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Abstract 

The presence of holes in cold-formed steel structural members reduces the global buckling 

capacity. Current design provisions in the North American Specification for the design of cold-

formed steel members utilize a simple reduction in member stiffness caused by holes. The cross-

section moment of inertia is a weighted average of the gross and net section values, but this is 

restricted to cases where the hole locations are symmetric about the midpoint of the member. For 

other hole patterns, the Commentary provides a more precise calculation using an exhaustive 

summation over the member length considering each hole location. In practice, it is common to 

have uniformly spaced holes, but not necessarily centered across the member. The purpose of this 

investigation is to assess the impact of offset and other hole patterns, and determine if the simple 

weighted average method can be extended for broader application. 

 

1. Introduction 

Cold-formed steel structural members commonly have holes to provide passageways for utilities 

in residential and midrise construction. These holes are typically pre-punched in the members with 

uniform spacing as shown in Figure 1. These holes can reduce the structural capacity of the 

member for a variety of failure modes, including global buckling. 

 

The AISI Specification (2016) provides a convenient method of calculating the bending stiffness 

of a member with holes for use in predicting the global buckling capacity. However, this simple 

calculation is restrictive in its application, requiring the hole pattern to be symmetric about the 

midpoint of the member. This report presents the results of parametric studies performed to 

evaluate the characteristics of hole patterns and how they influence the average bending stiffness. 

A series of recommendations are made to improve the current AISI provisions and broaden their 

applicability. 
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Figure 1. Example stud hole patterns. Source: ClarkDietrich (2017) 

 

2. Background 

The AISI Specification (2016) provisions for reduced bending stiffness were based on the 

extensive work by Moen and Schafer (2009). A Rayleigh-Ritz energy solution was employed for 

buckling of a general column with n arbitrarily spaced holes as shown in Figure 2, whereby the 

external work of an applied axial force, P, was equated to the strain energy due to flexure. 

 
Figure 2. Column definition and notation 
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This development assumed a half-sinewave displacement function. This is accurate for a prismatic 

member, but variations in bending stiffness throughout the member alter this buckled shape. 

However, the localized reductions in stiffness are typically not large, so the assumed displacement 

function remains a very good approximation which was validated in Moen and Schafer (2009). 

 

The resulting critical elastic buckling load, Pcre, is shown as Eq. 1, where Ig and Inet are the 

moments of inertia for the gross and net sections respectively, Lg and Lnet are the total lengths of 

the gross and net section regions respectively, and Iavg is the average moment of inertia for 

buckling. This equation includes a trigonometric term, T, shown in Eq. 2. This expression for T 

reflects a correction to that in Moen and Schafer (2009) which had 2 in the denominator. 
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The expression for T can be represented graphically as shown in Figure 3, where T is the sum of 

the areas under the curve for the net section regions. Figure 3a shows an arbitrary set of hole 

locations and sizes where T is generally non-zero. 

 
Figure 3. Graphical representation of term T  

 

For a column with n identical holes at uniform spacing, s, where L = n s and the hole pattern is 

centered as shown in Figure 3b, the term T is equal to zero. This reduces Eq. 1 to Eq. 3 where 

Iwt.avg is the simple “weighted average” moment of inertia independent of hole distribution. 
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3. Investigation 

This study evaluates how different hole distributions influence Iavg as compared to Iwt.avg. The ratio 

Iavg / Iwt.avg is a measure of the theoretical error in buckling load if Iwt.avg is used instead of Iavg. 

For ratios less than 1, Iwt.avg overpredicts the buckling load and is therefore unconservative. 
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3.1 Single Hole 

For a member with only one hole, Lnet = Lh. If Lh is relatively small, sin(Lh/L)  Lh/L, 

therefore: 

 

 � � �+�/ cos 12��
� 3 (4) 

 

Using a representative value of Inet / Ig = 0.7, the ratio Iavg / Iwt.avg varies with the location and size 

of the hole as reflected in Figure 4. 

 

 
Figure 4.  

 

For cases where the hole is near the ends of the member, Iwt.avg is conservatively low. For cases 

where the hole is near the middle, Iwt.avg is unconservatively high. This is the expected result 

because the buckled shape has more curvature, and thus more bending, near the middle. If the hole 

is located at the middle of the member, T = –Lnet, resulting in the average moment of inertia shown 

in Eq. 5. This represents a lower bound for all possible hole locations and distributions. 
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The expression for Iwt.avg can be restated as shown in Eq. 6. If a small amount of error, e, was 

permitted, equating the ratio Iavg / Iwt.avg to (1 – e) provides a limit on Lnet shown in Eq. 7. 
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3.2 Symmetric Patterns 

The AISI provision for weighted average moment of inertia requires the hole pattern to be 

symmetric about the midpoint. This results in a symmetrical buckled shape, but it does not ensure 

that the average moment of inertia is accurate. Figure 5 illustrates two symmetrical hole patterns 

where T is not equal to zero. 
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Figure 5. Symmetrical hole patterns 

 

In Figure 5a, the area of the negative net section regions exceeds the area of the positive net section 

regions, so T is less than zero. In Figure 5b, the area of the positive net section regions exceeds the 

area of the negative net section regions, so T is greater than zero. The requirement that the hole 

pattern be symmetric about the midpoint is therefore not suitable. 

