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Abstract 
The design of steel structures has been deeply studied and reliable guidelines are provided in 
current standards. The ultimate resistance of open-sections such as I and H shapes depends on 
their buckling behaviour which is highly sensitive to the level of imperfections enhanced on 
the section. Extensive studies and experimental measurements on imperfections have been 
realised over the years, which enabled the improvement of standards recommendations.  

However, with the emergence and improvement of Finite Element software, these standards 
exhibit lack of information for the introduction of geometrical and structural imperfections into 
FE models. Therefore, numerical simulations were performed with the purpose of providing 
reliable and efficient recommendations. 

The current paper presents investigations related to the influence of geometrical and material 
imperfections on the local resistance of I and H sections. A consistent and convenient approach 
for their introduction into a Finite Element model is provided afterwards. 

1 Introduction 
Nowadays, steel is considered as one of the major materials used in construction. Among the 
panel of sections available within the industry, hot-rolled and welded I and H sections are 
useful both in the field of bridge construction and within building applications. Designing steel 
structures represents a main challenge since steel structures undergo peculiar behaviour under 
compressive forces. Indeed, under compression, elements made of sections such as I and H 
shapes are prone to suffer from local buckling as well as from global buckling (e.g flexural 
buckling and lateral torsional buckling). Furthermore, both the ultimate resistance and the 
stability of an open-section are highly influenced by the level of imperfections affecting the 
section. As a matter of fact, throughout the manufacturing process, the shaping of the sections 
generates imperfections such as residual stresses, eccentricities and out of straightness among 
other defaults. These imperfections reduce the cross-section strength and can induce premature 
yielding, earlier buckling and, consequently, failure. For many years, research investigations 
involving measurements of imperfections taking part of experimental campaigns were realised. 
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However, even though a great quantity of information is available with respect to the reality of 
imperfections, with the emergence and amelioration of Finite Element software; the 
introduction of imperfections into the numerical simulations represents a strategic challenge. 
Many standard guidelines and recent methods dedicated to steel design are available. However, 
the design recommendations suggested in codes and dedicated to the use of non-linear analyses 
by means of Finite Element simulations exhibit discrepancies, lack of usability and 
inaccuracies especially according to the introduction of imperfections. Thus, when non-linear 
analyses are required, the use of FE software is frequently avoided even though it would 
provide an excellent and reliable ultimate load-carrying capacity if wisely used.  
The current paper presents herein a study carried out on the influence of imperfections on the 
cross-sectional ultimate load-carrying capacity of open-sections and, thereafter, provides 
recommendations for the introduction of imperfections into numerical simulations.  

Respecting to local geometrical imperfections, the Eurocode (Eurocode 2007) suggests using 
the 1st eigenmode shape with an amplification factor corresponding to the minimum value 
between !

"##
 and $

"##
, using 80% of geometrical tolerances, where a and b refer to the height 

and width of the plate. Then, if residual stresses are added to the FE model, the Eurocode 
guidelines indicate the possibility to apply a reduction of 30% to the secondary imperfection if 
a leading imperfection is selected. However, the standard does not provide any guidance with 
respect to the adoption of a suitable residual stress pattern. In most cases, these brief 
recommendations lead to over-conservative results and loss of resistance. 
Kettler has been investigating the plastic capacity of semi-compact sections, and, in doing so, 
carried out an experimental campaign on hot-rolled and welded H-sections (Kettler 2008). To 
compare the specimen resistance obtained from the tests with results provided by numerical 
simulations, a FE model was developed where both geometrical and material initial 
imperfections were based on experimental measurements. Yun realised a similar work for the 
introduction of geometrical imperfections into a FE model following experimental tests on hot-
rolled H-profiles (Yun, et al. 2016). Davids and Hancock introduced geometrical imperfections 
from test measurements through a cubic polynomial curve fitting program (Davids et Hancock 
1986).  

Furthermore, many researchers such as Kettler (Kettler 2008), employed the first buckling 
mode shape obtained from linear buckling analysis and magnified with a suitable amplification 
factor. Otherwise, other procedures were employed for the introduction of imperfections e.g 
the modification of nodes coordinates by means of sinusoidal functions (Boissonnade et Somja 
2012).  
In addition to initial geometrical imperfections, a profile bears material imperfections as 
residual stress states. After manufacturing, the residual stress state is auto-equilibrated on the 
section i.e it will not induce additional forces before loading. For sections whose failure is 
caused by a combination of yielding and buckling, residual stresses induce premature yielding 
of some fibres of the section, and, consequently, cause stiffness reductions which can lead to 
the earlier occurrence of buckling. 
Within literature, various patterns have been considered, whether they relied on plate-per-plate 
equilibrated schemes or distributions equilibrated within the whole cross-section. Respecting 
to hot-rolled profiles, membrane residual stresses are induced by the uneven cooling of steel 
after being manufactured. Welding induces uneven cooling as well. The yield limit can be 
reached on the tension areas near welds where the material has been highly heated or where 
the plates have been obtained by flame cutting. The amplitudes and distributions depends on 
various aspects such as the cross-section geometry or the procedures and temperature employed 
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within fabrication. This kind of information is usually delicate to obtain. Data provided by 
some manufacturers has been studied and conclusions made on these results and encountered 
in papers are deeply explored. Moreover, several researchers have been measuring residual 
stresses on specimens throughout extensive experimental campaigns (Kettler 2008), 
(Thiébaud, et al. 2016), (Davids et Hancock 1986). However, the measurement of residual 
stresses exhibit several sources of difficulties and their reliability remains questionable (James 
2010). 
Even though, the FE modelling of geometrical and material imperfections has been deeply 
studied for many years, it still requires further investigation to provide reliable guidance.  
The study presented herein will focus on the influence of geometrical and material 
imperfections on the local resistance with the objective to provide guidelines for the 
introduction of imperfections into FE simulations. 

First of all, the Finite Element model features and assumptions are described in section 2. This 
section also contains a brief presentation of the geometrical and material imperfections 
considered for the study. Thereafter, investigations towards the influence of geometrical 
imperfections on the local load-bearing capacity of open-sections is presented in section 3. 
Then, results and observations related to the influence of material imperfections are shown in 
section 4. To conclude, section 5 provides recommendations for the introduction of geometrical 
and material imperfections into FE simulation.  

