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Abstract 

In this paper the linear buckling of simple trapezoidal sheet panels is discussed, in the light of the 

mechanics-based global-distortional-local classification. The calculations are performed by using 

the constrained finite element method, which can readily handle trapezoidal sheets and which 

can easily and objectively separate the global, distortional and local buckling of trapezoidal 

sheeting. A few demonstrative examples are presented. The examples imitate simple elementary 

cases, such as simply supported rectangular plates subjected to uni-directional uniform 

compression or pure shear. The examples prove that the global-distortional-local classification of 

deformations can meaningfully be applied to understand the complex buckling behavior of 

trapezoidal sheets.  

 

 

1. Introduction 

Trapezoidal sheeting is employed in various structural engineering applications. The primary 

loading is mostly perpendicular to the plane of the sheeting, but in many cases the sheeting is 

also subjected to in-plane actions, most typically when the sheeting is designed to contribute to 

the global rigidity of the structure. Due to the slender nature of the sheeting, buckling is 

important, especially if in-plane actions are present. Though in the case of thin-walled 

beam/column members it is usual to classify the buckling modes as global, distortional and local, 

similar classification has not rigorously been applied for trapezoidal sheeting so far. Even if in 

some literature global and local buckling of trapezoidal sheeting is discussed, see e.g., Dou et al 

(2018), the underlying phenomena are sometimes mechanically different from those described as 

global or local buckling of beam/column members, whilst distortional buckling of sheeting is 

usually not discussed. In the actual paper it is shown that the mechanical criteria behind the 

global-distortional-local classification of beam/column members can be used to trapezoidal 

sheeting, too, so that any pure buckling mode or any combination of pure buckling modes can be 

calculated for various loads and supports. In the paper the linear buckling of simple trapezoidal 

sheet panels is discussed in the light of the mechanics-based global-distortional-local 

classification. The calculations are performed by using the recently developed constrained finite 

element method, see Ádány (2018) and Ádány et al. (2018), which can readily handle trapezoidal 

sheets and which can easily and objectively separate the global, distortional and local buckling of 
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trapezoidal sheeting. Only a few cases are considered. The examples are slightly theoretical, 

since the support conditions and applied loading do not try to correspond to a certain application, 

but rather try to imitate simple elementary cases, such as simply supported rectangular plates 

subjected to uni-directional uniform compression or pure shear. 

 

2. The constrained finite element method 

The constrained finite element method (cFEM) is essentially a shell finite element method, but 

the finite element is developed so that modal decomposition would be possible. Separation of the 

behaviour modes is realized by applying mechanical constraints. In order to maintain 

constraining ability, the longitudinal shape functions are specially selected, but the shell elements 

can be used as any regular flat shell element. When a member is constrained into a deformation 

mode (e.g., to global mode), it is enforced to deform in accordance with some mechanical 

criteria, characterizing for the intended deformation mode. The criteria can be expressed by R 

constraint matrices. The application of the constraint matrix enforces to fulfil certain relationship 

between various nodal degrees of freedom, specific to the given ‘M’ deformation space. This 

automatically means a reduction of the effective degrees of freedom. Mathematically, the d 

displacement vector is expressed as follows: 
 
  (1) 

 
where RM is the constraint matrix to the M space, and dM is the reduced displacement vector. 

Since the dM reduced displacement vector has fewer elements than that of the original d vector, 

the elements of dM vector cannot (typically) be interpreted as nodal displacements anymore. The 

column vectors of the constraint matrix can also be viewed as the basis vectors of the 

displacement field that is represented by the constraint matrix, that is, in Eq. (1) the d 

displacement vector is expressed as a linear combination of base vectors, where the combination 

factors are the entries of the dM vector. 

 

An important feature of the finite element analysis by cFEM is that transverse and longitudinal 

directions are strictly distinguished. When deformations are constrained or decomposed, these 

are the transverse cross-section deformations that are manipulated, practically independently of 

the employed longitudinal shape functions. Moreover, cFEM modal decomposition or constraints 

can be applied to either the whole member at once, or to any of its bands (where band is a small 

section of the member with one single shell element longitudinally, see Fig. 1). It is found to be 

more convenient to complete the constraining band by band, so this approach is followed here. 

 

    
 

Figure 1: cFEM discretization and basic terminology. 
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Since cross-section constraints are essentially independent of the longitudinal displacement 

distributions, various longitudinal shape functions can be used. In classic finite element analysis 

Lagrange and Hermite polynomials are used, which are employed also in cFEM whenever 

buckling analyses are performed. (Note, in other cases, notably when cFEM is used for modal 

identification, Fourier-like longitudinal functions are found to be more convenient, but this 

feature of cFEM is not utilized here.) 

