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Abstract
The Smith Avenue Bridge (High Bridge), spanning the Mississippi River in St. Paul, Minnesota,
consists of 3 continuous tied steel arch spans measuring 282’-3”, 520’ and 241’-9”. Originally
constructed in 1987, the bridge is currently undergoing comprehensive rehabilitation including
the replacement of its original concrete deck. In support of the rehabilitation design, the
Minnesota Department of Transportation (MnDOT) tasked AECOM with load rating of the arch
spans. Early in the design, AECOM recognized the conservatism inherent in the simplified
Effective Length Method utilized for arch rib axial capacity calculations within the AASHTO
LRFD Bridge Design Specifications. As permitted by AASHTO LRFD, AECOM employed
eigenvalue analysis as a more refined means to determine the critical buckling load for the arch
rib. Additionally, MnDOT selected a peer review team (Michael Baker International) to perform
an independent analysis for verification of the eigenvalue approach. The peer reviewer utilized
the Direct Analysis Method found in Chapter C of the AISC Steel Construction Manual, another
refined analysis method, to load rate the arch rib. The increase in axial capacity gained by the
eigenvalue analysis conducted by AECOM allowed the arch rib to rate for current AASHTO
design loadings as well as MnDOT permit vehicles and was shown to be conservative by the
results of the Direct Analysis Method conducted by Michael Baker. A comparison of the results
determined using the AASHTO Effective Length Method, AASHTO method employing
eigenvalue analyses and the Direct Analysis Method is presented in this paper.
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1. Introduction
1.1 Background
The High  Bridge  consists  of  a  3-span  open  spandrel  steel  tied  deck  arch  main  spans  with  steel
multi-girder approach spans. The bridge consists of eleven spans totaling 2755 ft. in length. The
bridge was opened in 1987, replacing a previous bridge at the same location. The main river
spans are supported by a 3-span tied arch, consisting of a full arch (Span 4) spanning 520 ft. with
2 half arches on each side of Span 4, measuring 282 ft. 3 in. and 241 ft. 9 in. for Spans 3 and 5,
respectively. The plan and elevation of the High Bridge are shown in Fig. 1.

Figure 1: High Bridge: (a) Plan; (b) Elevation (Panel Numbering Shown)

The arch spans consist of two arch ribs spaced transversely at 36’ – 0”. The arches will be
referred as east arch and west arch in subsequent texts and figures. The arch ribs are built up
steel box sections, with two varied cross sections, a larger box section for the main portion of
Spans 3 and 5, and a smaller box section for the remainder of Spans 3 and 5 and all of Span 4.
The webs of the box sections are 8 ft deep by 1 in. thick plates and the flanges are 3 ft wide by 2
in.  thick for the larger box section and 3 ft  wide by 1 1/8 in.  thick for the smaller box section.
The arch ribs are stiffened with four WT sections welded to the inside of the webs. The arch rib
sections are shown in Fig. 2.
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The top flanges of the arch ribs are connected through gusset plates to spandrel columns located
at  panel  points  spaced  at  40’  –  0”.  The  spandrel  columns  then  support  the  floor  system  of  the
concrete deck unit consisting of stringers and floorbeams.  The arch span deck width is variable
– ranging from 54’ – 4” to 68’ – 10”, out-to-out.  Two relief joints exist in the deck within the
arch spans, both located in Span 4 with one joint adjacent to Panel Point 11 and the other
adjacent to Panel Point 19. T The number of the stringers in the cross-section changes at the
location of the south deck relief joint, with six stringers north of the joint and seven stringers
south of the joint.