2 Development of Finite Element models 
2.1 Basic features and assumptions 
Numerical simulations were performed by means of the Finite Element software FINELg, 
developed in collaboration between ULg (University of Liège) and Greish structural office 
(Belgium). Analyses such as linear buckling analyses (LBA), materially non-linear analyses 
(MNA) and fully non-linear analyses with imperfections (GMNIA) were carried out based on 
a verified Finite Element model. To this end, experimental data were gathered and compared 
with numerical results to validate the FE model considered thereafter. 
As a matter of fact, previously to the current investigation, the Finite Element model was 
compared to experimental results obtained during a test campaign carried out on hot-rolled and 
welded H-profiles and realised by Kettler (Kettler 2008) at Graz University. To do so, 
numerical simulation input parameters were carefully chosen to fit with the test setup used back 
then. Consequently, a valuable agreement between experimental and numerical results was 
achieved, which assessed the reliability of the model. 
The elements employed throughout the study were quadrangular shell elements (QSCRA) 
based on Kirchoff’s theory regarding bending in addition to membrane theory for in-plane 
stresses. Total corotational Lagrangian formulation taking due account of the current deflected 
state of the element and with reduced integration were used with 7 integration points through 
the thickness using Gauss numerical integration method. A reliable and time-efficient model 
mesh was adopted following extensive mesh density studies on both hot-rolled and welded 
Finite Element models. The same sections as those considered within this paper were studied. 
Specific precautions were employed in the modelling of the web-to-flange junction (see Figure 
1) of hot-rolled sections. To create an accurate and advanced model, the fillet zones were 
replaced by a beam element located at the centre of gravity of the two corner zones (Greiner, 
et al. 2007). Moreover, due to the disposition of nodes, an overlap between elements occurred 
at the web/flange intersection. Hence, the beam element area selected corresponds to the two 
corners area from which the overlap was removed (Boissonnade et Somja 2012). 
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In addition, since the web-to flange junction of the section enhances important rigidity which 
prevent this area to suffer of local buckling, an additional truss element was introduced into 
the Finite Element model to respect the effective plate length prone to suffer from local 
instability. 

 
Figure 1: Web-to-flange junction modelling of a hot-rolled section. 

As for welded sections, since the welds do not provide a significant restraint to avoid the web 
and flanges to suffer from local buckling, no such truss elements were introduced at the web-
to-flange junction. 

The stress-strain constitutive law employed and represented on Figure 2 includes a plastic 
plateau followed by suitable strain-hardening part. The strengthening slope value and the strain 
boundaries result from previous studies (Hayeck 2016). The material law enhanced thereafter 
is suitable for standard yield limit such as 𝑓& = 235	𝑀𝑃𝑎 and 𝑓& = 460	𝑀𝑃𝑎 which were 
considered in the current study. 

 
Figure 2: Material properties considered in the Finite Element model. 

With respect to support conditions, fork conditions were applied at both ends and axial 
displacement was constrained at one end. Moreover, linear constraints were defined for the 
deformed section to stay conform to the beam theory assumptions. Thus, the deformation of 
the “x-constrained nodes” is fixed as a combination of the 4 loading cases: axial compression, 
major axis bending, minor axis bending and warping. The 4 “x-free nodes” located at the 4 
extremities govern the deformation of all the other nodes of the section. 
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Figure 3: Constraints imposed to the FE model. 

The loading is applied at the 4 extreme nodes of the cross-section by means of suitable 
definitions of axial forces, for all load cases. For the standard parametric studies, sections under 
pure compression and pure major axis bending were studied. Furthermore, with respect to the 
peculiar sub-study dedicated to compare numerical results to experimental test results, simple 
and combined load cases were investigated. 

 
Figure 4: Loading situations applied to the FE model.  

A large range of geometries were studied, covering compact to very slender sections for both 
I and H shapes sections. In order to include more slender sections, two geometries were 
invented: IPES and HEAS. The following sections were considered under pure compression 
and pure major-axis bending: 

- IPE 140 (h=140mm; b=73mm; tw=4,7mm; tf=6,9mm; r=7mm; b/h=0,52) 
- IPE 400 (h=400mm; b=180mm; tw=8,6mm; tf=13,5mm; r=21mm; b/h=0,45) 
- IPES (h=800mm; b=220mm; tw=10mm; tf=19mm; r=24mm; b/h=0,28) 
- HEA160 (h=152mm; b=160mm; tw=6mm; tf=9mm; r=15mm; b/h=1,05) 
- HEA 600 (h=590mm; b=300mm; tw=13mm; tf=25mm; r=27mm; b/h=0,51) 
- HEAS (h=300mm; b=300mm; tw=6mm; tf=10mm; r=27mm; b/h=1) 

With respect to the length of the member, the size was chosen sufficiently short to avoid the 
occurrence of global buckling and long enough to reduce the influence of support conditions. 
Moreover, the member length chosen depends on the local geometrical imperfection pattern to 
ensure the number of half-waves and sinusoidal period desired (see Table 1). 
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However, for the comparison between numerical simulations and experimental results gathered 
from a campaign realised at Graz University (Kettler 2008), the same load cases and cross-
section geometries were investigated throughout various numerical simulations (see section 
3.1). 

2.2 Material imperfections 
Material imperfections are consecutive to the manufacturing process. Since their production 
process differs, hot-rolled and welded sections exhibit different types of residual stresses 
whether in their amplitude or in their distribution. The patterns chosen as part of this study are 
plate per plate equilibrated which enables the presence of a residual compressive stress at the 
1st step of load application without generation of additional eccentric force.  

Two different amplitudes and two various pattern shapes dedicated to hot-rolled sections were 
considered (see Figure 5 a) and b)) based on previous European recommendations (ECCS - 
Committee 8 - Stability 1976 1976). As for welded sections, two different residual stress 
pattern were introduced which differ both in their amplitude and shape (see Figure 5 c) and d)). 
These patterns consist in a rectangular pattern, recommended by the Eurocode (ECCS - 
Committee 8 - Stability 1976 1976) and a trapezoidal pattern provided by Kettler through the 
Semi-Comp project (Greiner, et al. 2007) based on experimental measurements. Constants 𝛼3 
and 𝛼" can be calculated from the section geometrical properties under the assumption of plate-
per-plate equilibrated residual stress patterns. 

 
Figure 5: Residual stress patterns a) and b) concern hot-rolled sections whereas distributions c) and d) refer to welded 

sections residual stress pattern. 
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2.3 Geometrical imperfections 
For the purpose to discern a reasonable reliable method to introduce imperfections into the FE 
model, investigations were performed with various sets of imperfections which are presented 
hereafter.  

Geometrical imperfections were introduced into the FE model by means of appropriate 
modifications of nodes coordinates through adequate sinusoidal functions (see section 3.2 and 
3.3) or using the 1st buckling mode shape (see section 3.4). The use of sinusoidal functions to 
introduce initial imperfections presents the advantage to allow greater control and command 
compared to the utilisation of the 1st eigenmode shape.  
For each situation, several cases were considered. With respect to imperfections accounted for 
through sinusoidal functions, different amplitudes and periods were studied whereas according 
to the eigenmode imperfection, the variation of the amplitude was the single parameter 
differing between cases. 