 

In the case of linear buckling analysis, when the problem is formulated as a generalized eigen-

value problem, the equation to solve is:  
 
  (2) 

 
where Ke and Kg are the global elastic and geometric stiffness matrices, and 
 
  (3) 

 
where  is the critical load multiplier and  is the associated buckling shape, and nDOF 

denotes the number of degrees of freedom. When the constraints are enforced, the displacement 

vector is expressed by modal coordinates, see Eq. (1). This equation can also be applied to any 

buckling shape , since the buckling shape itself is a displacement vector. Therefore: 
 
  (4) 

 
which is another generalized eigen-value problem, given in the reduced M deformation space, 

where KeM and KgM can be regarded as the modal version of the elastic and geometric stiffness 

matrix, respectively. Solving the above equation leads to the modal eigen-vectors , from 

which the buckled shapes  can be back-calculated by using Eq. (4). 

 

 

3. Deformation modes of trapezoidal sheets 

In Fig. 2 some characteristic deformation modes are shown for trapezoidal corrugated sheets. 

The deformation modes can be interpreted as the modes of a beam or column member, where the 

cross-section has a zig-zag shape, but the cross-section is constant in the longitudinal direction. 

As always, the deformation modes are independent of the supports, defined solely by the 

member (i.e., corrugated sheet) geometry. In Fig. 2 the deformation modes are shown by 

axonometric figures, by using a single half-sine-wave for the longitudinal distribution, but it is to 

emphasize that the longitudinal displacement distribution has no real effect on the displacement 

modes, so the half-sine-waves are used here just for illustration. 

 

The nature of the deformation modes is primarily determined by the topology of the cross-

section, i.e., the shape ad number of troughs, though the exact shapes and the order of the 

deformation modes are dependent on the geometric proportions (and in some cases on the 

discretization, too). Thus, the deformation modes presented here can be regarded as qualitatively 

representative for trapezoidal sheets. Only minor-axis and major-axis global bending (GB1 and 

GB2), global torsion (GT), distortional (D), and a primary local (LP) modes are shown. More 

information on the deformation modes in general can be found in Ádány (2018) and Ádány et al. 

(2018). 
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Figure 2: Deformation modes of trapezoidal sheets, samples. 
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Fig. 2 shows the case of a plate with 5 corrugations. GB1, GB2 and GT are classic global modes 

with rigid-body cross-section displacements. For the actual geometry the number of D modes is 

18, but only the first 9 D modes are shown. D modes are characterized by cross-section distortion 

which can be observed at the mid-length of the member in Fig. 2. It can be observed that most of 

D modes are characterized by a certain number of half-waves in the transverse direction, e.g., D1 

and D2 have 2 transverse half-waves (note, D1 and D2 look very similar, but still different), D3 

and D6 have 3 transverse half-waves (note again, D3 and D6 look very similar, but still 

different), etc. For the actual geometry the number of LP modes is 24, but only the first 8 are 

shown. As expected, in the case of local deformation modes the intersection lines of the 

connecting plate elements remain straight.  

 

4. Buckling of trapezoidal sheets subjected to pure compression 

Three examples are presented here to illustrate the modal buckling behaviour of trapezoidal 

sheets if subjected to pure axial compression. The selected sheet geometry is as follows: the 

length is 600 mm, the sheet depth is 20 mm, the width of the lower flanges is 50 mm, the width 

of the upper flanges is 40 mm, the total width of one single corrugation is 120 mm, while the 

thickness is 1.5 mm. The only difference between the examples is the number of corrugations. In 

Example #1 the sheet is consisted of 3 corrugations, hence the total width is 360 mm, in 

Example #2 there are 5 corrugations (total width: 600 mm), while in Example #3  there are 7 

corrugations (total width is 840 mm).  

 

The material is steel-like, with E=210000 MPa, but the Poisson’s ratio is set to zero (in order to 

avoid the potential artificial stiffening effect of the constraining, which is discussed e.g. in 

Ádány (2012). The load is a longitudinal compression, uniformly distributed over the end cross-

sections, its intensity is 1 N/mm2. 

 

The sheet is supported along all its 4 edges by simple supports. For the longitudinal (straight) 

edges the simple support means that translations in Y and Z are restrained. For the transverse 

(zig-zag) edges the simple support means that translations in the local z directions are restrained 

(which corresponds to a locally and globally pinned support if the sheeting panel is interpreted as 

a beam/column member).  

