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Abstract 

Signature curve is widely used in stability design of cold-formed steel members, since it provides 

with a simple way to determine critical loads for local, distortional and global buckling, which 

then can be used in predicting member capacity. Signature curve is created by calculating critical 

loads by systematically changing the length of the thin-walled member while assuming that the 

load is uniform along the length and the transverse displacement is one single sine half-wave. 

Mathematically, these conditions are closely related to the semi-analytical finite strip method, 

while, practically, correspond to a member with pinned end supports subjected to two concentrated 

loads at the ends, equal in magnitude but opposite in direction. This definition of signature curve 

cannot easily be applied to more general cases, however, a possible generalization is presented in 

the paper. Numerical examples are also shown, by employing the constrained finite element 

method. If the proposed procedure is applied for basic members, the calculated generalized 

signature curve exactly coincides with the classic signature curve. It is also shown, however, that 

meaningful generalized signature curve can be calculated for various loading and supports, or even 

for members with holes.  

 

1. Introduction 

The the most characterizing behavior of cold-formed steel members is buckling, as a direct 

consequence of their large slenderness. Buckling might occur in various forms, due to longitudinal 

compressive stresses (e.g., lateral-torsional buckling, local plate buckling, etc.), due to shear 

stresses (e.g., shear buckling of plates), due to transverse compressive stresses (e.g., web 

crippling), or due to the combination of various stress components. An important step toward the 

better understanding the buckling of thin-walled members was the introduction of signature curve, 

which is created by plotting the critical loads as a function of characteristic buckling length, while 

assuming uniform load along the length (i.e., pure compression or pure bending). The notion of 

signature curve has been proposed by (Hancock, 1978), who also developed the finite strip method 

software Thin-Wall (THIN-WALL, 1995) for the easy determination of the signature curve. Later, 

Schafer proposed the Direct Strength Method, (DSM, 2006) for the design of cold-formed steel 

members, which requires the knowledge of distortional and local critical loads, proposedly 

determined by the signature curve of the cross-section. To support the practical application of 

DSM, he published the CUFSM software (CUFSM, 2006), using the semi-analytical FSM, based 

on the work of Cheung (1976). 
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For many of the most widely used cold-formed steel profiles the signature curve has two minimum 

points, which makes it straightforward to determine the necessary local and distortional critical 

load values. In other cases the application of DSM is less evident. This initiated the constrained 

finite strip method, or cFSM, (Adany and Schafer 2006a,b), in which the various buckling types 

are formally and objectively separated. It is to mention that alternative methods for signature curve 

determination also exist, most notably the generalized beam theory (GBT), see e.g. Silvestre et al. 

(2011), Bebiano et al. (2015). Signature curve, typically, is interpreted for pure compression or 

pure bending, uniform along the member length. This means that longitudinal normal stresses 

govern the behavior, while other stress components are negligible. In recent years the importance 

and effect of shear stresses has been studied, see. e.g. Pham and Hancock (2013). FSM for 

members in (virtually) pure shear has also been proposed, which can produce plots similar to 

classic signature curves, but for members in pure (or dominant) shear.   

 

In all these works a crucial feature of signature curve determination is that both the analyzed 

member and the loading (i.e., stresses) are uniform along the member length. That is why semi-

analytical FSM can readily and very efficiently be used. In this paper a possible generalization of 

signature curve is introduced. By utilizing the abilities of the recently proposed constrained finite 

element method (cFEM), see e.g. Ádány (2017), Ádány et al. (2017), curves similar to signature 

curves can be defined for virtually any thin-walled member. In this paper, first the semi-analytical 

FSM, the cFSM and cFEM are briefly summarized, then the notion of generalized signature curve 

is introduced, finally a few examples are presented.  