2.3.1 Sinusoidal shapes 
Figure 6 exhibits the three major cases encountered within the study which involves an initial 
imperfect shape obtained by modifications of nodes coordinates by means of sinusoidal 
functions.  
In addition to vary in amplitude, the three patterns differ in their number of waves on the 
element. As a matter of fact, both the period and the number of waves on the member were 
modified between cases. The various sets of parameters used in the different cases are specified 
on Table 1. Figure 6 (a) refers to cases a), c) to i) whereas Figure 6 (b) represents the 
imperfection pattern on the flanges and web used in case b). Moreover, Figure 6 (c) enhances 
the imperfect shape of the web and flanges of case j). 

 
( a)      ( b ) 

 
( c ) 

Figure 6: Description of input parameters in case of sinusoidal functions introduced as imperfections: (a) refers to cases a), 
c), d), e), f), g), h) and i) specified in Table 1; (b) refers to case b); (c) refers to case j). 
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As noted above, Table 1 summarizes the various sets of imperfections investigated throughout 
section 3.2 and 3.3. These parametric studies aim at providing a consistent database for 
comparison, to discern a reasonable pattern to recommend for FE modelling. 
The name of each case presented in Table 1 describes the number of half-waves, the period of 
the half-wave and the amplitude of the sinusoid used to produce the initial deformed shape. 
Therefore, the case named 3hw / P_avg / A_pp_200 contains an initial imperfect shape 
characterised by the presence of 3 half-waves, a half-wave period equal to the average between 
the web buckling length aw and the flange buckling length af, and an amplitude applied 
respectively to each plate buckling length divided by 200. The flange and web buckling lengths 
differ according to the manufacturing process considered. With respect to hot-rolled sections, 
𝑎4 = ℎ − 𝑡8 − 2𝑟 and 𝑎8 = 𝑏 − 𝑡4 − 2𝑟 where h refers to the whole height of the profile, 
whereas according to welded sections 𝑎4 = ℎ − 𝑡8 and 𝑎8 = 𝑏. 

Table 1: Definitions of the various cases considering the introduction of different types of imperfections studied and their 
associated parameters. 

Case Period Amplitude web Amplitude flange 
a) 3hw / P_avg / A_pp_200 aavg aw/200 af/200 
b) 2hw / P_avg / A_pp_200 aavg aw/200 af/200 
c) 3hw / P_f / A_pp_200 af aw/200 af/200 
d) 3hw / P_w / A_pp_200 aw aw/200 af/200 
e) 3hw / P_avg / A_avg_200 aavg aavg/200 aavg/200 
f) 3hw / P_avg / A_f_200 aavg af/200 af/200 
g) 3hw / P_avg / A_w_200 aavg aw/200 aw/200 
h) 3hw / P_avg / A_pp_100 aavg aw/100 af/100 
i) 3hw / P_avg / A_pp_400 aavg aw/400 af/400 
j) -hw / P_pp / A_pp_200 Period per plate aw/200 af/200 

Table 2 and Table 3 present the resulting values of parameters specified in Table 1 for each I-
section and H-section studied, respectively. These values are determined from the sections 
nominal dimensions. 

Table 2: Values of the input parameters for each geometry of I-sections investigated throughout the parametric studies. 
 Hot-rolled Welded 

Case IPE140 IPE400 IPES IPE140 IPE400 IPES 

af [mm] 54.3 129.4 162 73 180 220 

aw [mm] 112.2 331 714 133.1 386.5 781 
aavg [mm] 83.25 230.2 438 103.05 283.25 500.5 
af / 100 [mm] 0.543 1.294 1.620 0.730 1.80 2.20 
aw / 100 [mm] 1.122 3.310 7.140 1.331 3.865 7.81 
aavg / 100 [mm] 0.834 2.302 4.380 1.031 2.833 5.005 
af / 200 [mm] 0.272 0.647 0.810 0.365 0.900 1.10 
aw / 200 [mm] 0.561 1.655 3.570 0.666 1.933 3.905 
aavg / 200 [mm] 0.416 1.151 2.190 0.515 1.416 2.503 
af / 400 [mm] 0.136 0.324 0.405 0.183 0.450 0.550 
aw / 400 [mm] 0.281 0.828 1.785 0.333 0.966 1.953 
aavg / 400 [mm] 0.208 0.576 1.095 0.258 0.708 1.251 
Table 3: Values of the input parameters for each geometry of H-sections investigated throughout the parametric studies. 

 Hot-rolled Welded 
Case HEA160 HEA600 HEAS HEA160 HEA600 HEAS 

af [mm] 124 233 240 160 300 300 
aw [mm] 104 486 226 143 565 290 
aavg [mm] 114 359.5 233 151.5 432.5 295 
af / 100 [mm] 1.240 2.330 2.400 1.60 3.0 3 
aw / 100 [mm] 1.040 4.860 2.260 1.43 5.65 2.90 
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aavg / 100 [mm] 1.140 3.595 2.330 1.515 4.325 2.95 
af / 200 [mm] 0.620 1.165 1.200 0.80 1.50 1.5 
aw / 200 [mm] 0.520 2.430 1.130 0.715 2.825 1.45 
aavg / 200 [mm] 0.570 1.796 1.165 0.758 2.163 1.475 
af / 400 [mm] 0.310 0.583 0.600 0.40 0.75 0.75 
aw / 400 [mm] 0.260 1.215 0.565 0.358 1.413 0.725 
aavg / 400 [mm] 0.285 0.899 0.583 0.379 1.081 0.738 

Figure 7 exhibits the initial shape including amplified imperfections for the cases a), b) and j) 
described in Table 1. From left to right, the amplified initial shape enhances:  

- 3 half-waves on the web and flanges and corresponds to case a) specified in Table 1;  
- 2 half-waves on the web and flanges and corresponds to case b) specified in Table 1; 
- approximately 2 half-waves on the web and 4 half-waves on the flanges and 

corresponds to case j) specified in Table 1. 

 
Figure 7:Magnified initial deformations of an axially compressed IPE 140; case a); case b); case j) from left to right. 

2.3.2 Eigenmode shape 
The use of the 1st buckling mode shape provided by linear buckling analysis (LBA) represents 
one of the most common method for the modelling of initial imperfections. Therefore, for each 
section considered, Table 5 and Table 6 point out the 1st eigenmode shape of I-sections and H-
sections under pure compression and pure major axis-bending respectively. Table 4 specifies 
for each case studied the values of the amplification factor applied to magnify the deformed 
shape. 