Figure 2: Arch Rob Box Sections: (a) Section with 1 1/8 in. Flange; (b) Section with 2 in. Flange

Due to deteriorating bridge deck condition, comprehensive rehabilitation of High Bridge
including complete replacement of its original concrete deck was deemed necessary by MnDOT,
the  owner  of  the  bridge.  As  a  part  of  the  rehabilitation  project,  MnDOT  tasked  AECOM  with
load rating of the arch spans, to identify any strengthening requirements to satisfy current design
specifications and ensure that the structure rates for current design and permit live loads.
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1.2 Project Scope
The ratings were performed in accordance with the AASHTO LRFR methodology, as outlined in
the AASHTO LRFD Bridge Design Specifications (AASHTO LRFD 2014), the AASHTO
Manual for Bridge Evaluation (AASHTO MBE 2011), and the MnDOT LRFD Bridge Design
Manual (MnDOT 2015). The rating factors were determined by the Engineer of Record (EOR)
for inventory and operating ratings for three cases 1) the originally constructed condition of the
bridge with no condition or system factors included 2) the existing condition of the bridge with
applicable condition and system factors and 3) the proposed condition of the bridge with new
deck, strengthening and with appropriate condition and system factors. Discussed herein for
comparison purposes are the ratings factors for the proposed condition of the bridge with new
deck, strengthening and with appropriate condition and system factors which were confirmed by
the Peer Review team. Additionally, the arch span superstructure was analyzed for the sequential
stages of the deck removal and reconstruction, and the member demands were checked against
the latest provisions of the specifications. The results of the deck removal and reconstruction
sequence are beyond the scope of this paper.

The long main spans of the High Bridge are dominated by the dead load. As the dead loads are
approximately uniform, these loads create significant axial compression in the arch ribs. Thus,
the arch ribs under high axial compression become a critical member for load rating of the arch
spans. Initially, the axial load capacities of the steel box arch rib sections were determined using
the simplified Effective Length Method as outlined in the AASHTO LRFD 2014 (similar to the
method used for the original design). This approach employs the Euler buckling equation to
determine the critical buckling load or Euler buckling load. However, the conservatism built in
the method resulted in relatively low axial capacities and a subsequent unsatisfactory rating
factor by the AASHTO MBE code. To more accurately determine the axial capacity, eigenvalue
analysis was used to determine the critical buckling load for the arch rib. To verify the
eigenvalue analysis method used, a peer review team (Michael Baker International) was selected
by MnDOT. The peer reviewer utilized the Direct Analysis Method found in the AISC 360-16
Specification for Structural Steel Buildings (AISC 2016) to load rate the arch rib. The increase in
axial  capacity  gained  by  the  eigenvalue  analysis  allowed  the  arch  rib  to  rate  for  current
AASHTO design loadings as well as MnDOT permit vehicles, and was shown to be conservative
by the results of the Direct Analysis Method conducted by the peer reviewer. The study provided
valuable insight to the conservatism in the simplified capacity calculation methods provided in
AASHTO LRFD and established a novel way to analyze multi-span arch bridges for
determination of the critical buckling load.

2. AASHTO Effective Length Method
2.1 Determination of Buckling Load
Global buckling of a member happens when the member in compression becomes unstable due
to its slenderness (ratio of member unbraced length to radius of gyration = KL/r) as subjected to
an applied load. The Euler buckling formula for critical buckling load or Euler buckling load is
derived for an ideal case where the member is long, sender, homogenous, elastic, and is
subjected to concentric axial load. The AASHTO Effective Length Method (AASHTO LRFD
2014) utilizes the Euler buckling formula (Eq. 1) to determine the critical buckling load, Pe,
where K is the effective length factor and lu is the unsupported length of a compression member.
AASHTO defines the unsupported length of the compression member as one half of the length of
the arch rib (measured along the arch rib).
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This method requires a K value to be selected from Table 4.5.3.2.2c-1 which defines K values
given the arch rise to span ratio and an assumption of the arch fixity (2 hinge, 3 hinge or fixed).
For a simple span arch with fixities that match one of the cases given in the table, this method
would be expected to provide an accurate critical buckling load based upon the research used to
develop this table. However, for the High Bridge, the continuous nature of the structure prevents
it from fitting into any of the fixity conditions provided. To use this method, an assumption
needs to be made regarding the fixity of the spans. To avoid an unconservative approach, the
main span was approximated as a two hinge arch, neglecting the restraint provided at piers 3 and
4 by the side spans. The side spans were approximated as a 3 hinge arch, again neglecting any
restraint provided by the main span. Although this approach would be considered conservative, it
was recognized that the long slender piers at the outside of the arch span unit coupled with the
flexibility  of  the  post  tensioned  ties  allow  for  displacement  of  “crown”  of  the  side  spans  thus
leading to an anticipated decrease in critical buckling load. As described earlier, Span 4 is a full
arch with a span of 520 ft and a rise of 109.35 ft leading to a rise to span ratio of 0.21. Spans 3
and 5 as are half arches with span lengths of 282 ft. 3 in. and 241 ft. 9 in. respectively, and rises
of 131.75 ft. and 90.15 ft. respectively. This leads to rise to span ratios of 0.23 and 0.19 for
Spans 3 and 5, respectively. The K values determined from Table 4.5.3.2.2c-1 of AASHTO
LRFD Bridge Design Specifications are shown in Table 1.