 

 

2. FSM, cFSM, cFEM 

 

2.1 Semi-analytical finite strip method 

The finite strip method (FSM) can be regarded as a special version of finite element method (FEM) 

in which special finite elements are used. The most essential feature of FSM is that there are two 

pre-defined directions, and the base functions (or: interpolation functions) are different in the two 

directions. In classical semi-analytical FSM used for thin-walled members, as in Cheung (1976),  

the structural member to be analyzed is discretized only in the transverse direction, while in the 

longitudinal direction there is no discretization, i.e., in this direction there is only one element (i.e., 

strip) along the member. In a strip each displacement function is expressed as a product of 

transverse and longitudinal base functions. In the transverse directions polynomials are used, while 

in the longitudinal direction trigonometric functions are used, that can be written as follows (with 

using the notations of Fig. 1). 
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Figure 1: Finite Strip Method discretization and basic terminology 

 

If FSM is applied to solve linear buckling problems to get critical loads and buckling shapes, first 

the elastic and geometric stiffness matrices must be constructed for a strip, then from the local 

stiffness matrices the member’s (global) stiffness matrices (elastic and geometric, Ke and Kg) must 

be compiled, resulting in the eigen-buckling problem, as follows. 

 

 𝐊𝐞𝚽 − 𝚲𝐊𝐠𝚽 = 𝟎  (4) 

with 

 𝚲 = diag < λ1 λ2 λ3 … λ𝑛𝐷𝑂𝐹 >         and    𝚽 = [𝛟𝟏 𝛟𝟐 𝛟𝟑 … 𝛟𝒏𝑫𝑶𝑭] (5) 

 

where λ𝑖 is the critical load multiplier and 𝛟𝒊 is the associated buckling shape, and nDOF denotes 

the number of degrees of freedom. 

 

2.2 Constrained finite strip method 

The constrained FSM (cFSM) is a special version of FSM that uses mechanical criteria to enforce 

deformations to be consistent with the characteristics of a deformation class, i.e., global (G), 

distortional (D), local (L), shear (S), or transverse extension (T). The method is originally 

presented e.g. in Ádány and Schafer (2006a,b), later extended by Ádány and Schafer (2014a,b). 

Once the mechanical criteria are transformed into constraint matrices, any FSM displacement field 

d (including an eigen-buckling mode 𝛟) may be constrained to any modal dM deformation space 

via: 

 

 𝐝 = 𝐑𝐌𝐝𝐌  (6) 

 

where RM is a constraint matrix, and M might be G, D, L, S and/or T. When modal decomposition 

is applied to eigen-buckling solution, Eq (6) must be substituted into Eq (4), which leads to another 

generalized eigen-value problem, given in the reduced M deformation space, as follows: 

 

 𝐑𝐌
T𝐊𝐞𝐑𝐌𝚽𝐌 − 𝚲𝐑𝐌

T𝐊𝐠𝐑𝐌𝚽𝐌 = 𝟎  (7) 

 

The constraint matrices are based on mechanical criteria which characterize the deformation 

modes. The criteria are expressed mostly by setting certain displacement and displacement 
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derivatives to zero. For example, G, D and L modes are characterized by zero transverse extension 

and zero in-plane shear, but L modes furthermore are characterized by zero longitudinal extension. 

The application of the constraint matrix enforces to fulfil certain relationship between various 

nodal degrees of freedom. Another view of constraint matrix is that the column vectors of the 

matrix are the modal base vectors of the displacement field that is represented by the constrain 

matrix. 

 

It is to emphasize that constraining, or modal decomposition, manipulates the cross-section 

deformations, but essentially independent of the longitudinal displacements, even though the 

constraining procedure requires certain criteria to fulfil from the longitudinal shape functions, too. 

That is why it was straightforward to change the trigonometric shape functions of FSM into 

polynomial shape functions, which transforms a ‘finite strip’ into a ‘shell finite element’.   

 

2.3 Constrained finite element method 

Constrained finite element method (cFEM), see e.g. Ádány (2017a), Ádány et al. (2017), is 

essentially a shell finite element calculation, similar to cFSM, but the trigonometric longitudinal 

shape functions are replaced by multiple polynomial shape functions, i.e., a strip is replaced by 

multiple rectangular shell elements along the length of the member, see Fig. 2. In order to maintain 

constraining ability, the longitudinal shape functions are carefully selected. The shell element and 

its nodal degrees of freedom are illustrated in Fig. 3, discussed in detail in Ádány (2016a) and Visy 

and Ádány (2017). 