Table 4: Values of amplitudes applied to amplify the 1st buckling mode shape and considered within the parametric study. 
Case Amplitude x Amplitude y Amplitude z 

k) A_avg_100 aavg/100 aavg/100 aavg/100 
l)  A_avg_200 aavg/200 aavg/200 aavg/200 
m) A_avg_400 aavg/400 aavg/400 aavg/400 
n)  A_pp_100 aavg/100 aw/100 af/100 
o)  A_pp_200 aavg/200 aw/200 af/200 
p)  A_pp_400 aavg/400 aw/400 af/400 
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Although the introduction of the 1st buckling mode shape as initial geometrical imperfection 
represents a convenient approach to introduce imperfections into a FE model, it does not allow 
great adaptability with respect to the number or amplitude of half-waves enhanced by the 
element.  

The eigenmode shape is highly dependent on the cross-section shape and on each plate 
slenderness. Under pure compression, I-sections present major half-waves on their web 
whereas H-sections eigenmodes enhance similar half-waves characteristics on their flanges and 
web. Furthermore, the 1st buckling mode shape is also sensitive to the loading applied since it 
leads the area affected by compressive stresses. Consequently, the eigenmode dependency on 
loading situation leads to additional computing requirements to obtain the initial deformed 
shape. 

Therefore, the adoption of the 1st eigenmode as initial deformed shape presents the advantage 
to highlight and emphasize the section parts prone to undergo earlier buckling but the method 
enhances a lack of adaptability and requires additional numerical analyses. 

Table 5: 1st eigenmode shape of the studied open-sections under pure compression. 

HEA 160 

  

HEA 600 

  

HEAS 

  

IPE 140 
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IPE 400 

  

IPES 

  
 

Table 6: 1st eigenmode of the studied open-sections under major-axis bending. 

HEA 160 

  

HEA 600 

  

HEAS 

  

IPE 140 
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IPE 400 

  

IPES 

  

Consequently, with the FE model described above, numerical simulations were performed and 
results are presented within the subsequent sections. Section 3 concerns the influence of 
geometrical imperfections whereas section 4 presents the influence of material imperfections. 

3 Influence of geometrical imperfections 
The influence of initial geometrical imperfections is now studied throughout this first 
parametric study. As specified in section 2, several ways to introduce the initial deflected shape 
have been investigated and served as a basis to provide reasonable recommendations. 

 Section 3.1 presents a specific sub-study, which aims at procuring a comparison between 
experimental test results and ultimate resistance obtained with the sets of imperfections 
described in Table 1 and Table 4 of section 2. Then, section 3.2 exhibits the results respecting 
the investigation of geometrical imperfection amplitude influence on the ultimate resistance 
whereas section 3.3 addresses the effects of the half-wave period. Finally, the use of the 1st 
buckling mode shape as initial geometrical imperfection and the resulting load-carrying 
capacities are shown on section 3.4. 
3.1 Comparison with experimental results 
A specific parametric study dedicated to the comparison between test results from a test 
campaign realised by Kettler (Kettler 2008) and FE simulation results is presented thereafter. 
All the specimens were hot-rolled except specimens A22-1, A22-2; A23-1, A23-2, A24-1 and 
A24-2 which were produced by welding. Numerical simulations were performed with the sets 
of imperfections specified in Table 1. Residual stresses were introduced through a parabolic 
and a trapezoidal residual stress pattern (see Figure 5) for hot-rolled and welded sections 
respectively. 
The numerical simulations involve the same geometries as the ones investigated by Kettler, 
with the same sets of initial imperfections as specified in section 2. Table 7 exhibits the values 
of amplitudes and periods applied to the various plate elements. Moreover, Table 7 provides 
the real imperfections measured on the various specimens. These imperfections are procured 
in the form of maximal amplitudes measured along the web and flanges independently. 
However, since the reality of imperfections on the web was negligible, the web measured 
amplitude is set to 0 for all the specimens.  
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The comparison between the invented sets of amplitudes and the measured web and flanges 
maximum amplitudes points out that the maximal amplitudes measured on the flanges of the 
specimen tested at Graz University correspond to an amplitude of 

!;
3##

.  

Nevertheless, since the amplitudes provided coincide with the maximum encountered on the 
plate, the values do not highlight the overall behaviour of imperfections and further 
investigation is required. A detailed comparison between the ultimate load obtained from the 
test and the ultimate load-carrying capacity provided by numerical simulation will enable to 
procure a precise correlation between real amplitudes and reasonable initial imperfection to 
introduce into numerical simulations. 

Table 7: Imperfection amplitude measured on the specimen tested as part of an experimental test campaign realised by 
Kettler and their corresponding set of amplitudes obtained from the measured geometry. 

 Measured amplitudes “Standard” sets of amplitudes (from measured geometry) 
Specimen aw, m 

[mm] 
af, m 

[mm] 
aavg, m 
[mm] 

aw / 
100 

[mm] 

af / 
100 

[mm] 

aavg / 
100 

[mm] 

aw / 
200 

[mm] 

af / 
200 

[mm] 

aavg / 
200 

[mm] 

aw / 
400 

[mm] 

af / 
400 

[mm] 

