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Abstract 
The Flange Local Buckling (FLB) and Tension Flange Yielding (TFY) limit states in Chapter F of 
the ANSI/AISC 360 Specification tend to underestimate I-section member flexural resistances as 
the web and/or the compression flange become increasingly slender. The characterization of FLB 
only considers the compression flange buckling strength without accounting for its reserve 
postbuckling capacity. For the TFY limit state, the current equations limit the maximum moment 
of singly-symmetric slender-web I-section members to the first yield of the tension flange. 
However, the actual cross-section typically is able to develop extensive yielding of the tension 
flange and the tension region of the web. The FLB limit state check can be improved by 
implementing a form of the unified effective width approach, which recognizes the postbuckling 
resistance of slender flange elements. For the TFY limit state, simple calculations can be 
configured from mechanics of materials concepts, recognizing the ability of the region in flexural 
tension to develop extensive spread of yielding. These calculations eliminate the conservatism of 
the TFY equations while accurately characterizing the associated member structural stability.  

This paper proposes updated provisions recognizing the above FLB and TFY limit states behavior, 
and compares the performance of these provisions to the current limit state equations and to the 
results from full nonlinear FEA parametric studies. Recommendations are provided for further 
research to evaluate the impact and implications of these improvements more fully.  

1. Introduction 
In metal building frames, it is common to use a constant flange width within the fabricated seg-
ments of frame members, while stepping the thickness of the flange (as well as tapering of the web 
depth, and stepping of the web thickness) to achieve significant design economy. In these cases, it 
is not uncommon for the flanges to be classified as slender by the AISC flexural design rules in 
the vicinity of inflection points or regions of low bending moment. The current Specification 
provisions (AISC 2016) do not recognize flange postbuckling strength in flexural compression, 
although they do account for flange postbuckling strength under uniform axial compression.  
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The AISC (2016) Compression Flange Local Buckling (FLB) predictions match well with exper-
imental test results for typical cases within the stockier (i.e., smaller f = bf/2tf) range corre-
sponding to inelastic flange local buckling. However, the AISC FLB predictions have been shown 
to be significantly conservative for flanges classified as slender by the AISC flexural resistance 
rules. Figure 1 shows comparisons of the AISC predictions to experimental data collected by White 
and Jung (2008) focusing primarily on inelastic FLB. One can observe from these tests, and from 
other studies such as Seif and Schafer (2009), that the AISC FLB resistance equations tend to give 
a conservative estimate of the true FLB resistance for members having a slender compression 
flange (i.e., f / fr  > 1). This is due to the substantial postbuckling strength of slender compression 
flanges. Prior AISC and AASHTO developments have accepted this conservatism. The AASHTO 
(2017) Specifications limit the flange slenderness to bf /2tf = 12 as a precaution against flange 
welding distortion as well as to ensure robustness of rectangular flange plates during fabrication 
and construction. However, there are applications where a more accurate characterization of 
slender flange local buckling resistances can be beneficial.  

 
Figure 1: Mtest/Mn versus f / fr  for 11 rolled and 36 welded I-section members in which the flexural resistance is 

governed by FLB, adapted from White and Jung (2008).  

Figure 2 compares the AISC (2016) predictions, and recommended predictions discussed subse-
quently in this paper, to test simulation results from Toğay and White (2017) for a set of identical 
simply-supported beam-columns with doubly-symmetric cross-sections having a slender compres-
sion flange and a noncompact web in flexure (all elements classified as slender in uniform axial 
compression), subjected to different ratios of primary bending moment and axial compression. The 
AISC (2016) flexural resistances are governed by the FLB limit state for these members, resulting 
in up to 30 % conservatism relative to the test simulation results. The test simulation procedures 
are summarized in the Appendix.  

A succinct modification of the current flexural strength provisions to recognize the compression 
flange postbuckling resistance is possible. An important attribute of the Specification equations 
that must be preserved is the accurate characterization of FLB resistance, larger than the compres-
sion flange yield moment and up to the plastic moment, for I-sections having noncompact flanges 
and noncompact or compact webs. Approaches in other standards that characterize the FLB 
postbuckling strength of a slender flange, but then do not recognize the ability of a noncompact 
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flange section to achieve strengths larger than the yield moment to the compression flange, are 
deficient for common design situations involving compact or noncompact flanges and webs. 

 
Figure 2: Strength envelopes from test simulation, the AISC (2016) column and FLB flexural strength provisions, 

and the AISC column and recommended FLB flexural strength provisions, torsionally and flexurally simply-
supported doubly-symmetric I-section members with bf = 6.5 in., tf = 0.1806 in. (bf/2tf = 18), h = 19.8 in., tw = 

0.1787 (h/tw = 111), and Lx = Ly = Lz = Lb = 13 ft, subjected to axial force and moment gradient loading with an 
applied moment at one end (adapted from Toğay and White (2017)).  

