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Abstract 

Concrete-filled composite plate shear walls (CF-CPSW) are being considered for high-rise 

buildings because of their potential for modularity, construction speed, and structural efficiency. 

The system is composed of a concrete core sandwiched between two steel faceplates. The steel 

plates are connected to each other by tie bars, rods, or steel shapes, and composite interaction 

between steel faceplates and infill concrete is developed by these tie systems and headed stud 

anchors (if included). The empty steel modules−which are composed of steel faceplates, tie bars, 

and shear studs−are fabricated in a shop and shipped to the site for erection. The erected steel 

modules serve as formwork and falsework during construction and concrete casting. The stability 

of the steel modules during construction, while supporting construction loads, the weight of the 

surrounding steel frames, and the floor systems during concrete casting, is vital.  

 

This paper presents the results of numerical and analytical studies conducted to evaluate the 

stiffness and stability of empty steel modules (of CF-SPSW) to resist gravity loads during 

construction. The stability of empty modules is governed by their effective shear stiffness 

(GAeff), which in turn depends on the relative flexural stiffness (EI/L) of the faceplates and the 

tie bars. The finite element method can be used to determine the effective shear stiffness (GAeff) 

and critical buckling stress (σcr) of the steel module. Additionally, the effective shear stiffness 

and the critical buckling stress can also be estimated conservatively using simple equations 

developed using a mechanics-based approach and proposed in this paper for design purposes. 

 

When the ratio of the steel faceplate flexural stiffness (EIp/S, where s is the tie spacing) to the tie 

bar stiffness (EIt/d, where d is the tie diameter) is less than 25, the buckling of empty steel 

modules is somewhat independent of the load eccentricity, end conditions, and module height. 

For the design of steel modules, it is not recommended for this ratio of EIp/S to EIt/d to be 

greater than 25, because the empty modules become extremely flexile and the critical buckling 

stress becomes less than 1000 psi.  
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1. Introduction 

Concrete-filled composite plate shear walls (CF-CPSW) are being considered for high rise 

building construction in the US and abroad due to their potential advantages in terms of 

modularity, construction schedule and structural performance. CF-CPSW consist of a concrete 

core sandwiched between two steel faceplates located on the surfaces. The steel faceplates are 

tied to each other using tie bars, rods, or steel shapes, and anchored to the concrete core using 

these tie systems and headed stud anchors, as shown in Fig. 1 (Varma et al. 2014 and 2015, 

Bruhl et al. 2015, Sener and Varma 2014, and Sener et al. 2015).  

 
Figure 1: A typical CF-CPSW and its component 

 

The steel modules−consisting of the faceplates, ties, and studs−are fabricated in the shop and 

shipped to the field for the erection. The erected steel modules serve as formwork and falsework 

for construction activities and concrete casting. They support considerable construction loads, 

the weight of the surrounding steel framework, and concrete floors during casting. The 

modularity of steel construction (before concrete construction activities) is the primary appeal 

and advantage of CF-CPSW systems (Varma et al. 2015). The stability of the empty module is a 

primary design requirement and prerequisite for the feasibility of the CF-CPSW system.  

 

Ramesh et al. (2013) did research on empty steel modules and investigated the effects of 

concrete casting on stresses induced in the tie bars. They also conducted a load test on a two-

story empty steel module to investigate the effects of eccentric axial loading on behavior and 

buckling. According to the study, steel modules can provide acceptable stability under 

construction loads . 

 

Corus’ “Bi-Steel Design and Construction Guide” Chapter 9 contains methodologies to calculate 

the effective critical buckling load and shear stiffness for certain module configurations. These 

methodologies rely on a design table, Table U, which provides maximum mid-span deflection 

due to shear effects under a 1 kN/m2 uniform distributed load. The design table values are 

generated from a computer program. The manual states that “Deflections generated by the 

program have been validated by tests. However, stresses remain theoretical values based on 

bending theory” (Bi-Steel 1999). 