aavg / 
400 

[mm] 
sc_A1-2 
N+My 

0 3.2 1.6 1.79 2.04 1.92 0.90 1.02 0.96 0.45 0.51 0.48 

sc_A1-3 
N+My 

0 3.2 1.6 1.80 2.07 1.93 0.90 1.04 0.97 0.45 0.52 0.48 

sc_A2-1 
N+My+Mz 

0 3.4 1.7 1.80 2.05 1.92 0.90 1.03 0.96 0.45 0.51 0.48 

sc_A2-2 
N+My+Mz 

0 3 1.5 1.80 2.04 1.92 0.90 1.02 0.96 0.45 0.51 0.48 

sc_A3-1 
N+My+Mz 

0 3.5 1.75 1.80 2.05 1.92 0.90 1.03 0.96 0.45 0.51 0.48 

sc_A3-2 
N+My+Mz 

0 3.1 1.55 1.80 2.04 1.92 0.90 1.02 0.96 0.45 0.51 0.48 

sc_A4-1 
N+Mz 

0 3.6 1.8 1.80 2.05 1.92 0.90 1.03 0.96 0.45 0.51 0.48 

sc_A4-2 
N+Mz 

0 3.1 1.55 1.80 2.04 1.92 0.90 1.02 0.96 0.45 0.51 0.48 

sc_A10-2 
N+Mz 

0 2.8 1.4 1.80 2.06 1.93 0.90 1.03 0.96 0.45 0.51 0.48 

sc_A5-1 
N 

0 2.9 1.45 1.79 2.04 1.92 0.90 1.02 0.96 0.45 0.51 0.48 

sc_A5-2 
N 

0 2.8 1.4 1.79 2.05 1.92 0.90 1.02 0.96 0.45 0.51 0.48 

sc_A7-1 
N+My 

0 4 2 1.82 2.06 1.94 0.91 1.03 0.97 0.46 0.52 0.49 

sc_A7-2 
N+My 

0 3.8 1.9 1.82 2.06 1.94 0.91 1.03 0.97 0.46 0.52 0.49 

sc_A1-1  
N+My 

0 3.8 1.9 1.82 2.06 1.94 0.91 1.03 0.97 0.46 0.51 0.49 

sc_A8-1 
N+My+Mz  

0 4.4 2.2 1.82 2.06 1.94 0.91 1.03 0.97 0.46 0.52 0.49 

sc_A8-2 
N+My+Mz 

0 3.2 1.6 1.82 2.06 1.94 0.91 1.03 0.97 0.46 0.52 0.49 

sc_A9-1 
N+My+Mz 

0 3.5 1.75 1.82 2.06 1.94 0.91 1.03 0.97 0.46 0.52 0.49 

sc_A9-2 
N+My+Mz 

0 5 2.5 1.82 2.06 1.94 0.91 1.03 0.97 0.46 0.52 0.49 

sc_A10-1 
N+Mz 

0 5 2.5 1.82 2.06 1.94 0.91 1.03 0.97 0.46 0.52 0.49 

sc_A10-3 
N+Mz 

0 2.8 1.4 1.82 2.08 1.95 0.91 1.04 0.98 0.46 0.52 0.49 

sc_A11-1 
N  

0 4 2 1.85 2.04 1.94 0.92 1.02 0.97 0.46 0.51 0.49 
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sc_A11-2  
N 

0 4.4 2.2 1.85 2.04 1.94 0.92 1.02 0.97 0.46 0.51 0.49 

sc_A22-1 
N+My 

0 3.5 1.75 2.34 2.59 2.47 1.17 1.30 1.23 0.59 0.65 0.62 

sc_A22-2 
N+My 

0 3.1 1.55 2.34 2.59 2.47 1.17 1.30 1.23 0.59 0.65 0.62 

sc_A23-1 
N+Mz 

0 3.5 1.55 2.34 2.59 2.47 1.17 1.30 1.23 0.59 0.65 0.62 

sc_A23-2 
N+Mz 

0 3.2 1.6 2.34 2.59 2.47 1.17 1.30 1.23 0.59 0.65 0.62 

sc_A24-1 
N 

0 2.4 1.2 2.34 2.59 2.47 1.17 1.30 1.23 0.58 0.65 0.62 

sc_A24-2 
N 

0 2 1 2.35 2.59 2.47 1.17 1.30 1.24 0.59 0.65 0.62 

Figure 8 to Figure 11 present a comparison between the ultimate load obtained from the 
experimental tests and the results provided by numerical simulations with various sets of 
imperfections (see Table 1 of section 2). 

 
Figure 8: Ratio between ultimate load provided by numerical simulations with various geometrical imperfection types and 

their respective ultimate load procured by experimental test (Kettler 2008). 

 
Figure 9: Ratio between ultimate load provided by numerical simulations with various geometrical imperfection types and 

their respective ultimate load procured by experimental test (Kettler 2008). 
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Figure 10: Ratio between ultimate load provided by numerical simulations with various geometrical imperfection types and 

their respective ultimate load procured by experimental test (Kettler 2008). 

 
Figure 11: Ratio between ultimate load provided by numerical simulations with various geometrical imperfection types and 

their respective ultimate load procured by experimental test (Kettler 2008). 
Figure 8 to Figure 11 reveal a great concordance between experimental results and FE 
simulations. As a matter of fact, by excluding the isolated results procured by cases 3hw / 
P_avg / A_avg_200 and 3hw / P_w / A_pp_200; 5 specimens reach 100% similarity between 
tests and FE results, 16 specimens enhance more than 90% of concordance and 12 specimens 
exhibit a ratio 𝐹=,?@ over 𝐹=,ABC situated between 80% and 90%.  

All the sets of imperfections reach similar ultimate load capacities except 2 cases. Case 3hw / 
P_avg / A_avg_200 leads to an overestimate of the ultimate resistance whereas case 3hw / P_w 
/ A_pp_200 procures the lowest ultimate resistance compared to the remaining sets of 
imperfections introduced. Therefore, the use of the average amplitude between aw and af on 
both plates which reduces the imperfection on the governing larger plate appears to be over 
favourable. 

This sub-study points out the reliability of the sets of imperfections adopted throughout the 
following parametric studies since an acceptable concordance between experimental and 
numerical results was achieved. From now on, deeper study on the effect of each set of 
imperfections will be presented. 
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3.2 Longitudinal wavelength 
The influence of the number and period of the half-waves present on the member is investigated 
hereafter. 
As specified in section 2 (Table 1), 5 cases with different half waves period characteristics are 
distinguished. They differ in their initial imperfect shape according to the number and period 
of the half-waves:  

- 3hw / P_avg / A_pp_200; 
- 3hw / P_f / A_pp_200; 
- 3hw / P_w / A_pp_200; 
- -hw / P_pp / A_pp_200; 
- 2hw / P_avg / A_pp_200. 

Cases 3hw / P_f / A_pp_200 and 3hw / P_w / A_pp_200 exhibit 3 half-waves along the member, 
as well as case 3hw / P_avg / A_pp_200. However, depending on the section dimensions, they 
result in various lengths in the FE models.  

On the other hand, in case -hw / P_pp / A_pp_200, the web and flanges enhance different 
number of half-waves and this number is not restrained to 3. Moreover, Case 2hw / P_avg / 
A_pp_200 exhibits 2 half-waves regardless of the section considered. 
According to the various cases characteristics, observations regarding the influence of the 
number of half-waves can be made from results obtained with 3hw / P_avg / A_pp_200 case 
with the ones obtained with -hw / P_pp / A_pp_200 and 2hw / P_avg / A_pp_200 cases also. 

The x-axis on Figure 12 and Figure 13 refers to the local slenderness 𝜆E characterising the ratio 
between the section full plastic resistance and its behaviour against pure stability. On the other 
hand, the y-axis represents the local reduction factor 𝜒E, which, applied to the full plastic 
capacity, leads to the cross-sectional ultimate resistance (Boissonnade, et al. 2017). The 𝜒E-𝜆E 
figures contain the following reference curves: 

- the horizontal dashed line, 𝜒E = 1 which refers to the full plastic resistance; 
- the parabolic dashed line, 𝜒E = 1/𝜆E describing Von Karman equation for the local 

critical buckling load of an ideal elastic element free of imperfections; 
- Winter curve dedicated to plate buckling and based on experimental tests; 
- Kettler curve (Kettler 2008) resulting from a study on the plastic capacity of semi-

compact H-sections. 
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Figure 12: Results from numerical simulations on I sections under pure compression and pure major-axis bending, using a 

sinusoidal imperfection with variation in the period of the longitudinal buckling wave. 
The most slender sections shown on Figure 12 and presenting a local slenderness 𝜆E = 1.50, 
exhibit a local reduction factor higher than the elastic behaviour of a perfect plate described by 
Von Karman curve 𝜒E = 1/𝜆E. As a matter of fact, Von Karman equation describes the 
behaviour of an ideal elastic plate and therefore the interaction between plates enhanced on the 
cross-sectional behaviour is not taken into account (Li 2014). 