For slender-web singly-symmetric members, the AISC Specifications have traditionally employed 
a Tension Flange Yield (TFY) limit state check simply equal to the yield moment of the tension 
flange, Myt. In prior practice, metal building engineers have sometimes used singly-symmetric 
sections with a smaller tension flange to achieve highly optimized designs. These types of sections 
are physically very efficient, since the depth of web in compression is reduced by shifting of the 
neutral axis toward the larger compression flange, and since the tension flange does not need to be 
as large for purposes of design efficiency (because it is in tension rather than in compression). 
Numerous studies, e.g., Subramanian and White (2017a), have shown that the TFY strength check 
can be quite conservative for slender-web I-section members. Figure 3 illustrates this conservatism 
in the AISC (2016) procedures, and improvements gained by the recommended procedures 
discussed subsequently, relative to test simulation results for a set of simply-supported beam-
columns. These 10 ft long members are singly-symmetric and are subjected to uniform primary 
bending. The right-hand quadrant of the plot corresponds to flexural compression on the larger 
flange. For this direction of bending, the AISC TFY limit state check governs the flexural 
resistance for Pu = 0. In the left-hand quadrant, the flexural resistance for Pu = 0 is governed for 
these members by FLB. The detailed behavior associated with the strength curves in Fig. 3 is 
explained in detail for similar members with Lb = Lx = Ly = Lz = 5 ft later in the paper. 

If a member’s web and compression flange are compact, and the member is sufficiently braced, 
the AISC Specification predicts a flexural capacity equal to the fully plastic moment, Mp. However, 
in the limit that the web is slender, the Specification has traditionally limited the resistance to the 
yield moment to the tension flange, Myt. Noncompact-web members are also handled very 
conservatively in the present Specification as the web becomes thinner. 

It is observed that for members where the current TFY limit state controls, eliminating the Tension 
Flange Yield check and calculating the member yield moment to the compression flange, Myc, 
accounting for the early spread of yielding within the tension zone, gives a better characterization 
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of the flexural resistance. The modified calculation of Myc can be written in a succinct closed 
form. This form is the true moment at first yielding of the compression flange, and is designated 
specifically as MycT, i.e., the yield moment to the compression flange, considering the early 
yielding of the tension flange and the spread of yielding within the tension zone.  

 
Figure 3: Strength envelopes from test simulation, the AISC (2016) column and flexural strength provisions, and the 

AISC column and recommended flexural strength provisions, torsionally and flexurally simply-supported singly-
symmetric I-section members with bfc = bft = 8.0 in., tfc = 0.75 in. tft = 0.25 in., h = 37.0 in., tw = 0.1875 in., and Lx = 

Ly = Lz = Lb = 10 ft, subjected to uniform primary bending moment and axial compression.  

2. Improved Representation of Flange Local Buckling (FLB) Limit States in Flexure 

For cases involving FLB, the conservatism associated with the current buckling-based calculation 
can be rectified by recognizing the compression flange postbuckling resistance via an application 
of the unified effective width approach. The following is one way of accomplishing this. 

For sections with a slender compression flange in flexure:  

a) The effective width of the flange is calculated directly given the flange elastic buckling stress  
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b) The location of the neutral axis for the effective cross-section, relative to the inside of the 
compression flange, Dce, and the effective section modulus corresponding to the compression 
flange, Sxce, are determined. 

c) The FLB resistance, considering the flange postbuckling strength, is then determined as 
RpgMyce, where Myce is the yield moment to the compression flange for the effective section and 
Rpg is the web bend buckling strength reduction factor, equal to 1.0 for compact- and 
noncompact-web sections, and calculated as discussed in Section 4 for slender-web sections.  

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P
u
/ϕ

P
y

Mu/ϕMp

Test Simulations

AISC 2016, FLB & TFY

Recommended, FLB & CFY

Flexural 
compression on the 
larger (top) flange 

Flexural compr. 
on the smaller 
(bottom) flange 



 5

For sections having a noncompact flange in flexure: 

a) The effective width reduction based on the noncompact flange slenderness limit, rf, is applied 
to the compression flange (regardless of the actual flange slenderness), and the corresponding 
RpgMyce is determined using the procedure explained above. This establishes an “anchor point” 
corresponding to the flange postbuckling resistance at  = rf, labeled as Myce(r) in Fig. 4.  

b) A modified linear interpolation is then employed between the anchor points (rf, Myce(r)) and 
(pf, MmaxFLB), where MmaxFLB is the plateau resistance equal to Mp for a compact-web section, 
RpcMyc for a noncompact-web section, and RpgMyc for a slender web section. This gives the 
improved estimate of the inelastic FLB resistance illustrated in Fig. 4. (Note: MycT is substituted 
for Myc in the case of cross-sections that exhibit early tension flange yielding.)  

 
Figure 4: Calculation of compression flange local postbuckling (FLPB) resistance within the inelastic FLB range.  

The above calculation preserves the clear qualities of the AISC FLB resistance calculations in for 
common cases with noncompact and compact I-section flanges, while recognizing the additional 
resistance associated with the flange local postbuckling response of slender flanges. White and 
Jung (2008) and White and Kim (2008) report reliability indices for FLB that are somewhat larger 
than the target value of 2.6 for statically determinate beam tests, based on the current AISC (2016) 
FLB equations. The above update results gives a reliability index estimates closer to 2.6.  

The updates mentioned above significantly improve the FLB resistance predictions corresponding 
to Pu = 0 in Figs. 2 and 3. The updates also improve the overall prediction of the strengths under 
combined flexure and axial load. It should be noted that the strength predictions for high axial load 
cannot be improved significantly relative to the results shown here unless a more accurate column 
strength curve were adopted. An improved representation of the shape of the beam-column 
strength curve can be obtained by using Inelastic Buckling Analysis (White et al. 2016). 