 

 

 

 
Figure 2: cFEM discretization and basic terminology 

 

 

 

 
Figure 3: Nodal degrees of freedom for the shell element of cFEM 
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The shell element can be used as any other shell elements, but can also be constrained, i.e., the 

solution of the problem can be constrained into a preselected deformation space. When used to 

buckling problems, therefore, buckling solution (i.e., buckled shapes and associated critical load 

values) can be calculated to arbitrary thin-walled members which can reasonably be modelled by 

rectangular shell finite elements. Many examples are presented in earlier papers, e.g., cFEM being 

applied to shear buckling, (Ádány, 2016b), to purlins (Hoang and Ádány, 2017), to members with 

holes (Ádány, 2017b), or to members with varying cross-sections (Ádány, 2017c).  

 

All the previously presented cFEM examples are calculated by following the typical FEM 

approach, namely: the applied longitudinal shape functions are characterized by one single non-

zero nodal displacement, while all the other nodal displacements are zero. However, it was also 

mentioned in Ádány et al (2017), that Fourier-like longitudinal distributions can also be assumed 

for the longitudinal displacements, as illustrated in Fig. 4. As it is shown in the next Section, this 

Fourier-like series of longitudinal shape functions can be used to calculate the generalized 

signature curves.  

 

 
 (a) FEM-like longitudinal shape functions 

 

     
 (b) Fourier-like longitudinal shape functions 

 

Figure 4: Longitudinal shape functions in cFEM 
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3. Signature curve and its generalization 

Let us consider a prismatic thin-walled member, which is locally and globally hinged at both ends 

and subjected to uniform loading. If linear elastic buckling analysis is performed, the longitudinal 

displacements of the buckled shapes are sinusoidal, consisting of one or multiple half-waves. The 

transverse displacements (i.e., the cross-section displacements) of the buckled shapes are diverse, 

but it is usual to define deformation classes and interpret the displacements as a combination of 

displacements from the characteristic classes. The practically most important classes are: global 

(G), distortional (D), and local (L), but other classes exist, too, namely: shear (S) and transverse 

extension (T).  

 

In order to get the signature curve, the above buckling problem (i.e., generalized eigen-value 

problem) must be solved repeatedly by systematically changing the member length, while ensuring 

that the longitudinal displacements consist of one single half-wave. If the lowest eigen-value (i.e., 

critical load) is taken for each length, and the critical value is plotted in the function of the 

(logarithm of) length, this results in the signature curve, see Fig. 5. It is to observe that the shape 

functions of the semi-analytical FSM identical to those behind the signature curve, therefore FSM 

is an ideal (and, efficient) tool in determining signature curves. 

 

Almost always the signature curve has minimum points at smaller lengths. These minimum points 

identify those half-wave lengths at which the given thin-walled member is most susceptible to 

buckle. In many practical cases there are two minimum points, see Fig. 5, the one with the smaller 

length is typically associated with local plate buckling while the other one with distortional 

buckling. These lengths and the associated critical load values are strongly dependent on the cross-

section and also on the stress distribution over the cross-section, but the critical values are not too 

sensitive to the length in the close vicinity of the minimum points. The experience is that these 

lengths are usually much smaller than practical member lengths. In reality, therefore, L and D 

buckling occurs with multiple longitudinal waves, but still the minimum points of the signature 

curve can approximate the distortional and local critical load. If the thin-walled member is long 

enough, the D and L critical loads are not much affected by the end supports, neither, thus the 

minimum points of the signature curve can be regarded as reasonably approximations of the D and 

L critical loads independently of the actual characteristics of the member.     

 

  

 
 

Figure 5: Sample signature curve for a lipped channel 
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Based on the characteristics and practical application of the signature curve, it can be concluded 

that the notion of signature curve belongs rather to the cross-section that to the member. That is 

why it can be calculated very efficiently by semi-analytical FSM, and that is why it can readily be 

utilized in design approaches as DSM. But on the other hand, that is why the critical load predicted 

by the signature curve is sometimes questionable, for example when the loading and/or boundary 

conditions of the member do not allow the formation of the buckled shape as assumed by the 

signature curve. Moreover, it is theoretically and practically problematic to generate signature 

curve for members with non-uniform cross-section, e.g., if significant holes are present. 