 

By contrast, there is a significant lack of knowledge and some misinformation regarding the 

stability and strength of the steel module before and during concrete placement. In high-rise 
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building construction, the empty steel module is expected to support three-to-four stories of the 

surrounding steel framework before and during concrete placement. As such, the stability and 

strength of the steel module is critical to the safe and successful application of these CF-CPSW 

systems in practice. 

 

In this study, detailed 3D finite element models of empty steel modules are developed and used 

to determine their critical buckling stress by conducting eigenvalue buckling analysis. Different 

boundary conditions (pinned-pinned, fixed-pinned, and fixed-fixed) are considered, while 

conducting the finite element analyses. Additionally, simple mechanics-based models are used to 

develop analytical equations for conservatively estimating the stiffness and buckling capacity of 

the steel modules. Finally, the finite element models and analytical equations are compared with 

available experimental results. 

  

2. Finite element method  

This section discusses the empty module 3D finite element models developed and analyzed using 

the commercial program, Abaqus. All the steel plates and tie bars were modeled using higher-

order (quadratic) C3D20R elements (20-node solid elements with reduced integration). These 

higher-order elements were selected because of well-known issues such as shear locking and 

hourglassing with of lower-order (linear) C3D8 (8-node solid), C3D8R (reduced integration), 

and C3D8I (incompatible mode) elements. Initial studies indicated that using these lower-order 

elements resulted in convergence issues due to the localized interaction between the elements of 

the steel plates and orthogonal tie bars. Similar mesh convergence issues were also noted for 

models with S4 and S4R (4-node shell) elements for plates and B31 or B32 (beam) elements for 

tie bars. These convergence issues were due to the drilling degree-of-freedom in shell elements, 

which are modeled inadequately using artificial stiffness in commercial software, and activated 

in this model by the shell-to-beam connections.   

 

 
Figure 2: Overall finite element model and the extracted unit width 



 4 

Fig. 2(a) shows a typical finite element model of an empty module of CF-CPSW, Fig. 2(b) 

highlights a unit width of the module used for further analytical investigations accounting for 

translational symmetry. Fig 3 illustrates the typical loading and boundary conditions (pinned-

pinned) used for the extracted unit width of the empty steel module. Boundary conditions 

associated with translational symmetry were modeled along the edges of the steel plates.  

 

Several such finite element models of the unit widths of empty modules were developed and 

analyzed as part of this research. Three practical wall thicknesses (Tsc) of 18, 24, and 36 in. were 

considered. Two different tie spacings (S) equal to wall thickness (Tsc) and wall thickness 

divided by two (Tsc/2) were selected. The thicknesses of steel faceplates were in the range of 3/8 

in. to 1-1/16 in. The steel faceplate thickness and tie bar diameters were selected based on the 

associated plate reinforcement ratios (ρ = 2tp/Tsc) and the tie bar reinforcement ratios (ρtie = π 

dtie
2/S24). The ratios of ρ and ρtie were limited to the practical range of 1.5 – 6% and 0.2 – 0.6%, 

respectively (Varma et al. 2014). The lengths (or column heights) of the finite element models 

were equal to ten times the wall thickness (Tsc). 

 

Table 1 includes the details of the 22 finite element models that were developed and analyzed. 

The models were subjected to axial loading simulating 1000 psi stress in the steel faceplates, and 

eigenvalue buckling analyses were conducted to obtain the critical buckling stress and buckling 

mode. Different boundary conditions (pinned-pinned, fixed-pinned, and fixed-fixed) were 

considered for each model. The resulting critical stress values (σ cr) are included in Table 1, and 

the typical buckling modes are shown in Fig. 4(a), (b), and (c) for the different boundary 

conditions. These buckling modes indicate that the shear deformation of the empty modules is 

the critical deformation associated with the buckling mode. It is also important to note that the 

critical buckling stress values are well within the elastic range of behavior of typical structural 

steel materials with yield strength of 50,000 psi or more.  
 

 
Figure 3: A typical loading and boundary conditions.  
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Table 1: Critical buckling stress of finite element models of empty module with different boundary conditions. 