3. Improved Consideration of Tension Flange Yielding (TFY)  
When a singly-symmetric section is subjected to flexure with the larger flange in compression, the 
flexural resistance can be governed by tension flange yielding (TFY). If the section has a slender-
web, the TFY resistance can be quite conservative. While the AISC (2016) TFY limit is equal to 
the plastic moment capacity (bMp) for compact-web I sections, the TFY limit is equal to the 
tension flange yield strength (bMyt) for slender-web sections. 

Mn.FLPB

Mmax.FLB

Mn.FLPB

Myce(r)  

FLSxc

pf rfbf /2tf bf /2tf



 6

For cases in which first yielding is encountered at the tension flange (and for which the TFY 
resistance check is currently employed), one can account for the early yielding on the tension side 
of the neutral axis in the calculation of the yield moment to the compression flange. This modified 
yield moment is referred to as MycT. A representative flexural stress profile associated with this 
calculation is shown in Figure 5. Mechanistically, the use of MycT is more rigorous than the use of 
Myc, since MycT captures the influence of yielding on the tension side of the neutral axis. This 
modified yield moment can be employed with the FLB calculations discussed previously, as well 
as within the LTB equations, to provide an accurate characterization of the FLB and LTB limit 
states, including the impact from early yielding in flexural tension. The TFY limit state 
calculations are in effect folded into the determination of MycT. No explicit TFY limit state check 
is required in this updated approach. The resulting calculations are explained further below.  

A simple set of equations can be derived for the calculation of MycT by working with the flange 
forces at the flange centroids, rather than considering rectangular stress blocks associated with the 
flange forces (see Fig. 5). This streamlined calculation of MycT requires the distance between the 
neutral axis and the center of the compression flange, a. This variable is determined such that the 
net longitudinal force from the stress distribution in Fig. 5 is equal to zero: 
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Given a, the depth of the web in compression, DcT, is obtained as shown in Fig. 5.  

 
Figure 5: Representative flexural stress profile associated with the calculation of MycT, considering early yielding on 

the tension side of the neutral axis.  
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by summing the moment contributions from the stress blocks in Fig. 5. The cT cpD D approxima-

tion is valid for 0cpD  . For cases where Dcp in Eq. 5 becomes negative, the plastic neutral axis is 

located in the compression flange and the neutral axis associated with first yielding of the 
compression flange also tends to be in the compression flange. For this case, MycT may be 
approximated with good accuracy as the fully plastic moment Mp.  

Given the above calculations of DcT and MycT, these values are substituted for the terms Dc and Myc 
in the flowcharts presented in Section 4, which detail the recommended unified calculation of the 
flexural resistance for general homogeneous I-section members.  

4. Recommended Changes to the Unified Flexural Resistance Provisions 
White (2008) provides a detailed overview of the so-called “unified flexural resistance provisions” 
developed as part of the major updates to the AASHTO LRFD Specifications in 2004 and the 
AISC Specification in 2005. White (2008) provides flowcharts that illustrate the overall organiza-
tion of the unified calculations. Minor differences between the finalized AASHTO and AISC 
provisions and the unified provisions are explained where they occur.  

Figures 6 through 8 show a modified form of the flowcharts from White (2008). These updated 
flowcharts implement the recommended changes discussed above in Sections 2 and 3 in the 
context of homogeneous I-section members. Hybrid I-section members are addressed further in 
Toğay (2018). Furthermore, these flowcharts implement updates to the AISC LTB resistance 
calculations recommended by Subramanian et al. (2018) necessary to address low reliability index 
estimates in the intermediate inelastic LTB range, particularly for welded I-section members. The 
flowcharts in Figs. 6 through 8 utilize the terms Dc and Myc for the depth of the web from the inside 
of the compression flange to the neutral axis at the nominal first yielding of the compression flange 
and the yield moment to the compression flange, respectively. The corresponding values DcT and 
MycT discussed in Section 3 are substituted into Dc and Myc in cases where early yielding occurs at 
the tension flange, i.e., when Myt < Myc. (It should be noted that Sxc in Figs. 6 to 8 is the elastic 
section modulus to the compression flange, without any consideration of early tension flange 
yielding.) All the variables in Figs. 6 to 8 are expressed using the AISC (2016) notation, with the 
exception of 2Dc, which is expressed in the AISC Specification as hc. The term Rpg is denoted by 
Rb and the term FL (the “nominal compressive strength above which the inelastic buckling limit 
states apply”) is denoted by Fyr, in AASHTO (2017).  

The recommended modifications to the original “unified” flowcharts are as follows: 
 In Eq. 8 (see Fig. 6), the coefficient 5.7 in the corresponding AISC (2016) equation is replaced 

by the coefficient crw. This coefficient is defined in Eq. 9. This modification is based on 
observations by Subramanian and White (2017b), from physical tests and test simulations, that 
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I-girders with relatively small flanges compared to the web area exhibit a minor reduction in 
their flexural resistances when their webs are near the current noncompact web limit. That is, 
noncompact-web girders of this nature tend to perform more like slender-web girders.  