2.2 Axial Capacity of Arch Ribs by AASHTO Effective Length Method
To calculate the compression capacity of the arch rib using AASHTO, Eqns. 6.9.4.1.1-1 and
6.9.4.1.1-2 were used. These equations calculate the nominal capacity as a function of the elastic
critical buckling resistance (calculated using the Euler buckling equation previously discussed)
and the equivalent nominal yield resistance. The equivalent nominal yield resistance is defined in
AASHTO as the yield resistance of the section times a slender element reduction factor to
account for local buckling effects. In lieu of the simplified methods outlined in AASHTO, the
arch ribs were checked for local buckling by modelling a section of the arch rib using a finite
element mesh (Fig. 3) between diaphragms using LUSAS. The arch rib section with the smaller
flange sizes and larger unbraced length was modelled to create the worst buckling scenario. One
end of the arch rib was given a fixed for translation boundary condition, and a total load of 100
kip was applied uniformly at the other end over the entire cross section of the arch rib. The
applied load resulted in a uniform stress of 0.33 ksi. The eigenvalue analysis was performed, and
the first eigenvalue calculated was 246.1 with the mode shape shown in Fig. 3. To determine the
critical buckling load for local buckling, the eigenvalue was multiplied by the uniform applied
stress which results in a critical buckling stress of 81.7 ksi which was significantly higher than
the yield stress of 50 ksi. The analysis shows that the arch rib will yield before any local
buckling occurs and thus no reduction factor for local buckling is required. Accordingly, the
slender element reduction factor was taken as 1.0 while calculating the axial capacity. The
buckling mode shape is shown in Fig. 3.
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Figure 3: Deflected Arch Rib Model for Local Buckling Analysis

The Euler bucking loads for the arch ribs in each span were calculated using Eq. 1, and were
used to calculate the nominal compressive resistance of the arch rib sections using Equations
6.9.4.1.1-1 and 6.9.4.1.1-2 of AASHTO (AASHTO LRFD 2014). The K values, the Euler
buckling loads (Pe) and the factored axial capacities (Pr) of the arch ribs sections are tabulated in
Table 1. The buckling loads determined using the Euler buckling formula resulted in relatively
low axial capacities, which resulted in unsatisfactory rating factors.