 

3.3 Uniform Spacing of Identical Holes 

It is common for cold-formed steel members to have repeating holes at a constant spacing. 

Figure 6a illustrates the magnitude of T for an example with 5 holes, where L = 5s. 

 

The expression for T in Eq. 2 contains sin(Lh/L) which is constant for all holes. Therefore, the 

sum requires only the cosine term, and for evenly spaced values the sum of the cosines is equal to 

zero. This can be demonstrated using the diagram in Figure 6b. 

 
Figure 6. Uniform centered hole pattern 

 

The locations of the holes are plotted as evenly spaced points on a circle. The x coordinates of 

these points are the cosines of the values, and the y coordinates are the sines of the values. By 

symmetry it is evident that the average of the points is the center of the circle. Therefore, the sum 

of the cosines must be zero, resulting in T = 0. 

 

If this uniform spacing is not centered, as in Figure 7a, the hole pattern is no longer symmetrical. 

However, the circle plot in Figure 7b demonstrates that the sum of the cosines is still zero. 

Therefore T = 0 regardless of the offset magnitude. This deduction can be generalized to n identical 

holes at uniform spacing s, where L = n s. 
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Figure 7. Uniform offset hole pattern 

 

3.4 Length Variations 

If the hole spacing is uniform but the length is not a multiple of the spacing, T is not equal to zero. 

For lengths less than ns as shown in Figure 8a, the holes are farther from the middle so T is positive. 

For lengths greater than ns as shown in Figure 8b, the holes are closer to the middle so T is 

negative. As a result, Iavg < Iwt.avg so using Iwt.avg would be unconservative. Figure 9 illustrates 

how this ratio varies for the case of n = 5 using a representative value of Lh/s = 0.3. 

 
Figure 8. Length not a multiple of spacing 

 

 
Figure 9. Impact of length variation for n = 5 and Lh/s = 0.3 

 

3.5 Hole Size and Spacing 

The previous sections explored the impact of hole patterns, offsets, and member length variations. 

To gain a more complete understanding for uniform spacing, these observations are combined with 

variations in hole size, spacing, and the ratio Inet / Ig, as illustrated in the charts of Figure 10. 
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 a) Inet/Ig=0.9, Lh/s=0.2 b) Inet/Ig=0.9, Lh/s=0.3 

 

   
 c) Inet/Ig=0.8, Lh/s=0.2 d) Inet/Ig=0.8, Lh/s=0.3 

 

   
 e) Inet/Ig=0.7, Lh/s=0.2 f) Inet/Ig=0.7, Lh/s=0.3 

 

   
 g) Inet/Ig=0.6, Lh/s=0.2 h) Inet/Ig=0.6, Lh/s=0.3 

Figure 10. Impact of various hole patterns 
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The Offset in these charts is defined as the distance from the end of the member to the first hole, 

and therefore n = (L – Offset) / s rounded up. As expected, smaller errors occur with higher values 

of Inet/Ig, lower values of Lh/s, and greater n. The controlling curve is for Offset = s, where the first 

hole is farther from the end of the member. 

 

Many of the cases where L/s is less than 2 are unconservative because they have only one hole. 

For these cases Section 3.1 for single holes should be referenced. For L/s greater than 2, the worst 

case is for two holes located at ⅓L and ⅔L. For this case: 
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This can be generalized further for n holes as shown in Eq. 10. Then for a permitted amount of 

error, e, the limit on Lh can be expressed as shown in Eq. 11. This is equivalent to Eq. 7 for the 

case of n = 1. Finally, an approximation of Eq. 11 for small values of e provides a simpler form as 

Eq. 12. 
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3.6 Varying Hole Sizes and Spacing 

The previous section applies to uniform spacing of identical holes. Although the general form in 

Eq. 1 is applicable to nonuniform spacings and hole sizes, it requires a single value for Inet. A more 

general form which permits different values of Inet can be expressed as follows: 

 

���� � �� 4 �<�� 4 �+�/,&= #�),&� 4 1
� cos 2�%&� sin ��),&� '

+

&,-
 

 

For relatively small values of Lh, sin(Lh/L)  Lh/L. This can be used to simplify Eq. 13 to the 

following: 
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Figure 11 illustrates the influence of the term �1 4 cos 2�% �⁄ �. Holes near the middle of the 

member have the most reduction to the average stiffness, whereas holes near the ends have little 

impact.  