 In the flowchart cells containing Eqs. 13 and 14, and 22 through 25, the calculation of Rpt is 
eliminated. The recommended calculations no longer require any explicit calculation of 
Tension Flange Yielding (TFY). The TFY response is folded into the calculation of Myc = MycT 
for cross-sections having a larger compression flange such that Myt < Myc.  

 
Figure 6: Calculation of the web slenderness based parameters, Rpc and Rpg, and the nominal compressive 

strength above which inelastic buckling limit states apply, FL. 
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 Equations 15 and 19 are modified to FL = 0.5Fyc pertaining to Lateral Torsional Buckling. This 
is based on the recommendations from Subramanian et al. (2018) addressing low reliability 
index estimates in the intermediate inelastic LTB range. Engineers often consider FL to simply 
represent residual stress effects. However, there is far more to FL than just the consideration of 
residual stresses. This term also accounts for the reduction in the LTB capacity at intermediate 
unbraced lengths due to amplification of initial geometric imperfections by stability effects. It 
should be noted that the updated provisions no longer require FL in the determination of the 
FLB resistance, other than in the calculation of rf where it is recommended that FL for FLB 
may be taken simply as 0.7Fy for homogeneous cross-section members. The term FLSxc is 
replaced by Myce(r) as discussed below 

 The noncompact web slenderness limit is employed in the last term of Eq. 17 for Rpg. This is 
consistent with the form of the unified equations implemented in AISC (2016), but using the 
variable coefficient crw in the expression for rw.  

 Equation 30 in Fig. 7 is modified by replacing the original term FLSxc by Myce(r). This 
implements the enhancement illustrated previously in Fig. 4. 

 Equation 31 in Fig. 7 is modified from the theoretical elastic FLB equation to the yield moment 
to the compression flange in the effective cross-section, accounting for residual stress and 
geometric imperfection effects via Winter’s plate effective width equation, Eq. 2. 

 
Figure 7: Flange Local Buckling strength calculations. 

 
0.95 (29)

0.7
c

rf
y

k E

F

 

 
  



 10

 Equation 32 in Fig. 8 is modified from the original unified equation for Lp to again address 
low reliability index estimates in the intermediate inelastic LTB range (Subramanian et al. 
2018). In addition, this modified equation recognizes that test simulations commonly show a 
smaller “plateau length” than indicated by the original unified provisions (Subramanian and 
White 2017c, 2017d; Kim 2010; Greiner and Kaim 2001).  

 Equations 38 and 41 specify the limit on the moment above which inelastic buckling limit 
states apply. This moment is taken as FLSxc as in the prior unified provisions. However, in the 
case of highly singly-symmetric cross-sections with the larger flange in compression, Myc = 
MycT potentially can be smaller than FLSxc. In this extreme case, Mycr is taken equal to MycT.  

 
Figure 8: Lateral Torsional Buckling strength calculations 

White (2008) shows a fourth flowchart for the calculation of Mn(TFY). As stated above, the TFY 
limit state check is replaced by the consideration of early yielding in flexural tension in the 
calculation of the yield moment to the compression flange, MycT. This relegates Tension Flange 
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Yielding to a secondary role in the calculation of the flexural resistance, similar to the manner that 
the original unified flexural resistance equations relegated Web Local Buckling to a secondary role 
in the calculation of the FLB and LTB resistances.  

5. Beam-Column Strength Interaction 
With one change regarding exceptional cases, it is recommended to address the interaction of axial 
and flexural resistance using the AISC (2016) bilinear strength interaction equations H1-1a and 
H1-1b, as illustrated in Figs. 2 and 3. The exceptional cases and the recommended change for these 
cases are discussed below in Section 6. The true beam-column strength envelopes for general 
singly-symmetric I-sections can be rather complex. However, deficiencies in the strength predic-
tions for high axial compression are often driven in part by the use of a single column strength 
curve to represent the axial compressive resistance. Without improving the accuracy of the column 
strength estimates, improvements in the accuracy of beam-column resistances are often limited.  

As noted previously, improvements in the representation of the shape of beam-column strength 
curves can be obtained by using Inelastic Buckling Analysis (White et al. 2016). However, this 
paper focuses on manual calculations and their comparison to test simulation results. 

6. Comprehensive Example Illustrating Recommended Compression Flange Buckling and 
Tension Flange Yielding Improvements 
A detailed example is presented in this section to demonstrate the calculations outlined in Sections 
2 and 3, and to compare the resulting predictions to the limit states response determined by test 
simulation. This example is the same as in Fig. 3, except Lb = Lx = Ly = Lz = 5 ft here. The particular 
cross-section studied is from a clear-span metal building frame design shared with the authors. 
Similar to Fig. 3, Fig. 9 compares the current AISC (2016) and the recommended strength 
predictions to the results from test simulation.  

 
Figure 9: Strength envelopes from test simulation, the AISC (2016) column and flexural strength provisions, and the 

AISC column and recommended flexural strength provisions, torsionally and flexurally simply-supported singly-
symmetric I-section members with bfc = bft = 8.0 in., tfc = 0.75 in. tft = 0.25 in., h = 37.0 in., tw = 0.1875 in., and Lx = 

Ly = Lz = Lb = 5 ft, subjected to uniform primary bending moment and axial compression. 