Table 1: Euler Buckling Loads and Factored Axial Capacities by AASHTO Effective Length Method

Span Section K
Pe Pr

(kips) (kips)

Span 3 1 1/8" Flange 1.13 5313 4659
Span 3 2" Flange 1.13 7703 6755
Span 4 1 1/8" Flange 1.10 6822 5978
Span 5 1 1/8" Flange 1.16 7451 6463
Span 5 2" Flange 1.16 10804 8994
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3. Refined Eigenvalue Analysis
3.1 Determination of Buckling Load
A need for refined methods of capacity calculation was defined early in the project. To allow for
the capacity equations found in AASHTO to be used, the option to employ advanced methods of
analysis for determining the critical buckling load, as outlined in AASHTO LRFD C6.9.4.1.1,
was exercised. Eigenvalue analysis was used to accurately determine the critical buckling load of
the arch rib for the structural system of interest. These more accurate critical buckling loads
subsequently result in less conservative and more accurate buckling loads than determined by the
AASHTO (AASHTO 2014) Effective Length Method. However, existing literature (Ziemian
2010, Nittleton 1977, and Bridge Engineering Handbook 2000) was focused on single span
arches where the critical buckling load was determined by loading the arch with uniform load
applied full length which creates a case of approximate pure axial bending in the arch rib. This
concept was not readily applicable to High Bridge because for a span of a continuous arch, the
load on adjacent spans has a stabilizing effect on the span of interest. As no guidance was
available for loading of continuous arches, a conservative approach was taken wherein the self-
weight of the arch spans was applied to the structure which is approximately a uniform load and
then a uniformly distributed load was applied to each span individually and incrementally
increased until buckling occurred within the arch rib.

The eigenvalue analysis approach is based on analyzing the structure under a given applied load
and the analysis program determines a set of load multipliers that correspond to different
buckling loads.   The lowest multiplier corresponds to the first  mode of buckling.   The value of
this multiplier, or the first eigenvalue, indicates that if all loads on the structure are multiplied by
the eigenvalue, the structure will become unstable.  The critical buckling load is then determined
as the result of multiplying the compressive axial load in the critical rib member  under the
applied loads by the first eigenvalue. Based upon available guidance, the axial load in the critical
member is taken as the axial force at the quarter point of the arch span. For the High Bridge, the
critical load was taken as the lower of the axial forces at the quarter points of the main span or
the axial force at the midpoint of the side spans (because they are half arch spans).

Eigenvalue analyses were conducted for the three models as indicated. Because the eigenvalue
analysis produces a multiplier that should be applied to all loads and it was the intent not to
amplify dead loads or the loads within the post-tensioned tie, an iterative approach was
necessary.  The uniform load applied to the span of interest (applied as a horizontal projection of
distributed load as shown in Fig. 4 for Span 4) was incremented until the eigenvalue for the first
mode was equal to 1.0.  This means that the structure becomes unstable under the dead load
applied to the full length of the bridge plus the additional load applied to the span of interest.  For
each of the three analyses, the buckling was initiated in the loaded span (see Fig. 4) and the
critical buckling load was assumed equal to the axial load at the following point (see Fig. 5):

· Span 4 loaded: The axial load at the controlling quarter point (quarter point with lower
axial force) of Span 4 was taken to be the critical buckling load.

· Spans 3 and 5 Loaded: The axial load at the midpoint of the loaded span of interest was
taken to be the critical buckling load for the given span.
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Figure 4: Buckling Mode Shape for Span 4

Figure 5: Location of Axial Load Measurements

3.2 Axial Capacity of Arch Ribs by Eigenvalue Analysis
The critical buckling loads for the arch ribs in each span were determined through the eigenvalue
analysis, and were used to calculate the nominal compressive resistance of the arch rib sections
using Equations 6.9.4.1.1-1 and 6.9.4.1.1-2 of AASHTO (AASHTO LRFD 2014). As described
earlier in Section 2.2, the slender element reduction factor was taken as 1.0 because local
buckling was shown to not occur within the arch rib. The critical buckling loads (Pe) and the
factored axial capacities (Pr) of the arch ribs sections are tabulated in Table 2.  The buckling
loads determined using the refined analysis resulted in significantly higher axial capacities and
allowed the arch rib to rate for current AASHTO (AASHTO 2014) design loadings as well as
MnDOT (MnDOT 2015) permit vehicles.