Models 
Tsc  

(in) 

S tie  

(in) 

tp  

(in) 

d tie  

(in) 

σ cr (psi)  

Pinned-pinned 

σ cr (psi)  

Fixed-pinned 

σ cr (psi)  

Fixed-Fixed 

Model 1 18 9 3/8 7/16 769 876 1064 

Model 2 18 9 3/8 5/8 2613 2699 2800 

Model 3 18 9 3/8 13/16 6200 6261 6300 

Model 4 18 9 9/16 7/16 723 981 1451 

Model 5 18 9 9/16 5/8 2128 2365 2758 

Model 6 18 9 9/16 13/16 5220 5421 5703 

Model 7 18 18 3/8 15/16 2349 2413 2493 

Model 8 18 18 9/16 15/16 2379 2583 2888 

Model 9 24 12 1/2 5/8 961 1066 1236 

Model 10 24 12 1/2 7/8 3038 3119 3204 

Model 11 24 12 1/2 1-1/16 5670 5731 5830 

Model 12 24 12 3/4 5/8 864 1120 1579 

Model 13 24 12 3/4 7/8 2483 2714 3082 

Model 14 24 12 3/4 1-1/16 4790 4992 5307 

Model 15 24 24 1/2 1-3/16 2024 2092 2200 

Model 16 24 24 3/4 1-3/16 2015 2227 2571 

Model 17 36 18 3/8 15/16 1307 1322 1336 

Model 18 36 18 3/4 15/16 954 1058 1231 

Model 19 36 18 3-4 1-5/16 2979 3060 3177 

Model 20 36 18 1-1/16 15/16 861 1088 1492 

Model 21 36 18 1-1/16 1 5/16 2513 2714 3046 

Model 22 36 18 1-1/16 1 9/16 4555 4732 5010 

 

 
Figure 4: Results from eigenvalue buckling analysis of Model 3 with different boundary conditions 

 

Fig. 5 plots the critical buckling stress (σcr) of the steel modules (reported in Table 1) with respect 

to the tie bar diameter. It includes the results for modules with pinned-pinned boundary 

conditions, wall thickness (Tsc) of 18 and 24 in, and tie spacing equal to Tsc/2. The figure clearly 
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shows that the critical buckling stress values are within the range of 1000 to 6000 psi. The 

critical buckling stress (σcr) increases significantly with the diameter of the tie bars, which 

improves the shear stiffness (GA) of the empty module. The effects of changing the steel plate 

thickness are relatively small in the range of parameters considered.  

 

 
Figure 5: Eigenvalue buckling results of empty modules due to axial compression loading 

 

Figure 4(a-e) also includes the results of eigenvalue analysis of Model 3 for different end 

conditions including the three mentioned earlier: (a) pinned-pinned, (b) fixed-pinned, (c) fixed-

fixed, and two additional: (d)fixed-free, and (e) the second mode from pinned-pinned. The 

buckling stress is very similar for all these conditions. Additional analyses were conducted for 

members with different lengths, and for members with eccentric loading applied on only one 

plate (instead of both). All these analyses indicated that the critical buckling stresses were 

relatively similar (within 10% variation) irrespective of the end conditions, member length, and 

loading eccentricity (for practical ranges of length of 5 – 10 times the wall thickness). This raises 

the question about the fundamental behavior and buckling mode of empty steel modules, which 

was further investigated and explained using the mechanics-based model discussed in the 

following section.  

 

3. Mechanics Based Model 

 

3.1 Shear stiffness of empty module 

The finite element analysis results and buckling modes indicated that the stiffness of empty 

modules is governed by their Vierendeel truss type behavior and effective shear stiffness (GAeff).  