 
Figure 13: Results from numerical simulations on H sections under pure compression and pure major-axis bending, using a 

sinusoidal imperfection with variation in the period of the longitudinal buckling wave. 
The analysis of Figure 12, Figure 13 and Figure 14 leads to the following observations: 

- At low slenderness, on Figure 12 and Figure 13, results lie above the pure resistance 
limit with 𝜒E ≥ 1.0. However, since these results were obtained at a state of large 
deformations, they enhanced important influence of strain-hardening.  

- As shown on Figure 12, Figure 13 and Figure 14, results obtained with 2 half-waves 
reach sensitively the same resistance as the results provided by the case which exhibit 
3 half-waves when a similar half-wave period is considered. 

- Figure 12 points out a peculiarity according to the influence of the length of the section 
for numerical simulations performed on IPES section. As a matter of fact, this section 
exhibits the minimum ratio 𝑏/ℎ = 0.28. Thus, when the flange width is used as the 
period of the half-wave, it decreases the length of the element to obtain 3 half-waves 
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on the element and an increased strength is obtained, which is attributed to the influence 
of boundary conditions providing additional stiffness.  

- Isolated results located below Kettler curve are highlighted on Figure 13 at 𝜆E = 1.024 
and 𝜆E = 0.736, which correspond to numerical simulations performed with a welded 
residual stress pattern. Therefore, the important drop in resistance can be due to a severe 
residual stress applied initially. 

 

 
Figure 14: Histograms which enhance the influence of the period of the sinusoidal imperfection on I-sections (upper 

histogram) and H-sections (lower histogram) made of steel S460, under axial compression. 
Figure 14 highlights that case –hw / P_pp / A_pp_200 can result in increased resistance. This 
set of imperfections involves the presence of different number of half-waves in the web and 
flanges. Besides, since the length of the specimen was chosen equal to the length obtained with 
case 3hw / P_avg / A_pp_200, the element does not necessarily enhance whole half-waves, 
which can decrease the second order effects.  

However, as shown on Figure 14, the discrepancy between results is insignificant and, does 
not reflect leads for choosing a specific period for the sinusoidal function introduced to modify 
the nodes position of the element. 
3.3 Amplitude of local geometrical default 
Secondly, to pursue the investigation of the influence of geometrical imperfections on the 
ultimate local resistance of open-sections, the subsequent section gathers the results and 
resulting observations related to the influence of the amplitude of the initial imperfections. The 
characteristics of the following 6 cases investigated hereafter, which differ in the amplitude of 
the half-waves are specified in section 2 (Table 1): 
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- 3hw / P_avg / A_pp_100; 
- 3hw / P_avg / A_pp_200; 
- 3hw / P_avg / A_pp_400; 
- 3hw / P_avg / A_avg_200; 
- 3hw / P_avg / A_w_200; 
- 3hw / P_avg / A_f_200. 

 
Figure 15: Results from numerical simulations on I sections under pure compression and pure major-axis bending, using a 

sinusoidal imperfection with variation in the amplitude of the longitudinal buckling wave. 

 
Figure 16: Results from numerical simulations on H sections under pure compression and pure major-axis bending, using a 

sinusoidal imperfection with variation in the amplitude of the longitudinal buckling wave. 
As expected, Figure 15, dedicated to the behaviour of I-sections highlights lower resistance 
when the length of the web governs the amplitude of the imperfection (3hw / P_avg / A_w_200) 
instead of the flange width (3hw / P_avg / A_f_200). This trend was foreseeable since I-sections 
exhibit a ratio b/h < 1.  

Moreover, for all loading situations, yield stress employed and residual stress pattern used, 
section HEA160 which presents a ratio b/h > 1, enhances higher resistance for case 3hw / P_avg 
/ A_w_200 where the web height is used for the amplitude of the imperfection compared to 
case 3hw / P_avg / A_f_200 in which the flange width is employed (see Figure 16 and Figure 
17). As a matter of fact, this section flange width is higher than its web height, and, therefore, 
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the imperfection 𝐴_𝑤_200 related to the web provides higher resistance than 𝐴_𝑓_200 which 
depends on the flange width. 

 

 
Figure 17: Histograms which enhance the influence of the amplitude of the sinusoidal imperfection on I-sections (upper 

histogram) and H-sections (lower histogram) made of steel S460, under axial compression. 
With respect to an amplitude chosen respectively to each plate, all figures highlight the 
obtainment of lower resistances for increased amplitude such as 𝐴_𝑝𝑝_100 case compared to 
lower amplitudes applied such as 𝐴_𝑝𝑝_200 and 𝐴_𝑝𝑝_400. Differences up to 7% between 
3hw / P_avg / A_pp_100 and 3hw / P_avg / A_f_400 are observed on Figure 17. 

Moreover, Figure 17 enhances that similar ultimate local load-carrying resistance are provided 
for an amplitude chosen respectively to each plate 𝐴_𝑝𝑝_200 and results obtained with a similar 
amplitude applied to each plate corresponding to 𝐴_𝑎𝑣𝑔_200. 

3.4 Eigenmode - conform initial pattern 
Ultimately, the influence of the amplification applied to the 1st buckling mode shape is 
developed herein. Both plate per plate and overall amplitudes were studied with various factors 
considered. 

The cases 𝐴_𝑝𝑝_100, 𝐴_𝑝𝑝_200 and 𝐴_𝑝𝑝_400 consider an amplification factor ai which 
differs within the plates (aw and af on the web and flanges respectively), whereas respecting to 
cases 𝐴_𝑎𝑣𝑔_100, 𝐴_𝑎𝑣𝑔_200 and 𝐴_𝑎𝑣𝑔_400, the same amplification factor is applied on 
the three plates and corresponds to the average between af and aw. 
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Figure 18: Results from numerical simulations on I sections under pure compression and pure major-axis bending, using the 

1st eigenmode as initial imperfection with variation in the amplitude applied to magnify the 1st buckling mode shape. 