Table 2: Critical Buckling Loads Factored Axial Capacities by Eigenvalue Analysis

Span Section
Pe Pr, Eigenvalue Pr, Effective

Length Method
(kips) (kips) (kips)

Span 3 1 1/8" Flange 8898 7046 4659
Span 3 2" Flange 8898 7346 6755
Span 4 1 1/8" Flange 17297 9940 5978
Span 5 1 1/8" Flange 8714 6941 6463
Span 5 2" Flange 8714 7214 8994
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4. Direct Analysis Method
4.1 Selection of Analysis Method and Software
To verify the work of the Engineer of Record (EOR), the Michael Baker International peer
review team elected to conduct a load rating of the arch spans using an alternative method that
did not include eigenvalue buckling analysis. Eigenvalue analysis will typically provide upper-
bound solutions to stability problems, while the buckling loads provided by geometric-nonlinear
analysis will usually be lower. The peer review team consequently elected to load rate the High
Bridge arch spans using geometric-nonlinear analysis to evaluate stability of the arch and
compute second-order effects.

Analysis of structures for buckling using geometric-nonlinear analysis is not currently codified in
the AASHTO LRFD Bridge Design Specifications. However, the current July 7th, 2016 edition of
the ANSI/AISC 360-16 Specification for Structural Steel Buildings (AISC 2016) does provide
provisions for conducting geometric-nonlinear buckling analysis. These provisions are listed in
code sections Section C1 and Appendix 1: Design by Advanced Analysis, and comprise the
AISC Direct Analysis Method of Design. The peer review team followed the AISC code
provisions for geometric-nonlinear analysis with elastic material properties. Key portions of
these specifications include:

· “The analysis shall consider geometric nonlinearities, including P-D, P-d and twisting
effects as applicable to the structure” (pp. 16.1-186).

· “In all cases, the analysis shall directly model the effects of initial imperfections due to
both…system imperfections, and…member imperfections” (pp. 16.1-186).

· Suggested nodal geometry imperfections are a 1/500 maximum out-of-plumbness ratio,
and a 1/1000 maximum out-of-straightness of members ratio (pp. 16.1-186).

· “A factor of 0.80 shall be applied to all stiffnesses that are considered to contribute to the
stability of the structure. It is permissible to apply this reduction factor to all stiffnesses in
the structure” (pp. 16.1-26).

· When the Design by Advanced Analysis provisions are followed, “the nominal
compressive strength of members, Pn, may be taken as the cross-section compressive
strength FyAg, or as FyAe for members with slender elements” (pp. 16.1-187).

There are therefore two significant differences between following the AISC Advanced Analysis
approach and a conventional linear-elastic analysis approach to determine High Bridge arch rib
demands and capacities. The first difference is that for a linear-elastic approach, second-order
effects would be approximated using AASHTO LRFD moment magnification provisions, while
for AISC Advanced Analysis, second-order effects are computed directly by the analysis
software. The second difference is that in a linear-elastic analysis, axial capacity would be
determined by using capacity equations that include the elastic critical buckling resistance Pe,
while for AISC Advanced Analysis, axial resistance is taken as the compressive yield strength of
the  member  for  members  without  slender  elements.  (The  High  Bridge  arch  rib  sections  are  not
slender). Taking axial capacity as the yield strength instead of the buckling strength is possible
because the analysis software monitors the structure for loss of stability caused by buckling.

One difference between the AISC Advanced Analysis approach and the eigenvalue analysis
performed by the EOR is that the elastic critical buckling resistance Pe determined from
eigenvalue analysis by the EOR was used in the AASHTO LRFD code equations for axial
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capacity, while the peer review team followed the AISC Advanced Analysis provisions to
determine axial capacity, (FyAg) for the arch load rating.