A unit cell was defined as a characteristic portion of the unit width of the empty module shown 

in Fig. 3. The unit cell can be repeated in a chain with translational symmetry to make the unit 

width of the empty module, and the unit width can be repeated in a chain with translational 

symmetry to make the empty module of the CF-CPSW. The unit cell of the empty module was 

identified to consist of just one tie bar and the associated (tributary) steel plates (up to one-half of 

the tie spacing, S) on both sides. The unit cell can be idealized as a simple H or I-frame with the 

members defined by steel plates and tie bars as shown in Fig. 6. The member idealizing the steel 

plate has a rectangular cross-section with width equal to the tie spacing, S, and depth equal to the 

plate thickness, tp. The member idealizing the tie bar has circular cross-section with diameter 
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equal to the tie bar diameter, dtie. Frame analysis conducted using slope-deflection or similar 

equations can be used to calculate the effective shear stiffness (GAeff) of the unit cell.  

 

 
Figure 6: Free body diagram of unit cell or shear panel subjected to pure shear loading. 

 

The effective shear stiffness (GAeff) was calculated using Eq. 1 as the ratio of the effective shear 

force divided by the effective shear strain for the unit cell. In the equation, V is the applied 

vertical shear force, S is the spacing between ties, d is the center-to-center distance between the 

plates, and and  are as identified in Fig.6.  
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Where E is the modulus of elasticity, It and Ip are the moments of inertia of the members 

modeling the tie bar and steel faceplate respectively. α is the ratio of flexural stiffness of steel 

plate to tie bar: 
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3.2 Bifurcation buckling 

The bifurcation buckling of members with significant shear flexibility is discussed in Figure 7. 

When the member flexibility is dominated by shear deformations, then the critical buckling load, 

Pcr, is equal to the effective shear stiffness GAeff. This well-known, but sometimes forgotten 

equation, was proposed by Engesser in 1889. This unique equation suggests that the critical 

buckling load does not depend (directly) on the boundary conditions, member length, bracing 

points, or even load eccentricity, which is quite remarkable. The critical buckling load depends 

just on the effective shear stiffness GAeff of the member. The finite element results presented 

earlier attest this phenomenon for the empty steel module of CF-CPSW as well.  

 

 

 
Figure 7: Bifurcation buckling of a shear flexibility dominated member. 

 

Therefore, the critical buckling stress, cr, can be calculated using Eq. 4. In the equation, the 

effective shear stiffness, GAeff, of empty steel module can be estimated using Eq. 2.  
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4. Comparison of critical buckling stress from different methods 

Eq. 2 provides the mechanics-based equation for estimating the effective shear stiffness, GAeff, 

of the unit cell and empty module. Using Eq. 4, the critical buckling stress can be calculated 
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approximately in the absence of a detailed finite element analysis. The comparisons of the empty 

module critical buckling stress calculated using Eq. 4 and the results from the detailed finite 

element analyses are shown in Fig. 8. This figure, similar to Fig. 5, includes the results for 

modules with pinned-pinned boundary conditions, wall thickness (Tsc) of 18 and 24 in, and tie 

spacing equal to Tsc/2. As shown, the critical buckling stress calculated using Eq. 4 from the 

mechanics-based model is close but conservative with respect to the buckling stress calculated 

by the detailed finite element method.  

 

As expected, the mechanics-based model is a simple but conservative estimate of the effective 

shear stiffness of the empty module. It becomes more conservative as the steel plate thickness 

increases. Once again, it is also important to note that the critical buckling stress is of the order 

of 1000 – 6000 psi, which is much smaller than the plate yield stress, and further confirmation of 

the fact that elastic buckling governs the behavior and design of empty modules. 

 

The effective shear stiffness, GAeff, is dependent on α (Eq. 3). It is the ratio of the steel plate 

flexural stiffness (EIp/S) to the tie bar flexural stiffness (EIt/d). Parametric studies, the details of 

which are not included here, indicate that α should be limited to values less than 25. When α 

values become greater than 25, the empty steel module becomes too flexible and the critical 

buckling stress can be smaller than even 1000 psi.  