  

However, the signature curve can be interpreted and constructed in a slightly different way, too, 

even if keeping the limits of semi-analytical FSM. The alternative way is to fix the length of the 

(globally and locally hinged) prismatic member, but systematically changing the number of half-

waves from 1 to an arbitrarily large number. (According to FSM notations: changing the value of 

m in Eqs. (1)-(3).  This means that the half-wave length (which is essentially the buckling length) 

takes various values, the largest one being equal to the actual member length, the next one being 

equal to one-half of the member length, the third one to one-third of the member length, and so on 

till an arbitrarily small buckling length. In case of FSM this approach leads to exactly the same 

signature curve, with the only (rather theoretical) difference that for a given member only discrete 

points of the curve can be calculated.   

 

If signature curve is interpreted in accordance with this latter approach, the notion of signature 

curve belongs rather to the member than to the cross-section. This approach can easily be 

generalized, as follows. First, let us assume that we have a thin-walled member, arbitrarily loaded, 

with or without holes, but locally and globally hinged at its ends. In this case the same longitudinal 

shape functions can be used as in semi-analytical FSM, and the buckling problem can be solved 

by forcing the member to buckle in accordance with the sine-cosine longitudinal displacement 

distributions. If the number of half-waves is systematically changing, and the problem is solved 

repeatedly, the lowest critical values can be plotted in the function of the half-wave lengths, leading 

to a curve essentially similar to the classic signature curve. 

 

If arbitrary boundary conditions are to be handled, the trigonometric longitudinal shape functions 

must be extended by adding extra shape functions. This requires some further considerations, and 

these cases are not discussed here.  

 

To construct the generalized signature curves, therefore, we need a numerical method that can 

solve arbitrary thin-walled member problems, but we need to be able to ensure the required specific 

trigonometric shape functions. The most obvious general numerical method to use is shell finite 

element method, and the specific longitudinal shape functions are implemented into the recently 

proposed constrained finite element method. 
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4. Signature curves by cFEM for a uniform, compressed column 

First a simply supported uniformly compressed column problem is solved. The cross-section is C-

shaped, with 100 mm web depth, 60 mm flange width, 8 mm lip length and 2 mm thickness. (Note, 

dimensions are mid-line dimensions.) The material is isotropic steel, with 210 GPa Young’s 

modulus and 0.3 Poisson’s ratio. 

 

Buckling loads are plotted as a function of buckling half-wave length in Fig. 6, including the classic 

‘all-mode’ signature curve calculated without any constraint for the cross-section deformations, as 

well as various single-mode curves, i.e., when the cross-section deformations are constrained to 

have flexural (minor-axis) buckling (F), flexural-torsional buckling (FT), distortional buckling 

with symmetric cross-section deformations (D-sym) and point-symmetric cross-section 

deformations (D-point), and local-plate buckling (L). Though the critical load values are 

determined in various options, (see below,) the differences between the various options are small, 

hence the curves look very similar.   

 

 
Figure 6: Signature curves for uniform column problem 

 

The calculated critical forces are shown in Table 1 for selected half-wave lengths, including short 

and long ones, too. The calculations are done in various ways. ‘CUFSM’ values are calculated by 

the CUFSM program, using the semi-analytical finite strip method. The other 4 values are 

calculated by cFEM as follows.  

 

‘cFEM 1’ is the closest imitation of the FSM. The length of the member is varying while 

considering one single half-wave. The load is uniform compression, practically no supports are 

applied (in order not to disturb the uniform stress distribution along the member). Only those 

second-order strain terms are considered that are associated with the longitudinal normal strain 

(i.e., the first row of the Green-Lagrange strain vector for 2D strains), identically to how second-

order strains are handled in CUFSM. As the results show, ‘CUFSM’ and ‘cFEM 1’ values are 

practically identical, the small differences are caused mostly by the differences in cross-section 

discretization. 
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‘cFEM 2’ is similar to ‘cFEM 1’, but all the second-order strain terms are considered from the 

Green-Lagrange strain vector. Moreover, hinged end supports are defined (by restricting out-of-

plane translations of all the FE nodes at both end sections of the member), which results in 

disturbed stress distribution near to member ends. This disturbed stress distribution has negligible 

effect for longer members, but causes 2-3% difference for short members. 

. 