To meet the requirements of AISC Appendix 1: Design by Advanced Analysis, software must be
capable of both correctly computing second-order effects, and monitoring the structure for loss
of stability caused by buckling. The peer reviewer selected MIDAS/Civil as the analysis program
for geometric-nonlinear analysis of the High Bridge. To validate that MIDAS/Civil meets the
requirements of AISC Appendix 1, two benchmark verification problems given in AISC 2016
were performed. Based on these results, the peer reviewer determined that MIDAS/Civil can
accurately compute geometric-nonlinear behavior and critical loads and displacements as
required by AISC Appendix 1. A screenshot of the 3D MIDAS/Civil analysis model of the High
Bridge arch spans is shown in Figure 6.

Figure 6: MIDAS/Civil 3D model of the High Bridge arch spans

4.2 Load Rating the Arch Using AISC Appendix 1: Design by Advanced Analysis
The AISC Appendix 1 provisions were only used by the peer reviewer to determine ratings for
arch rib panels that had demand-capacity ratios above 1.0 from a conventional linear-elastic
analysis using the AASHTO LRFD axial capacity equations. The screening for locations failing
a linear-elastic analysis was accomplished by considering concurrent force results for three live
load scenarios for the HL-93 and owner-specified permit rating vehicles: maximum strong axis
moment, minimum strong axis moment, and maximum compressive axial force. Then, the
concurrent force live load scenario that resulted in the maximum demand-capacity ratio at each
panel not passing the screening was chosen for further analysis using AISC Appendix 1
procedures. The moving load tracer (MLT) function within MIDAS/Civil was used to generate
equivalent static live load cases that produced the controlling force effects at each panel.

For each panel that did not pass the linear-elastic screening, the governing static live load case
was then imported into a 3D MIDAS/Civil model of the structure that had been configured with
the initial imperfection and reduced modulus of elasticity provisions specified by AISC
Appendix 1 for geometric-nonlinear analysis. A total factored static load case for each panel was
then created within MIDAS/Civil that included all dead loads, tendon loads, and the governing
live load. This was required since superposition of force results is not valid for geometric-
nonlinear analysis.  For each factored load case, a separate geometric-nonlinear analysis was
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performed using the Newton-Raphson iteration method in which the load was incremented up to
a final value of 1.0 times the total factored load. An example of the HL-93 static live load case
for the controlling point from the peer reviewer’s analysis (maximum moment-y at  Panel Point
18) is shown in Figure 7 below.

Figure 7: Static Live Load Case for Maximum Moment at PP18

For each panel analyzed using AISC Appendix 1 procedures, the analysis model converged up
through a load increment of 1.0 times the factored load, showing that the buckling loads of the
arch were greater than factored load demands and that the structure remains stable under factored
loads. Following the AISC Appendix 1 provisions for these panels, demands were taken from the
final load increment of the geometric nonlinear analysis models, and axial capacity was
calculated by taking the nominal compressive strength of members as the cross-section
compressive strength FyAg. Arch rib bending capacities were determined using AASHTO LRFD
code equations. The resulting demand-capacity ratios for Strength I loads are shown in Table 3
below.  The  demand-capacity  ratios  found  using  a  conventional  linear  elastic  analysis  with
AASHTO LRFD capacity equations are shown in Table 3 as well, illustrating the significant
conservatism of these conventional analysis methods.

Panel Point 18
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Table 3: Controlling Strength I demand-capacity ratios for the arch rib obtained by the peer reviewer

Because superposition of forces is not valid for geometric-nonlinear analysis, it is not possible to
separate dead and live load force results for the arch rib to calculate exact rating factors for
panels analyzed using the AISC Appendix 1 Method. However, it can be shown that if a
demand-capacity ratio calculated using demands due to the total factored load is less than 1.0,
the rating factor for the same load combination would be above 1.0. This allowed the peer
reviewer to demonstrate that the arch would achieve a passing load rating at all panels where the
demand-capacity ratios determined using the AISC Appendix 1 Method were below 1.0.