 
Figure 19: Results from numerical simulations on H sections under pure compression and pure major-axis bending, using the 

1st eigenmode as initial imperfection with variation in the amplitude applied to magnify the 1st buckling mode shape. 
Figure 18 and Figure 19 point out that the lowest ultimate resistance is obtained for 𝐴_𝑝𝑝_100 
and the highest ultimate resistance with an amplitude 𝐴_𝑝𝑝_400, with respect to the plate-per-
plate applied amplitude. Similar results are expected for an average amplitude 𝐴_𝑎𝑣𝑔_𝑖 which 
is verified on Figure 20. 
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Figure 20: Histograms which enhance the influence of the amplitude of amplification applied on the 1st buckling mode shape 

on I-sections (upper histogram) and H-sections (lower histogram) made of steel S460, under axial compression. 
Whether if an average amplitude is applied overall or if the amplitude is applied independently 
with respect to each plate buckling length, the 3 figures above display similar results between 
the same order of amplitude, e.g 𝐴_𝑎𝑣𝑔_100 and 𝐴_𝑝𝑝_100, even for I-sections which exhibit 
important differences in their web and flanges dimensions.  

Furthermore, the use of the 1st buckling mode shape amplified with an amplitude divided by 
100 (𝐴_𝑎𝑣𝑔_100 and 𝐴_𝑝𝑝_100) leads to similar resistances than case 3hw / P_avg / 
A_pp_200, where a sinusoidal function is used to modify the nodes coordinates. Therefore, the 
use of the 1st eigenmode appears to be more favourable. 

Nevertheless, even though residual stresses were included into the FE model used for the 
acquirement of results shown above, the sub-study described in section 3 is focused on the 
geometrical imperfections influence. Therefore, section 4 presents the study related to the 
influence of material imperfections on the local load-carrying capacity of I and H sections. 

4 Influence of material imperfections 
The second parametric study presented in the following concerns the influence of material 
imperfections on the local ultimate load capacity of open-sections. The purpose of this study 
is to investigate the effects of various residual stress shapes for hot-rolled and welded sections 
to, at the end, suggest reliable guideline for FE modelling of material imperfections. 

Therefore, both welded and hot-rolled sections were considered and residual stress patterns 
coming from each manufacturing process were introduced before loading was applied. 

Influence of the magnification of the 1st buckling mode shape 
on I-sections under axial compression

IPE14
0

IPE40
0

IPES

c L
  [-

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
A_avg_100
A_avg_200
A_avg_400
A_pp_100
A_pp_200
A_pp_400
3hw / P_avg / A_pp_200

Influence of the magnification of the 1st buckling mode shape 
on H-sections under axial compression

HEA16
0

HEA60
0

HEAS

c L
  [-

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
A_avg_100
A_avg_200
A_avg_400
A_pp_100
A_pp_200
A_pp_400
3hw / P_avg / A_pp_200



 
 

23 

Moreover, with respect to hot-rolled sections, the influence of the maximum residual stress 
employed was investigated. Section 4.1 concerns hot-rolled sections whereas investigation 
respecting welded sections is presented on section 4.2. 
4.1 Hot-rolled profiles 
Firstly, the influence of hot-rolled residual stress pattern on the local load-carrying capacity 
was studied. Moreover, the impact of the maximum residual stress used is presented hereafter. 
triangu1ar_Fy 235 and triangu1ar_Fy actual refer to the triangular residual stress pattern 
whereas parabolic_Fy 235 and parabolic_Fy actual are related to the parabolic pattern, which 
are both presented in Figure 5. Moreover, Fy actual refers to residual stress patterns where a 
maximum stress corresponding to the actual yield limit have been used whereas Fy 235 
concerns sections whose maximum residual stress corresponds to 235	𝑀𝑃𝑎. 

First, the local behaviour of I-sections and H-sections under various hot-rolled residual stress 
patterns for all cases of geometrical imperfections is presented within Figure 21 and Figure 22, 
respectively. The x-axis refers to the local slenderness 𝜆E whereas the y-axis represents the 
local reduction factor 𝜒E (Boissonnade, et al. 2017).  

 
Figure 21:Results from numerical simulations on I sections under pure compression and pure major-axis bending, using 

various types of hot-rolled residual stress pattern. 

 
Figure 22: Results from numerical simulations on H sections under pure compression and pure major-axis bending, using 

various types of hot-rolled residual stress pattern. 
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As shown on Figure 21 and Figure 22, compact sections enhance lower discrepancy depending 
on the different residual stress patterns introduced, which can be explained by their lower 
sensitivity to imperfections. Figure 22 exhibits an important discrepancy in the results for H 
sections with a slenderness 𝜆E = 1.0, and belonging to the intermediate range. This disparity 
is due to the influence of both the residual stress chosen and the variations in the initial 
geometrical imperfections. Furthermore, results obtained for each residual stress pattern for 
very slender sections such as IPES with 𝜆E = 1.45, display negligible difference since this 
range of slenderness is less sensitive to the presence of imperfections. 
Then, in addition, Figure 23 exhibits through a histogram the numerical results obtained for 
each residual stress pattern with a specific geometrical imperfection corresponding to case a) 
3hw / P_avg / A_pp_200 specified above. Figure 23 represents for each specimen studied, the 
corresponding local reduction factor procured for the pure compression case and plotted on the 
y-axis. The figure aims at highlighting the variations between results. 

 
Figure 23: Histograms which enhance the influence of the hot-rolled residual stress pattern on I-sections (on the left) and H-

sections (on the right) made of steel S460. 
As expected, Figure 23 points out that when the actual yield limit is used instead of 𝐹& =
235	𝑀𝑃𝑎, for sections made of 𝐹& = 460	𝑀𝑃𝑎, a lower resistance is observed. As a matter of 
fact, regarding sections made of 𝐹& = 460	𝑀𝑃𝑎, if the maximum residual stress achieved 
corresponds to 460	𝑀𝑃𝑎, some fibres have already reached their plastic limit before loading 
is applied, and, hence, yielding spreads quicker involving earlier buckling and ultimately, 
failure. Therefore, for a similar ultimate strain allowed, compact sections whose applied 
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residual stress pattern is made with 𝐹& = 460	𝑀𝑃𝑎 will reach lower ultimate strength than the 
one with residual stress pattern made with 𝐹& = 235	𝑀𝑃𝑎.  

With respect to intermediate sections such as IPE400 and HEAS under pure compression, since 
higher residual stresses induce earlier yielding and thus premature buckling, failure occurs at 
an early stage. However, for HEAS section the differences between results obtained are 3% and 
4.5% lower for the parabolic and triangular shapes respectively, and 0.3% and 1% lower 
according to IPE400. 

Moreover, Figure 23 enables to observe that the parabolic residual stress pattern seems to 
procure higher resistance than the triangular residual stress pattern, especially within sections 
of intermediate slenderness such as IPE400 and HEAS. As a matter of fact, the influence of the 
variation in the residual stress pattern is more pronounced since this range of slenderness is 
more sensitive to the presence of imperfections. A worst residual stress pattern introduced into 
the model affects the occurrence of yielding and buckling which are both involved into the 
failure of sections of intermediate slenderness.  