 

 

 
Figure 8: Comparison of critical buckling stress for empty steel modules 

 

5. Experimental Verification 

Ramesh et al. (2013) conducted a large-scale test to evaluate the buckling capacity of an empty 

module. The specimen was a 3/8-scale model of the prototype. The specimen wall thickness (Tsc) 

was equal to 9 in., the plate thickness (tp) was equal to 3/16 in., the threaded tie bar diameter 

(dtie) was equal to 3/8 in., and the tie spacing was equal to 4.5 in. 
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Figure 9: Experimental investigation by Ramesh et al. (2013) (a) Schematic of setup with specimen, (b) photo of 

specimen before loading, and (c) photo of buckled specimen after loading 

 

Figure 9(a) shows the details of the test setup and the specimen. As shown, the first story of the 

specimen was already filled with concrete (which had set), and the two stories above it were 

empty. The loading was applied on only one plate of the empty module, and the loading points 

also served as brace points. Fig. 9(b) shows a photograph of the specimen before loading. The 

specimen wall length was 135 in. and the height was 117 in. Figure 9(c) shows the buckled shape 

of the specimen after loading (close to maximum loading). The deformed (buckling) shape of the 

specimen indicates behavior similar to the bifurcation buckling of empty modules (with 

significant shear deformation of tie bars) presented earlier. 

 

Ramesh et al. (2013) reported that the total peak load at buckling was equal to 168 kips. This can 

be used to calculate the critical buckling stress from the test, which is equal to 3.32 ksi, as shown 

below: 
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The critical buckling stress for the specimen was calculated using the approach presented in 

previous sections, i.e, using Eq. 2 to estimate GAeff and Eq. 4 to calculate the critical buckling 

stress, as shown below. The critical buckling stress was equal to 2.99 ksi, which is conservative 

(10% lower) with respect to the experimental result. This further confirms that the mechanics-

based model is a conservative approach for estimating the buckling strength of empty modules. 

 

 ksi
GA

tS

P eff

p

crMBM

cr .99.2
21875.05.42






  (6) 



 11 

 

A 3D finite element model of the unit width of the tested specimen was developed. The 

bifurcation buckling load from the eigenvalue analysis of the three-dimensional finite element 

model was equal to 6.49 kips. The corresponding critical buckling stress was 3.85 ksi, as 

calculated below, which is 16% larger than the experimental result. The probable reason for this 

discrepancy was that the specimens used threaded bars going through holes in the steel plates, 

which had additional (shear) flexibility than the fully-tied (welded) steel plate-to-tie bar 

connections used in the model: 

 

 ksi
tS

P

p

FEMFEM

cr .85.3
21875.05.4

49.6

2






  (7) 

 

6. Design recommendation 

The stiffness and stability of empty steel modules of CF-SPSW were numerically and 

analytically are investigated. 3D finite element models of the unit widths (of empty steel 

modules) were developed and analyzed to determine the critical buckling stress. Mechanics-

based models of a unit cell (of the unit width of the empty steel module) were developed and 

analyzed to calculate the effective shear stiffness and critical buckling stress. The results from 

the finite element analyses and the mechanics-based models were evaluated and compared 

leading to the following conclusions: 

 

˗ Effective shear stiffness of the empty module, GAeff, governs the behavior and stability under 

gravity loads.  

 

˗ The 3D finite element method along eigenvalue analysis is the most efficient way to calculate 

critical buckling stress for steel modules with applicable boundary conditions and loading.  

 

˗ In the absence of a detailed finite element model, the effective shear stiffness, GAeff, and 

critical buckling stress, σcr, for empty steel modules can be calculated conservatively using 

Eq. 2 and Eq. 4 developed based on the mechanics-based approach.  

 

˗ The effective shear stiffness and the critical buckling stress of the empty steel module 

depends on α, which is the ratio of the steel faceplate flexural stiffness (EIp/S) to the tie bar 

flexural stiffness (EIt/d) in the unit cell model.  

 

˗ Values of α greater than 25 are not recommended for design, because they would lead to 

modules that are extremely flexible, and with critical buckling stress lower than 1000 psi. 

 

˗ When a reasonable value is selected for α (for example, less than 25) is used, the critical 

buckling stress and compression capacity of the empty steel module do not vary significantly 

with boundary conditions, load eccentricity, and unsupported lengths. The reason is that the 

effective shear stiffness, GAeff, of steel module governs buckling behavior and strength. 
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