under high axial 

load conditions when p > 1 – cr.  Eqs. 10 and 11 were used to approximate the fiber element data, 

and it was determined that n = 4 provided the best fit. Nonlinear MASTAN2 analysis results are 

given in Table 1 along with Shayan’s finite element results. The results indicate that using n = 4 

gives slightly higher ultimate load factors; however, the relative percent difference results between 

cr = 0.18 and 0.42 are actually lower when using Eqs. 10 and 11 with n = 4. The relative percent 

difference for Frame 1 is 3.6% vs. Shayan’s 9.3%, and for Frame 2 is 2.8% vs. Shayan’s 9.4%. 

 
Table 1: Ultimate load factor results for Frames 1 and 2 

 Major

Axis Shayan et al . n  = 4 Shayan et al . n  = 4

c r  = 0 1.454 1.450 1.154 1.178

c r  = 0.18 1.368 1.425 1.090 1.158

c r  = 0.24 1.339 1.415 1.065 1.152

c r  = 0.30 1.307 1.400 1.040 1.144

c r  = 0.36 1.277 1.390 1.016 1.136

c r  = 0.42 1.246 1.375 0.992 1.126

Frame 1 Frame 2



14 

 

 
 

Figure 16: 150UB14 major axis bending and axial compression m-p- conditions for cr = 0.18, 0.30 and 0.42 
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Both Frames 1 and 2 were studied further by first applying the vertical loads to a given magnitude, 

then the lateral loads were applied in increments up to their maximum value at which instability 

occurred. Using n = 4 and the results for cr = 0.18 and 0.42, Fig. 17 reveals a significant residual 

stress effect for both frames. As pi approaches the ultimate load condition due to the vertical loads 

only, the residual stress effect dramatically increases. For pi > 0.35, the magnitude of residual 

stress has a slightly larger effect on the ultimate load conditions for Frame 2 than for Frame 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Frames 1 and 2 (Major Axis) relative percent difference in ultimate load H conditions, cr = 0.18 to 0.42 

 

Fig. 18 illustrates the m-p-surface plots for the residual stress conditions of cr = 0.18 and 0.42 

under minor axis bending and axial compression. Viewing the surface plot from this perspective, 

there is a significantly reduced triangular  = 1 region when cr = 0.42 compared with cr = 0.18, and 

there is a considerable loss of stiffness for a given increment increase in m when p > 1 – cr. 

Comparatively, there is less difference between the two surfaces for the same increment increase 

in m when p ≤ 1 – cr.  

 

Using n = 2 and the results for cr = 0.18 and 0.42, Fig. 19 also reveals a significant residual stress 

effect for both frames under minor axis bending conditions. As pi approaches the ultimate load 

condition for each frame due to the vertical loads only, the residual stress effect dramatically 

increases. For pi > 0.04, the magnitude of residual stress has a slightly larger influence on the 

ultimate load H conditions for Frame 2 compared with Frame 1. 



16 

 

Figure 18: 150UB14 minor axis bending and axial compression m-p- conditions for cr = 0.18 and 0.42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Frames 1 and 2 (Minor Axis) relative percent difference in ultimate load H conditions, cr = 0.18 to 0.42 
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Shayan et al. (2014) investigated the structure in Fig. 20 to determine the effect of residual stress 

on a practical steel frame with a more realistic loading condition. Their study considered the 

vertical load to lateral load ratio of u / w = 12.5 under major axis bending conditions and with both 

loads applied simultaneously. For the residual stress conditions of cr = 0.18 and 0.42, they found 

a relative percent difference in the ultimate load factors to be 1.4%. The capacity of this frame for 

increased vertical loads allowed for an investigation of the residual stress effect up to 1.375 times 

the u value in their study. The current study considered higher u / w ratios by first applying a given 

magnitude of u, then w was applied using increments of load up to the collapse condition. Using 

Eqs. 10 and 11 in MASTAN2, the columns were modeled with n = 4 and the beams with n = 2. 

Major axis bending was considered for all members, and initial geometric imperfection was 

modeled based on scaling the first eigenmode by the value of 0.00142L. 

Using the results for cr = 0.18 and 0.42, Fig. 21 reveals a larger residual stress effect for higher      

u / w ratios as pi approaches the ultimate load condition due to the vertical loads only. At the vertical 

load condition of 1.375u, the relative percent difference in the lateral load at collapse is 

approximately 8%. Although this percentage is much higher than 1.4%, it is still considerably less 

than the relative percent difference results of the previous three test frames. The practical design 

example does however confirm that under high vertical load conditions the magnitude of the 

residual stresses has a more pronounced effect on the ultimate load capacity of the frame. Whereas 

the previous three test frames failed by instability of the bottom floor columns, the more practical 

frame failed due to a combination of both beams and columns reaching their ultimate strength 

capacities. 

Figure 20: Frame 3 model (E = 210 GPa, y = 275 MPa) 
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Figure 21: Frame 3 (Major Axis) relative percent difference in ultimate lateral load w conditions, cr = 0.18 to 0.42 

 

5. Conclusions 

This research focused on developing a deeper understanding of the effect the magnitude of residual 

stress has on the ultimate load conditions of steel frames. Based on the statistical study of scale 

factors for the ECCS residual stress pattern by Shayan et al. (2014), scale factors of 0.6 and 1.4 

were used; thus the range of maximum residual stress varied between 0.18y and 0.42y. To 

approximate the stiffness reduction over the full range of m, p and cr conditions, a nonlinear 

material model was developed based on detailed fiber element model results. The stiffness 

reduction conditions between m1 and 𝜏𝑝 to m0 are based on approximate nonlinear equations that 

can vary based on a given exponent n to account for the axis of bending and geometry of the cross-

section. Since m1 and 𝜏𝑝 are in the material model, the moment-curvature plots will always match 

the fiber element results in the linear region up to the initial yield conditions, and since m0 is also 

used, the approximate results will always converge to the fiber element results as the curvature 

increases under a given axial load condition. The approximate equations will always have more 

error associated with minor axis bending compared with major axis bending because there is a 

much larger variation in the minor axis bending m-𝜏 curves for a given p condition. 

 

Using the material model in MASTAN2, the El-Zanaty frame was used to explain the residual stress 

effect. It was found that as pi approaches the ultimate load condition due to the vertical loads only, 

the residual stress effect dramatically increased. The magnitude of residual stress has a larger effect 

on the ultimate load conditions for minor axis bending than for major axis bending. This is because 

there is a significant loss in stiffness from = 1 to 𝜏𝑝 when p > 1 – cr, and this effect is more 
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pronounced for minor axis bending than for major axis bending. When p ≤ 1 – cr, there is no initial 

yielding of the columns prior to H being applied, and eventually with increments of lateral load 

loss of stiffness occurs under a combination of axial compression and bending. At these lower 

values of p, stiffness reduction occurs primarily due to bending where the influence of cr has less 

of an effect. Two additional test frames with concentrated loads at the beam-to-column joints 

produced similarly significant residual stress effects as pi approaches the ultimate load condition 

due to the vertical loads only. A final test frame was used to determine the effect of residual stress 

on a practical steel frame with a more realistic loading condition. The residual stress effect was 

found to be less significant for this frame as the loss of stiffness occurred in both the beams and 

columns primarily due to bending. All four test frame results confirmed that under increasing 

vertical load conditions, the magnitude of the residual stresses has more of an effect on the ultimate 

load capacity of the frame. 
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