‘cFEM 3’ follows the concept of generalized signature curve. Each value is calculated on the same 

FE model: 6000-mm-long column with hinged supports (realized by restricting out-of-plane 

translations of all the FE nodes at both end sections of the member). All the second-order strain 

terms are considered, as usual in a general purpose FE calculation. The half-wave length is 

systematically changed in order to get the values of the generalized signature curve. In this case a 

moderately dense cross-section discretization is used with approx. 10 mm element width. The 

longitudinal discretization is relatively coarse, with approx. 27 mm element length. This means 

that the results are numerically imprecise if the half-wave length is smaller than approx. 50-80 mm, 

since in these cases one half-wave should be approximated by less than 2-3 cubic polynomials. 

 

‘cFEM 4’ is similar to ‘cFEM 3’, but with a much finer discretization, the width and length of the 

finite elements being around 5 mm and 9 mm, respectively. This discretization is dense enough to 

yield to numerically precise results even for half-wave-lengths down to 20-30 mm. As the values 

of Table 1 prove, ‘cFEM 3’ and ‘cFEM 4’ results are extremely close to the classic ‘CUFSM’ 

signature curve values. 

 
Table 1: Compressed column: critical forces for selected half-wave lengths 

 length all F FT D-sym D-point L 

 mm kN kN kN kN kN kN 

CUFSM 30 483.58 91592 74507 5484.9 6309.4 484.08 

cFEM 1 30 483.43 91601 74518 5485.2 6309.9 484.02 

cFEM 2 30 475.94 91115 74043 5500.1 6344.7 476.50 

cFEM 3 30 510.34 93032 76888 6037.0 6941.9 510.87 

cFEM 4 30 483.65 91614 74556 5493.1 6319.2 484.22 

CUFSM 80 186.75 46397 25394 840.74 976.70 190.13 

cFEM 1 80 186.58 46398 25395 840.76 976.75 190.10 

cFEM 2 80 180.60 45607 25059 842.53 982.91 183.83 

cFEM 3 80 186.61 46452 25439 842.76 979.12 190.08 

cFEM 4 80 186.50 46386 25390 840.75 976.78 190.01 

CUFSM 300 133.21 5458.3 2313.4 141.55 222.18 793.15 

cFEM 1 300 132.05 5458.2 2313.4 141.54 222.15 793.00 

cFEM 2 300 132.31 5406.4 2300.3 141.83 222.75 797.70 

cFEM 3 300 132.10 5455.3 2312.6 141.57 222.21 793.43 

cFEM 4 300 132.07 5455.8 2312.7 141.57 222.20 793.32 

CUFSM 1000 189.73 514.71 221.49 546.65 1294.1 7880.8 

cFEM 1 1000 189.41 514.71 221.49 546.62 1294.0 7879.9 

cFEM 2 1000 189.13 513.03 221.09 547.11 1295.2 7922.4 

cFEM 3 1000 189.53 514.42 221.43 546.74 1294.3 7888.6 

cFEM 4 1000 189.25 514.47 221.45 546.72 1294.3 7886.7 

CUFSM 6000 13.086 14.363 14.879 18122 44836 280605 

cFEM 1 6000 13.076 14.363 14.879 18122 44835 280613 

cFEM 2 6000 13.069 14.355 14.873 18125 44843 280909 

cFEM 3 6000 13.069 14.355 14.873 18125 44843 280909 

cFEM 4 6000 13.059 14.356 14.874 18125 44842 280835 
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5. Signature curves by cFEM for non-uniform problems  

Let us consider a member similar to the one discussed in the previous Section, but now it is a beam 

loaded by uniformly distributed transverse load. The load is acting upward, either at the junction 

of the upper flange and the web (‘Load1’), or on the flange 10 mm apart from the web-to-flange 

junction (‘Load2’). The upper (i.e., tensioned) flange might be laterally free (‘Free’), or elastically 

supported (‘Spring’) by a weak distributed spring (10 N/mm/mm). As a reference, signature curve 

for a beam in uniform bending is also calculated by CUFSM. 