For the permit vehicles evaluated using the Strength II load combination, the minimum required
rating factor was 1.1. When the total factored load combination was generated for direct analysis
of panels not passing the initial screening for permit loads, an additional factor of 1.1 was
applied to the live load. The analysis was therefore run for a load combination of
ϒDL+TL+1.1*ϒLL for  both  routine  and  annual  permits.  If  the  force  results  from  this  load
combination gave demand-capacity ratios less than 1.0, the corresponding rating factor would be
greater than 1.1. Using these methods, the peer reviewer concluded that the arch rib achieves
passing ratings for the HL-93 loading and all special and routine owner-specified permit trucks
for the Strength I and II load combinations, respectively.

4.3 Determining Critical Buckling Loads using Geometric-Nonlinear Analysis
Although the arch was shown to be stable under factored loads, the peer reviewer also sought to
determine the margin between factored loads and the buckling loads of the arch. This was
accomplished by loading the 3D geometric-nonlinear analysis model of the High Bridge until a
loss of stability occurred. Several different live load placements were utilized, including the live
load position that maximized moment at the panel point found to be controlling from the AISC
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Advanced Analysis Method (Panel Point 18). The loading at each increment of the geometric-
nonlinear analysis can be expressed as

Applied Load = [Load Increment Factor] [1.25DC + 1.0TL + 1.75(LL+IM)]            (2)

where the post-tensioned tie tendon load (TL) was calibrated such that the (Load Increment
Factor)*(1.0TL)  at  the  last  stable  step  before  buckling  is  equal  to  1.0.  This  was  undertaken  so
that the beneficial stabilizing effects of the tendon loads are not magnified as the dead and live
loads are increased beyond 1.0 times the total factored load. For the loading considered, the peer
reviewer found that the model lost stability above a load increment factor of 1.5 (or alternatively
1.5 times the factored load, or a loading 50% greater than the factored load).  The deflected
shape of the model, magnified 10 times, at a load increment factor of 1.5 for the controlling live
load placement for Panel 18 is shown below in Figure 8.

Figure 8: MIDAS/Civil model deformations at (1.5)(Factored Strength I Load at maximizes bending at PP 18)

Figure 9 shows vertical deformations at Panel Point 18 as the load increment factor is increased
over the course of the geometric-nonlinear analysis. The plot shows a linear trend line from an
equivalent model run with a linear-elastic analysis, where the difference between the two lines
represents the second-order effects obtained from the geometric nonlinear analysis.

Panel Point 18
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Figure 9: MIDAS/Civil model deformations at Panel Point 18 over the course of geometric-nonlinear analysis

From inspection of Figure 9, second-order effects become significant for deformations as the
load approaches the critical buckling load, but are less significant at actual factored and service
load levels. In-plane moments follow a similar trend, while the increase in second-order effects
for axial forces is less significant as the critical buckling load is approached.

The axial force at Panel Point 18 at buckling for the live load placement that maximizes moment
in this panel is approximately 4,500 kips, which is significantly less than the critical buckling
load Pe values found by the EOR using eigenvalue analysis and listed in Table 2. A direct
comparison, however, between the eigenvalue Pe values and the axial force at buckling obtained
from geometric nonlinear analysis is not advisable, since the loading used in the geometric
nonlinear analysis was chosen to find the minimum load increment factor at which buckling
occurs, (which includes significant bending), while the Pe values are found from an eigenvalue
analysis that seeks to obtain buckling loads under a uniform axial loading that minimizes
bending. In other words, the critical load increment factor for buckling from geometric-nonlinear
analysis occurs under a loading of combined axial force and flexure, while the Pe values found
from eigenvalue analysis are for a loading of predominately axial force only.

5. Evaluation of Analyses Results and Conclusions
The controlling panel points and associated maximum demand to capacity (D/C) ratios from
each analysis are shown in Table 4. The controlling location for the AASHTO Effective Length
Method is located on the Span 3 side of Pier 3 and is controlled by the maximum negative
moment at this location. The arch rib transitions from the large arch section to the smaller arch
section between Panel Points 7 and 8, with the smaller arch section located on the pier. This fact
coupled with the maximum negative moment within the arch rib due to the dual truck case being
located over the interior pier results in the controlling location being at this point. Further, the
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axial capacity of the smaller arch rib section within Span 3 at 4659 kips is significantly lower
than all other axial capacities calculated using the Effective Length Method.