(14)

(13)
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Figure 11. Influence of hole location 

 

 

3.7 Other Boundary Conditions 

The development of the average moment of inertia by Moen and Schafer (2009) was based on a 

simply-supported column with pinned end conditions, where the displacement function was a half-

sinewave. The more general form of the displacement function for other boundary conditions is: 

 

 > � ?- sin �@
�� + ?2 cos �@

�� + ?7A + ?B (15) 

 

where Le is the half-wavelength, or the effective length, of the column. The strain energy due to 

flexure is determined using the second derivative of the displacement: 
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Through trigonometric relationships, this can be restated as a shifted sine curve: 

 

 >CC � 4D �	
��	 sin ��@�@E�

��  (17) 

 

 where        D � F?-2 + ?22      AG � ��
� arctan �	

�K (18) 

 

Therefore, this is identical to the analysis in Section 3.5 if an additional offset is used for each hole 

location. Consequently, the limit on Lh defined in Eqs. 11 and 12 are still applicable for other 

boundary conditions if holes are uniformly spaced. 

 

3.8 Torsional Buckling 

All the preceding investigations address the impact of holes on the bending stiffness used for 

flexural buckling. Many cold-formed steel members are also subject to torsional buckling, which 

is a function of two other properties of the cross-section: St. Venant torsion constant, J, and 

warping torsion constant Cw. The torsion strain energy where pure torsion and warping torsion 

both exist is given by: 
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For the simply-supported case, the displacement function for angle of twist, , is a sine curve, just 

as for flexure. The first derivative is a cosine curve, and the integration for pure torsion results in 

a trigonometric term equal to –T. This is the reverse of the impact on the weighted average for 

flexural buckling. Holes near the ends of the member reduce Javg more than holes near the middle, 

and the plots of Figure 10 would be inverted for Javg/Jwt.avg. 

 

For uniformly spaced holes, the amount of error, e, can still be enforced using the approximate 

limit on Lh defined in Eq. 12. The general form for Javg is similar to Eq. 14, but with the cosine 

term negated: 
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For the torsional warping term, the strain energy uses the second derivative of the displacement 

function, which is identical to flexure. Therefore, the impact of holes on the weighted average of 

Cw follows the same behavior observed for the average moment of inertia, Iavg. However, the work 

by Moen and Schafer (2009) determined that the weighted average warping constant overestimates 

the warping stiffness due to the disruption of warping stresses at hole locations. As a result, the 

current AISI (2016) provisions conservatively use the net section Cw. 

 

4. Recommendations 

The current AISI provisions for using Iavg = Iwt.avg are restricted to cases where the hole pattern is 

symmetric about the midpoint of the member. Based on the findings above, these provisions should 

be changed to permit the weighted average moment of inertia for any member with uniformly 

spaced holes, within some limits. This is correct for cases where L = n s, but slightly off for other 

cases. To accommodate different lengths and hole pattern offsets, it is reasonable to permit a small 

amount of unconservative error. It is recommended that a 2% error be allowed, which can be 

enforced using the following relationship obtained from Eq. 12: 

 

 �) 6 R.R2�
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SSMA (2015) defines a variety of standard sections with common size web holes. The ratio Inet/Ig 

varies from 0.975 to 0.999 for bending about the major axis, and varies from 0.802 to 0.985 for 

bending about the minor axis. For an extreme case using Inet/Ig = 0.8 and L = 48 inches, the above 

equation limits Lh to 4.8 inches, which is greater than the current AISI limit of 4.5 inches. 

 

For non-uniformly spaced holes, it is recommended that the provisions permit a conservative value 

of Iavg as calculated using Eq. 5, but not less than Inet. The engineer still has the option to use the 

more accurate method provided in Appendix 2 of the Commentary, although a correction to the 

expression for T is required. To properly handle members with varying net sections, the more 

general form of Eq. 14 should be provided. 

 

(20)
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The general equation for the average torsion constant is slightly different from the equation for 

moment of inertia. But for uniformly spaced holes, the relationship between Lh and the potential 

error remains the same. Therefore, it is recommended that Eq. 21 be applied as a limit for 

Javg=Jwt.avg. The general form of Eq. 20 should also be provided in the Commentary. 

 

5. Conclusions 

The use of a simple weighted average moment of inertia can be used in broader applications to 

approximate the bending stiffness used for global buckling calculations. The current AISI 

provisions limit this approach to hole patterns symmetrical about the midpoint. This study 

demonstrated that symmetry is not a suitable criterion. Rather uniform spacing is the important 

factor, which happens to align better with common practice. 

 

This investigation provides recommendations for changes to the AISI Specification which simplify 

the calculations required by the engineer. A minor correction is required to the AISI Commentary 

for the general case, and a more general form is provided which should benefit the engineer for 

cases with different net sections. 
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Appendix 1 –Derivation for Uniform Spacing 

 

The general form for the average moment of inertia with uniform spacing of identical holes is: 
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The sum of cosines can be condensed into one expression using the derivation by Knapp (2009): 
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The sine terms can be approximated for small angles as follows: 
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This leads to the following simple form, which is much more accurate than the weighted average. 

For practical cases, overestimation of Iavg is less than 0.03%. For an extreme case using n = 2, 

Lh/s = 0.5 and Inet/Ig = 0.8, the largest overestimation of Iavg is less than 0.5%. 
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