 

Fig. 7 shows ‘all-mode’ signature curves for three cases: classic signature curve for beam 

(‘CUFSM’), generalized signature curve for ‘Load1-Free’ option, and generalized signature curve 

for ‘Load2-Spring’ option. It is important to observe that all the three curves are similar, all having 

two minimum points at smaller lengths. The buckling loads, however, are dependent on the loading 

and support. As expected, the critical load values are significantly higher (compared to classic 

CUFSM case) if the real stress distribution is considered. The applied (though weak) lateral elastic 

spring support has significant effect on the signature curve, too, especially for medium half-wave 

lengths. More information can be gained by looking at the numerical values, as discussed below. 

 

 
Figure 7: Generalized signature curves for selected beam problems 

 

Table 2 shows the calculated critical moments for selected half-wave lengths, including the lengths 

close to the local minimum (80 mm) and distortional minimum (300 mm). In the table the ‘all-

mode’ critical moment values, as well as pure G, pure D, and pure L values are given. According 

to the numerical values of Table 2, the distortional critical loads are roughly tripled in case of UDL 

compared to uniform bending (see ‘CUFSM’ vs. ‘cFEM-Load1-Free’ values), but also the global 

and local critical loads are significantly increased. The lateral support for the upper flange (together 

with the increased load eccentricity) further increases the critical load values in case of global and, 

especially, distortional buckling (see ‘cFEM-Load1-Free’ vs. ‘cFEM-Load2-Spring’ values), but 

slightly decreases the critical loads in case of local buckling. The actual numerical values in the 

last, ‘cFEM-Load2-Spring’option are the resultants of various factors, most importantly: the 

complicated stress distribution (from global bending and torsion, and from the direct transverse 

bending of the upper flange), the load introduction point (i.e., upper flange, which has an 
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stabilizing effect on the global and distortional behavior), and the elastic support for the upper 

flange (which influences the stress distribution, plus seriously affects the possible deformations).   
 

Table 2: Beam problems: critical moments for selected half-wave lengths 

 length all G D L 

 mm kNm kNm kNm kNm 

CUFSM 80 14.62 2003.6 34.43 18.86 

cFEM-Load1-Free 80 23.92 3415 96.12 27.43 

cFEM-Load2-Spring 80 20.12 4989 1072.41 20.64 

CUFSM 300 6.308 239.70 6.736 108.81 

cFEM-Load1-Free 300 16.69 364.71 18.82 139.38 

cFEM-Load2-Spring 300 47.94 512.4 246.97 94.04 

CUFSM 1000 13.62 23.13 31.95 1107.3 

cFEM-Load1-Free 1000 25.99 35.11 96.64 592.2 

cFEM-Load2-Spring 1000 35.96 49.47  inf 450.5 

CUFSM 3000 2.788 3.042 271.97 9886.3 

cFEM-Load1-Free 3000 4.382 4.849 3494.7 722.0 

cFEM-Load2-Spring 3000 6.441 7.394  inf 573.3 

 

 

It is to underline that, according to the concept of the proposed generalized signature curve, in all 

these cases the buckling shape is highly regular, consisting of equal amplitude sinusoidal 

displacements along the length, even if the loading is non-uniform. (This is illustrated in Fig. 8, 

where some buckled shapes are shown.) Thus, the critical loads of the generalized signature curves 

are higher than the ones that would be predicted by an ordinary (shell FE) linear buckling analysis. 

 

 
’Load2-Spring’, 10 half-waves (half.wave length is 600 mm), local plate buckling 

 

 
’Load1-Free’, 10 half-waves (half.wave length is 600 mm), distortional buckling 

 
Figure 8: Buckled shape samples of generalized signature curves for beam problems 
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6. Signature curves by cFEM for members with holes 

In this Section the column problem is studied that presented in Section 4, however, holes are 

considered in the member. Results are shown here for three hole patterns, see Table 3, compared 

to the case without holes (identified as ‘NoHole’, which case is identical to the option ‘cFEM 3’ 

of Section 4). If holes are present, they are rectangular and located in the web.  

 

In the first case (‘Hole1’) one centrally placed hole row is considered, the hole dimensions are 50 

and 30 mm in the longitudinal and transverse direction, respectively, while the period of the holes 

is 100 mm (longitudinally), meaning that the distance between two neighboring holes is 50 mm. 

The second hole pattern is consisted of a few but larger size holes, namely: hole dimensions are 

100 and 50 mm in the longitudinal and transverse direction, respectively, while the period of the 

holes is 1000 mm (longitudinally), meaning that there are only 6 holes in the 6-m-long member. 