With the current AISC (2016) Specification, the flexural resistance for Pu = 0 is limited by TFY 
for flexure causing compression on the larger flange (i.e., for the curve in the right-hand quadrant 
of the plot). It is limited by FLB for flexure causing compression on the smaller flange (corre-
sponding to the left-hand quadrant of the plot). However, with the recommended provisions, the 
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flexural resistance in the right-hand quadrant is limited by LTB while the flexural resistance in the 
left-hand quadrant is limited by Flange Local Postbuckling (FLPB). The AISC (2016) TFY check 
is 28% conservative relative to the corresponding test simulation strength in the right-hand 
quadrant for Pu = 0 while the AISC (2016) FLB check is 23% conservative relative to the test 
simulation results in the left-hand quadrant. The recommended calculations are 0.5% and 6% 
conservative relative to the test simulation results for Pu = 0.  

6.1 Results from intermediate and final resistance calculations  
The results of the various intermediate and final resistance calculations are listed below:   

 Cross-section dimensions & width-to-thickness ratios 
Top flange:              bf = 8 in., tf = 0.75 in., bf/2tf = 5.33 
Bottom flange:        bf = 8 in., tf = 0.25 in., bf/2tf = 16.0 
Web:                        h = 37 in., tw = 0.1875 in., h/tw = 197 

For bending causing compression on the larger flange: Dc = 13.4 in., 2Dc/tw = 143, Dcp = 7.83 in. 
(Eq. 5), DcT = 0.999Dcp (Eq. 3b in Fig. 5), 2DcT /tw = 83.5 

For bending causing compression on the smaller bottom flange: 2Dc/tw = 252 

 Overall cross-section properties 
Fy = 55 ksi, Ix = 3236 in4, Sxc = 229 in3, Sxt = 136 in3, My.top = 1047 ft-kip, My.bot = 622 ft-kip,       
Mp = 886 ft-kip, Mp/My.top = 0.846, Mp/My.bot = 1.42 

For bending causing compression on the larger top flange: MycT = 870 ft-kip  

Note that the yield moment to the top flange, My.top, is actually larger than the fully-plastic moment 
for this section. This is due to the neglect of the early onset of yielding at the bottom flange in this 
traditional calculation per AISC and AASHTO. The AISC and AASHTO resistance equations in 
whole account for the early yielding at the bottom flange in this type of section, but they tend to 
handle this attribute of the strength behavior conservatively via a relatively elaborate implementa-
tion of the Rpc and Rpt factors.  

 Flange slenderness limits (Table B4.1 of the AISC (2016) Specification) 
8.73pf   and 15.4rf   (flexure), 8.69rf   (axial compression)  

The larger top flange of the subject cross-section is nonslender under uniform axial compression 
and compact under flexure. This means that local buckling of this flange is not a factor in the 
calculation of the resistances for any combination of axial load and moment. 

The smaller inside flange is slender under both uniform axial compression and flexure. This 
indicates that local buckling of this flange is a significant factor in the resistance under both 
uniform axial compression and flexure causing compression on the inside flange.  

The recommended provisions are the same as the AISC (2016) provisions with regard to the above 
limits, with the exception that the term FL is expressed simply as 0.7Fy in the recommended 
provisions. This is made possible by the consideration of TFY directly in the calculation of MycT.  

 Web slenderness limits 
AISC (2016) nonslender web limit for uniform axial compression: 34.2rw   (Table B4.1a) 

This limit is the same for the recommended and the AISC (2016) calculations. The web is classified 
as slender under uniform axial compression. 
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AISC (2016) noncompact web slenderness limit in flexure: 5.7 / 131rw yE F   (Table B4.1b) 

Recommended noncompact web slenderness limit in flexure (Subramanian and White 2017b):  
When the larger top flange is in flexural compression: Afc = 6 in2, Awc = 2.51 in2, Afc / Awc = 2.39, 
crw = 5.7 (Eq. 9), 131rw   (Eq. 8) 

When the smaller bottom flange is in flexural compression: Afc = 2 in2, Awc = 4.42 in2, Afc / Awc = 
0.452, crw = 4.6 (Eq. 9), 106rw   (Eq. 8) 

AISC (2016) compact web slenderness limit in flexure:  
When the larger top flange is in flexural compression: pw = 85.2 (Table B4.1b) 

When the smaller bottom flange is in flexural compression: pw =40.3 (Table B4.1b) 

Recommended compact web slenderness limit in flexure:  
When the larger top flange is in flexural compression: m = 4.69 (Eq. 12), pw = 108 (Eq. 11) 

When the smaller bottom flange is in flexural compression: m = 2.17 (Eq. 12), pw = 49.8 (Eq. 11) 

AISC (2016) web classification in flexure:   
When the larger top flange is in flexural compression, since (2Dc/tw = 143) > (rw = 131) the web 
of the subject cross-section is slender in flexure. 

When the smaller bottom flange is in flexural compression, since (2Dc/tw = 252) > (rw = 131) the 
web of the subject cross-section is slender in flexure. 

Recommended web classification in flexure:  
When the larger top flange is in flexural compression, since (2DcT/tw = 83.5) < (pw = 108), the 
web is compact in flexure.  

When the smaller bottom flange is in flexural compression, since (2Dc/tw = 143) > (rw = 106), the 
web is slender in flexure.  