Table 4: Comparison of Controlling Demand/Capacity ratios for the Three Methods

Method
Controlling
Panel Point

D/C
Ratio

AASHTO Effective Length Method 8 1.26
Eigenvalue Analysis 3 0.94

AISC Direct Analysis 18 0.68

For the eigenvalue analysis method used by the EOR, the controlling D/C ratio of 0.94 is located
on  the  Bay  2-3  side  of  Panel  Point  3.  This  location  is  where  the  arch  rib  transitions  from  the
smaller arch rib section to the larger arch rib section on the Pier 2 side of Span 3. This, coupled
with the large positive moments found within the side spans and the lower axial capacity of Span
3 compared to Span 5, causes the controlling location for the eigenvalue analysis method to be
found here.

The D/C ratios calculated using the Effective Length Method were all found to be conservative
by a significant margin as compared to the eigenvalue analysis method used by the EOR. The
conservatism was expected due to the previously discussed inability of the Effective Length
Method to accurately represent the capacity of a continuous arch rib. The eigenvalue analysis
method was further found to be conservative when compared to the AISC Direct Analysis
Method. The controlling D/C ratio of 0.68 found using the Direct Analysis Method is located at
Panel Point 18 within the main span.

The significant fundamental differences between the methods used by the EOR and peer
reviewer make it challenging to directly identify the reason for variation in controlling location.
However, one potential source of this variation in location is believed to be the conservative load
application method used for the eigenvalue analyses. As discussed, the lack of available direction
for loading of continuous arches when determining the critical load led to the EOR applying and
incrementing  a  uniform  load  only  to  the  span  of  interest  for  each  span  in  addition  to  the  self-
weight of the structure. When compared to the critical loads found when a uniform load is
applied to all spans, the side span critical loads are significantly reduced when the stabilizing
effect of load applied to the main span is removed. Conversely, when evaluating the critical load
of the main span, removing the stabilizing effect of the load on the side spans does not have as
significant of an effect. It was expected that the approach used for loading would present a
conservative case (primarily for the side spans) and these results provide some confirmation of
this assumption. Thus, the apparent conservatism in load application for the side span eigenvalue
analyses lead to variation in the controlling location when compared to the Direct Analysis
Method.

Use of the eigenvalue analysis method allowed the arch rib to rate for all design and permit live
loads. As the eigenvalue method was shown to be conservative as compared to the Direct
Analysis Method, eigenvalue analysis was verified as an acceptable means for determining the
axial capacity of the arch rib and subsequently deemed acceptable for rating of the arch rib. By
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using the eigenvalue analysis method along with the provisions of AASHTO, rating factors were
determined for all sections of the arch rib. Further, validation of the eigenvalue method allows
for simplified load rating of the structure in the future. Use of the AASHTO provisions allows
rating to be conducted for permit vehicles (or any future loads) using linear elastic analyses and
further allows for moving load analyses to be used and the results for said analyses enveloped.

For future developments of the AASHTO LRFD and the AISC Direct  Analysis codes,  the peer
reviewer recommends that code writers specify if a minimum margin between the total applied
loading that causes loss of global stability and factored demands should be provided when
refined analysis techniques such as AISC Direct  Analysis are utilized,  or if  it  is  only sufficient
that the structure remain stable under total factored demands. At present, the ASIC Appendix 1
provisions allow the axial capacity to be taken as FyAg as long as the model remains stable under
factored demands, and implies that this is acceptable even if global stability is lost at a load
increment just above the total factored load. For the rehabilitation of the High Bridge, the EOR,
peer reviewer, and owner all concurred that a 1.5 ratio of total applied load at buckling to
factored load was acceptable.
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