In the third case (‘Hole3’) there are many smaller holes, arranged in 4 rows. The hole dimensions 

are 20 and 10 mm in the longitudinal and transverse direction, respectively, while the period of the 

holes is 40 mm and 20 mm, in the longitudinal and transverse direction, respectively.  

 

The calculated critical forces are summarized in Table 3 for selected wave-lengths. Some buckled 

shapes are illustrated in Fig. 9, however, for the sake of better visibility the deformations are shown 

on a shorter (1200-mm-long) member. 

 

As the numerical values in Table 3 shows, the introduction of web openings can decrease or 

increase the critical load, depending on the half-wave length (or, depending on which type of 

buckling is dominant for a given half-wave length) and on the hole pattern. The effect of holes is 

a resultant of two major factors. One is that the holes (significantly) disturbs the uniform stress 

distribution, obviously determined by the loading and the hole pattern. The other major factor is 

that the holes reduces the stiffness. This reduction is greatly dependent on the hole pattern and on 

the given stiffness (e.g., overall minor-axis flexural stiffness, or overall torsional stiffness, or plate 

bending stiffness, etc.).  

 

 
Table 3: Compressed column with holes: critical forces for selected half-wave lengths 

 length all F FT D-sym D-point L 

 mm kN kN kN kN kN kN 

cFEM-NoHole 80 186.61 46452 25439 842.76 979.12 190.08 

cFEM-Hole1 80 231.92 45047 24181 890.51 1014.6 240.83 

cFEM-Hole2 80 199.77 46083 24897 861.32 994.59 204.26 

cFEM-Hole3 80 181.78 44507 23463 886.99 1024.7 185.45 

cFEM-NoHole 300 132.10 5455.3 2312.6 141.57 222.21 793.43 

cFEM-Hole1 300 129.61 5199.2 2237.4 144.67 230.26 972.89 

cFEM-Hole2 300 132.71 5371.3 2276.9 143.05 225.40 849.26 

cFEM-Hole3 300 124.93 5112.9 2156.9 142.29 227.90 801.86 

cFEM-NoHole 1000 189.53 514.42 221.43 546.74 1294.3 7888.6 

cFEM-Hole1 1000 183.88 489.21 214.08 530.15 1389.5 7815.3 

cFEM-Hole2 1000 187.47 497.73 218.91 534.47 1340.9 9640.2 

cFEM-Hole3 1000 177.05 480.78 206.43 513.80 1356.5 7559.5 

cFEM-NoHole 6000 13.069 14.355 14.873 18125 44843 280909 

cFEM-Hole1 6000 12.384 13.649 14.076 33826  inf 22433 

cFEM-Hole2 6000 12.850 14.120 14.333 21553  inf 80246 

cFEM-Hole3 6000 12.133 13.412 13.837 76260  inf 37125 
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’Hole2’, 15 half-waves (half.wave length is 80 mm), local plate buckling 

 

 
’Hole3’, 4 half-waves (half.wave length is 300 mm), symmetric distortional buckling 

 

 
’Hole1’, 1 half-wave (half.wave length is 1200 mm), flexural-torsional buckling 

 
Figure 9: Buckled shape samples of generalized signature curves for columns with holes 

 

7. Concluding remarks 

In this paper the generalization of the concept of signature curve is presented. To calculate the 

generalized signature curves a numerical method is necessary that can solve thin-walled member 

problems, and is able to ensure specific trigonometric displacement distributions in the 

longitudinal direction. The recently proposed constrained finite element method has all these 

necessary capabilities, hence it was used to solve proof-of-concept problems. Based on the 

presented examples it can be concluded that for simple cases the generalized signature curves are 

practically identical to the classic signature curves. It is also proved, however, that generalized 

signature curves can be calculated for various non-uniform members. 

 

Though classic signature curves are widely used in the design of cold-formed steel members, it is 

an open question whether the generalized signature curves can directly be used in design. 

Nevertheless, it is believed that they help in understanding the complex stability behavior of thin-

walled members. While modal decomposition is a useful tool in describing and analyzing the 

cross-section deformations, the concept of generalized signature curve can contribute to 

understand the buckling behavior longitudinally, especially for non-uniform problems.  
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