 Governing FLB and FLPB flexural resistances for compression on the smaller bottom flange 
AISC (2016) calculations: Rpg = 0.789 (Eq. F5-6), aw = 4.42 (Eq. F4-12), Fcr = 35.7 ksi (Eq. F5-
9), Mn(FLB) = 287 ft-kip (Eq. F5-7), and ϕMn(FLB) / ϕMp = 0.359  

Recommended calculations: Rpg = 0.744 (Eq. 16), aw = 4.42 (Eq. 17), bfe = 5.30 in. (compression 
flange) (Eq. 2), Sxce = 114 in.3, ϕMn(FLB) = 349 ft-kip (Eq. 31), and ϕMn(FLB) / ϕMp = 0.438 

 Governing TFY and LTB flexural resistances for compression on the larger top flange 
AISC (2016) calculations: Mn(TFY) = 560.05 ft-kip (Eq. F5-10) 

Recommended calculations: MycT = 867 ft-kip (Eq. 6), m = 4.69 (Eq. 12), Rpc = 1.02, ϕMn(LTB) =782 
ft-kip (Eq. 37), ϕMn(LTB) / ϕMp = 0.975 

 Member axial compressive resistance: 
AISC (2016) calculations: Fe = 227 ksi (Eq. E3-4), Fcr = 49.7 ksi (Eq. E3-2), be = 8.46 in. for the 
web (Eq. E7-3), be = b = 8.00 in. for the larger top flange (Eq. E7-2), be = 5.54 in. for the smaller 
bottom flange (Eq. E7-3), Ae = 8.97 in.2, Pn = 401 kips (Eq. E7-1), Pn /ϕPy = 0.54 

6.2 Discussion of Overall Results 
The following are key observations that can be highlighted regarding the final strength curves 
shown in Fig. 9: 



 14

 Members having the above dimensions are able to develop very close to the factored plastic 
moment resistance of the cross-section at low axial force levels, when the larger compact (top) 
flange is in flexural compression. This is evidenced by the intersection of the solid curve with 
the horizontal axis on the right-hand side of the plot. The recommended modification of the 
AISC (2016) provisions predicts the test simulation strength in flexure alone quite well. The 
current AISC provisions are quite conservative for this loading case. This is due to the fact that 
the current provisions limit the flexural resistance of this cross-section to the nominal first 
yielding of the tension flange, bMyt.  

 Figure 10 shows the contours of the plastic equivalent strain (PEEQ) at the mid-surface of the 
component plates at the peak load, for the case of Pu = 0 and flexural compression on the larger 
top flange. The darkest contour indicates the locations that are still elastic at this stage. The 
other contours indicate different magnitudes of yielding. It can be observed that at this load 
level, the bottom flange, the majority of the top flange, and more than half of the web have 
yielded. In Fig. 5, the recommended design model predicts the onset of yielding at a depth of 
2a = 2DcT + tfc = 16.4 in. below the centroid of the top flange at the first yield to the compression 
flange for this section. This is 43% of the total depth between the flange centroids. This value 
matches well with the extent of the elastic region shown in Fig. 10. The internal moment from 
the test simulation at the peak load is only slightly less than Mp, and it is in fact approximately 
equal to MycT, which is itself only slightly less than Mp. 

 

 
Figure 10: PEEQ (plastic equivalent strain) contours on the deflected shape for example singly-symmetric I-section 

member subjected to uniform moment loading causing compression on the top flange (Pu = 0). 

 The flexural resistance for the above Pu = 0 case is predicted quite accurately considering the 
reductions for the noncompact web and for inelastic LTB, and the reductions due to extensive 
yielding in the tension zone captured by the yield moment to the compression flange, MycT. It 
should be noted that if the AISC (2016) LTB equations are employed without the modifications 
in Eqs. 9, 15, 19 and 32, they generally tend to over-estimate the test simulation results 
(Subramanian and White, 2017a, 2017b, 2017c, 2017d; 2017e; Subramanian et al., 2018).  

 For flexure causing compression on the larger compact (top) flange in the above members, 
there is a minor increase in the physical flexural resistance with the addition of a small amount 
of axial compression,. This is due to a reduction in yielding on the side of the neutral axis in 
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flexural tension, due to the added axial compression. However, the cross-section is already 
yielded extensively at these strength limits. Therefore, the enhancement in strength is very 
minor compared to what one would expect by considering theoretical elastic stresses and 
strength of materials equations. The AISC Eqs. H1-1a and H1-1b are far from perfect in 
capturing this behavior. However, with the recommended enhancements in the flexural 
resistance calculations, the corresponding beam-column resistances are substantially larger 
than with the current provisions. Given that Pu/Py is typically less than about 0.2 in metal 
building frames, the recommended enhancements are quite effective at capturing the true 
capacities in the context of metal building frame members.  

 Considering the case of flexural compression on the smaller slender (bottom) flange with zero 
axial compression, the test simulations show 37 % larger strength than obtained using the AISC 
(2016) FLB equations (or as noted above, the AISC (2016) FLB check is 23% conservative 
relative to the test simulation results). This is due to the lack of recognition of compression 
flange local postbuckling strength in the current provisions. The recommended provisions 
recognize this additional source of resistance, and predict the test simulation results with only 
minor conservatism. It should be noted that flexural compression on the smaller (bottom) 
flange is not a likely loading scenario for the cross-section considered in this example. 
However, the results are representative of those for more practical cross-sections, say in the 
vicinity of an inflection point in a frame, where both flanges may be relatively thin.  