Nevertheless, these differences between the 2 residual stress patterns are 1.4% when 𝐹& =
235	𝑀𝑃𝑎 is used and 0.7% when 𝐹& = 460	𝑀𝑃𝑎 is employed, according to HEAS section. On 
the other hand, results provided with IPES exhibit a difference of 0.5% with 𝐹& = 235	𝑀𝑃𝑎 
and 1.1 % with 𝐹& = 460	𝑀𝑃𝑎. 

To conclude, the discrepancy exhibited on Figure 21, Figure 22 and Figure 23 is insignificant 
and the adoption of a specific residual stress pattern for hot-rolled sections between the 2 
studied herein is not evident. Both residual stress shapes provide reliable ultimate resistance. 
Moreover, with respect to the maximum residual stress used, since negligible differences were 
enhanced and no references in literature justify the attainment of the yield stress for hot-rolled 
sections, the use of 𝐹& = 235	𝑀𝑃𝑎 represents the most reasonable option. 

4.2 Welded sections 
The influence of 2 residual stress patterns dedicated to welded sections and described in Figure 
5 is studied hereafter. Again plotted in 𝜒 − 𝜆 axes, Figure 24 and Figure 25 exhibit the results 
obtained from numerical simulations on welded I-sections and H-sections respectively. 
Afterwards, histograms presenting the results acquired for welded sections respecting to a 
specific case of geometrical imperfections (case a) 3hw / P_avg / A_pp_200) are shown in 
Figure 26. constant refers to the sections whose residual stress pattern corresponds to the 
constant pattern suggested in Figure 5 whereas trapezoidal is related to the trapezoidal residual 
stress pattern. For both patterns, a maximum residual stress corresponding to the actual yield 
limit was considered since residual stresses as high as the yield limit are usually reached in the 
welded areas. 
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Figure 24: Results from numerical simulations on I sections under pure compression and pure major-axis bending, using 

various types of welded residual stress pattern. 

 
Figure 25: Results from numerical simulations on H sections under pure compression and pure major-axis bending, using 

various types of welded residual stress pattern. 
Albeit no differences between results obtained with the constant and trapezoidal residual stress 
patterns are highlighted on Figure 25, Figure 24, related to the behaviour of welded I-sections, 
enhances a slight increased disparity among results. 
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Figure 26: Histograms which enhance the influence of the welded residual stress pattern on I and H sections made of steel 

S460 under axial compression (on the left) and under major axis bending (on the right). 
As shown on Figure 26, sections under pure compression procure lower resistance than sections 
under major axis bending, which was foreseen. The histograms point out that even though a 
minor difference between results is provided for the intermediate section IPE400 under pure 
compression, which enhances a lower resistance procured with the trapezoidal residual stress 
pattern, the resistance reached with both residual stress patterns is notably similar. 

5 Recommendations for the introduction of imperfections in FE modelling 
By means of an extensive campaign of numerical simulations on I and H sections, the 
investigations regarding the influence of various types of geometrical imperfections as well as 
several residual stress patterns conduct to the next recommendations. 
A specific sub-study providing a comparison between experimental tests and numerical results 
proved the reliability and consistency of the sets of imperfections studied throughout the 
parametric studies. The following observations concern the method and parameters to use, to 
account for initial geometrical imperfections: 

- even though it constitutes a reliable method, the use of the 1st buckling mode shape 
presents a lack of adaptability and the introduction of an initial deformed shape by 
means of sinusoidal functions was preferred; 

- sections of intermediate slenderness highlighted the most important discrepancy 
between the various sets of imperfections considered; 

- numerical simulations including an imperfection pattern characterised by an amplitude 
a/400 applied per plate reached the highest ultimate resistances whereas results with an 
amplitude a/100 were too conservative; 

- an equal imperfection amplitude applied to each plate and corresponding to the average 
between aw/200 and af/200 led to non-conservative results since it decreases the 
amplitude applied to the plate governing buckling; 

- the use of the dimension (af or aw) of one of the plate composing the section to define 
the half-wave period did not produce important differences from the results obtained 
with the average between af and aw; 

- half-wave period applied independently per plate procured too favourable results for 
some cases, and, even though this half-wave period is relevant, this set of imperfections 
was not adopted. 

Thus, the adoption of an imperfection defined by an amplitude applied ai/200 per plate and a 
period corresponding to the average between the web and flanges largest dimension (af and aw) 
appears to be a reasonable and appropriate choice.  
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Then, with respect to material imperfections, the parabolic pattern with a maximum residual 
stress of 235	𝑀𝑃𝑎 represents the most suitable choice for a hot-rolled section. Since 100% of 
the geometrical imperfections is elected, although the parabolic pattern is slightly more 
favourable than the triangular one (less than 1.5% different), results will remain secure. 
Moreover, even though the use of the actual yield stress leads to lower resistance, since 
negligible differences were enhanced and no references in literature justify the attainment of 
the yield stress for hot-rolled sections, it represents the most reasonable option.  

On the other hand, according to welded sections, negligible differences were encountered in 
the results obtained with the constant pattern and trapezoidal pattern. Hence, the constant 
residual stress pattern is recommended with a maximum residual stress corresponding to the 
actual yield stress, since, by enhancing the simpler characteristics, it constitutes the most 
convenient pattern for utilisation.  

6 Conclusion 
The major issue related to the introduction of imperfections into FE simulation is due to the 
lack of guidelines in current standards which deter from using Finite Element software and 
non-linear analyses.  
Hence, investigations by means of numerical simulations, related to the influence of 
imperfections on the local resistance of open section were carried out. Geometrical 
imperfections were introduced by means of sinusoidal functions and using the 1st buckling 
mode shape. Several amplitudes and number of half-waves were considered. Moreover, to 
complete the imperfection influence study, several residual stress patterns were investigated, 
respectively to both welded and hot-rolled manufacturing processes.  
Consequently, the recommendations were provided on section 5. With respect to geometrical 
imperfections, a sinusoidal function was found to be the most suitable solution to implement. 
Even though the introduction of the 1st buckling mode shape obtained with LBA analysis 
represents a consistent and reliable method, the use of sinusoidal functions was recommended 
since it provides more adaptability with greater control. The parabolic residual stress pattern 
and constant residual shape described in section 2 were recommended for numerical 
simulations of hot-rolled and welded sections respectively. 
Nevertheless, the guidelines specified herein concern uniquely the influence of geometrical 
and material imperfections on the local resistance of open sections. Further investigation is 
already available on the influence of imperfections on the member resistance of open-sections 
(Subramanian et White 2016).  
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