 The rigorous beam-column strength interaction shown by the solid curve on the left-hand side 
of the plot, obtained from the test simulation studies, is essentially linear for all practical 
purposes. Both the recommended and the current application of AISC Eqs. H1-1a and H1-1b 
extend slightly above this rigorous curve (i.e., they are slightly unconservative) at two different 
locations. The dotted (recommended) curve extends slightly above the rigorous curve within 
the vicinity of the “knee” of Eqs. H1-1. This is due to the fact that the true interaction is closer 
to linear. However, the conservatism of the AISC column strength curve (i.e., cPn) for these 
members results in the predictions using Eqs. H1-1 still being reasonably good using the 
recommended calculations. Conversely, the current AISC (2016) prediction (i.e., the dashed 
curve) extends somewhat more markedly above the rigorous solid curve at high axial load 
levels. This is due to the fact that, under high axial compression, the small slender (bottom) 
flange and the web adjacent to this flange have a significant reduction in their effective areas. 
This effective area reduction, which occurs just on the bottom side of the members, results in 
a shift of the effective centroid and an introduction of an effective eccentricity of the axial 
compression force relative to this effective centroid. For the recommended (dotted) interaction 
curve, the combination of the conservative cPn and the inclusion of this effective eccentric 
moment from the axial compression results in an accurate prediction, avoiding the 
unconservatism in the predictions from the current AISC (2016) provisions.  

 It should be noted that the moment, Mu, on the horizontal axis of the plot does not include the 
above additional internal moment, due to the eccentricity of the applied axial loads with respect 
to the effective centroidal axis of the cross-section under high axial compression. The addi-
tional internal eccentric moment causes a shift in the strength curve. One can observe that the 
peak Pu/Py point on both the dashed AISC (2016) curve and the dotted recommended curve 
are at the same value, i.e., approximately 0.54. This corresponds to the AISC (2016) axial 
compressive resistance of these members, governed by flexural-torsional buckling. The test 
simulations predict a somewhat larger axial compressive resistance of these members.  
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 The behavior of these members, if we consider the cases starting with Mu = 0 (where the 
strength curves cross the vertical axis) and as we start to apply small Mu > 0, causing flexural 
compression on the larger compact (top) flange, is that the resulting net compressive stresses 
on the smaller slender (bottom) flange are reduced. This results in an overall net increase in 
the axial compressive resistance due to the application of small Mu > 0 to the members. 
However, once we have applied a little less than Mu = 0.2Mp to the members, the increasing 
compression on the top flange becomes more dominant in its effect on the member ultimate 
strength. Hence, for Mu larger than about 0.2Mp, the subject members start to support less and 
less Pu with increasing Mu.  

 It appears that the maximum Pu/Py point, on the dotted (recommended) design strength curve 
and on the solid (rigorous) test simulation based strength curve, occur at roughly the value of 
Mu that is equal and opposite to the eccentric moment caused by the axial force acting through 
the eccentricity between its line of action and the effective centroid of the cross-section (where 
we have lost significant effective area on the side of the cross-section corresponding to the 
smaller (slender) bottom flange.  

 It should be noted that the AISC (2016) Specification and commentary do not address the 
impact of the axial load eccentricity due to loss of effective area on singly-symmetric cross-
section members. The AISI (2012) Specification did speak to this issue, although the AISI 
(2016) Specification is now silent about it. The original development of the unified effective 
width method (Peköz (1986)) showed that accurate predictions were obtained for general 
singly-symmetric and unsymmetric beam-columns, with the exception of slender angle 
sections, when the moment of the axial loads is taken about the centroidal axis of the effective 
section determined considering axial load alone. AISI (2016) relaxes the requirement that the 
bending moment should be defined with respect to the centroidal axis of the effective section. 
The increased eccentricity due to local buckling can have a measurable impact on the resistance 
of in an ideally pin-ended member; however, this effect tends to become minor in continuous 
members or members with ends restrained, where the rotations due to these eccentricities are 
restrained. As stated above, AISC (2016) also neglects these effects. An additional eccentric 
bending moment may be included in Eqs. H1-1, to account conservatively for potential 
situations where shifting of the cross-section effective centroidal axis due to local buckling 
may have a measurable impact on compression member resistances. This practice parallels the 
handling of these effects in CEN (2006). It is included here to obtain the best correlation with 
the test simulation results, where the ends of the unbraced lengths are assumed to be flexurally 
and torsionally simply supported.  

 The most important results in the above plot, pertaining to the design of common metal 
building frame members, are the results for small values of Pu. One can observe that with the 
recommended calculations, the strengths at small Pu are represented very accurately.  

7. Further Research  
The updates provided in this paper show promise to remove significant conservatism in the Flange 
Local Buckling (FLB) and Tension Flange Yielding (TFY) provisions of the current AISC (2016) 
Specification in certain cases. The authors are in the process of investigating the results of these 
changes for a reasonably comprehensive range of member geometries in their on-going research, 
and final results from these studies are anticipated to appear in (Toğay, 2018).  

One specific consideration under investigation is a minor interaction with the web shear strength 
in singly-symmetric members currently governed by TFY, where the flexural resistances can be 
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increased dramatically by “folding” the TFY considerations into the calculation of the yield 
moment to the compression flange, McyT. Moment-shear interaction considerations have been 
addressed extensively in the prior research by White et al. (2008), including experimental consid-
eration of a wide range of hybrid cross-section members (lower web yield strength) with the neutral 
axis located at various depths including as extreme as being located within the compression flange 
at the strength limit. White et al. (2008) showed that moment-shear strength interaction could be 
neglected for a comprehensive range of I-section members. However, this was in the context of 
the current AISC (2016) TFY flexural resistance calculation as well as the shear buckling resis-
tance for unstiffened webs and the AISC (2016) and AASHTO (2004) tension field shear 
resistance equations. The existing experimental results indicate that some minor moment-shear 
strength interaction needs to be considered in the broader context of the above recommended elimi-
nation of the AISC TFY resistance equations. Furthermore, when the shear postbuckling strength 
is considered for unstiffened webs, as implemented in the AISC (2016) Chapter G, some account-
ing for moment-shear strength interaction may be appropriate for extreme singly-symmetric 
sections where the tension flange exhibits early yielding. Subramanian (2017a) has conducted a 
limited number of studies of moment-shear interaction via test simulation. Her results indicate 
only minor interaction of the flexural and shear strengths. Therefore, it is believed that the above 
moment-shear strength interactions can be addressed by a simple reduction in the maximum 
calculated shear resistance in these cases.  

8. Conclusion 
This paper elucidates the conservatism of the current AISC (2016) Flange Local Buckling (FLB) 
and Tension Flange Yielding (TFY) resistance provisions in certain cases, recommends potential 
changes to the Specification that alleviate this issue, and provides detailed examples showing the 
improvement in the strength predictions by the recommended provisions. The recommended 
updates would significantly improve the quantification of beam and beam-column resistances in 
cases involving slender flanges in flexural compression as well as singly-symmetric members 
having a larger compression flange, such that the tension flange is subjected to early yielding.  

Appendix  
In this paper, test simulations are presented based on AISC (2016) Appendix 1.3, using residual 
stresses and geometric imperfections recommended by Subramanian and White (2017e). The 
details of these test simulation models are summarized below.  

Finite Element Idealization  
The ABAQUS 6.14 (Simulia 2014) finite element analysis software is employed to model the 
members considered in these study. In all cases, full nonlinear shell finite element solutions using 
the S4R element are used to model for both webs and flanges. The S4R is a four-node quadrilateral 
large strain shell formulation. The mesh is generated using 12 elements across the width of the 
flanges, and 20 elements through the depth of the web. The shell element aspect ratio is chosen to 
be approximately 1.0 in the web to determine the number of the elements along the member length.  

Material Properties 
The material properties Fy and E are multiplied by 0.9, as required by AISC 2016 Appendix 1.3. 
For the yield plateau of the material, the tangent stiffness is modeled as E/1000 for strains up to 
ten times the yield strain (εy). After this point, the strain hardening modulus is taken as E/50. At 
the levels of the strains observed in the test simulations, true stress versus log strain and 
engineering stress versus engineering strain are essentially the same.  
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Residual Stresses 
Residual stresses of one‐half the Best‐fit Prawel pattern (Kim (2010)) for welded sections are 
assumed in all the studies (see Fig. 11). These residual stresses are recommended by Subramanian 
and White (2017e) as appropriate values necessary for close correlation with lateral torsional 
buckling experimental test results.  

 
Figure 11: One-half of best-fit Prawel residual stress pattern for welded I-sections. 

Geometric Imperfections 
The test simulations include a base initial out-of-straightness of the flanges equal to one-half of 
the AWS (2010) and AISC Code of Standard Practice (COSP) geometric imperfection tolerance 
of Lb/1000, modified as discussed below. Subramanian and White (2017e) show that these reduced 
geometric imperfections are necessary for close correlation with experimental results.  

Flange tilt and web out-of-flatness patterns are obtained by elastic eigenvalue buckling analysis of 
the members with the out-of-plane displacements restrained at the top and bottom flange-web 
juncture points, and with the members being subjected to uniform axial compression. Given the 
resulting buckling modes, the flange tilt and web-out-flatness are isolated and scaled to one-half 
the tolerance values as illustrated in Fig. 12. 

 
Figure 12.Web out-of-flatness and flange tilt imperfections. 

The resulting flange tilt and web out-of-flatness imperfections are combined with a flange sweep 
that is applied at the web-flange juncture points. If the flange under consideration is subjected to 
flexural compression, a sinusoidal flange sweep is applied as shown in the top plot of Fig. 13. For 
the flange in flexural tension, zero sweep (i.e., an “Imperfection Factor” IF = 0) is applied if the 
net force in the flange is in tension. Otherwise a flange sweep between zero to Lb/2000 is applied 
based on IF. This is illustrated by the bottom plot in Fig. 13. The variation of IF as a function of 
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the ratio of the approximate axial forces in the flanges subjected to flexural tension and flexural 
compression, Pft/Pfc, is shown in Fig. 14.  

 
Figure 13.Applied sweep imperfections. 

 
Figure 14. IF (tension flange sweep Imperfection Factor) calculation. 
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