 

Linear buckling analyses have been performed by using various constraints, and the first few 

buckled shapes and corresponding critical values are determined. The following constraints are 

applied: local modes only (L), distortional modes only (D), global and distortional modes (G+D), 

global, distortional and local modes (G+D+L), and also analyses without any constraints. It is to 

note that solution in G only does not practically exist, since GB1, GB2 and GT deformations all 

contradict to the applied boundary conditions. The results are summarized in Figs. 3, 4 and 5, for 

Example #1, #2 and #3, respectively. For all the constraining options the first two buckling 

modes are given. 

 

As far as pure L buckling is concerned, the buckled shapes consist of various numbers of half-

waves (longitudinally) in the wider (i.e., lower) flanges. The critical stress values are marginally 

affected by the number of corrugations, the lowest pure L critical stresses being around 845-

850 N/mm2.  
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L, mode #1, σcr=846.4 N/mm2 L, mode #2, σcr=849.1 N/mm2 

  
D, mode #1, σcr=2602 N/mm2 D, mode #2, σcr=2680 N/mm2 

  
G+D, mode #1, σcr=648.9 N/mm2 G+D, mode #2, σcr =1939 N/mm2 

  
G+D+L, mode #1, σcr=601.1 N/mm2 G+D+L, mode #2, σcr=844.7 N/mm2 

  
no constraints, mode #1, σcr=577.4 N/mm2 no constraints, mode #2, σcr=831.5 N/mm2 

 
Figure 3: Example #1, buckling results by enforcing various constraints 

 

 



 7 

  
L, mode #1, σcr=845.0 N/mm2 L, mode #2, σcr=847.2 N/mm2 

  
D, mode #1, σcr=1123 N/mm2 D, mode #2, σcr=2044 N/mm2 

  
G+D, mode #1, σcr=493.8 N/mm2 G+D, mode #2, σcr =732.0 N/mm2 

  
G+D+L, mode #1, σcr=484.2 N/mm2 G+D+L, mode #2, σcr=684.8 N/mm2 

  
no constraints, mode #1, σcr=468.8 N/mm2 no constraints, mode #2, σcr=655.7 N/mm2 

 
Figure 4: Example #2, buckling results by enforcing various constraints 

 

Pure distortional buckling exists. The longitudinal wavelength and the number of transverse 

waves are depending on the sheet geometry, especially on the corrugation number. For example, 

in the case of three corrugations there are 2 or 3 half-waves longitudinally in the first two pure 

distortional buckling modes, but for larger number of corrugations there is only one half-wave 

longitudinally. The value of the lowest pure D critical stress is strongly dependent on the number 

of corrugations. In the case of 3 corrugations the pure D critical stress is rather high (approx. 
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2600 N/mm2), but this critical value is rapidly decreasing as the number of corrugations is 

increasing (e.g., approx. 700 N/mm2 for 7 corrugations). 

 

Even though the G deformation modes contradict to the considered boundary conditions, G 

deformation modes have important role in the buckling behavior. As soon as G deformation 

modes are added to the D deformations, the lowest buckled shapes as well as the corresponding 

critical values become fairly similar to those from the ‘no constraints’ solutions. This also means 

that the importance of the L and O other (i.e., in-plane shear and transverse extension) 

deformations in the ‘no constraints’ solutions is relatively small, at least in these examples. It can 

also be observed that the importance of L and O modes become smaller and smaller as the 

number of corrugations is increasing.   

 

  
L, mode #1, σcr=844.7 N/mm2 L, mode #2, σcr=845.9 N/mm2 

  
D, mode #1, σcr=701.2 N/mm2 D, mode #2, σcr=979.9 N/mm2 

  
G+D, mode #1, σcr=462.6 N/mm2 G+D, mode #2, σcr =560.0 N/mm2 

  
G+D+L, mode #1, σcr=457.6 N/mm2 G+D+L, mode #2, σcr=544.7 N/mm2 

  
no constraints, mode #1, σcr=444.1 N/mm2 no constraints, mode #2, σcr=525.4 N/mm2 

 
Figure 5: Example #3, buckling results by enforcing various constraints 
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5. Buckling of trapezoidal sheeting subjected to pure shear 

Three examples, i.e., Examples #4, #5 and #6, are presented here to illustrate the modal buckling 

behaviour of trapezoidal sheets if subjected to pure shear.  

 

  
L, mode #1, τcr=1105 N/mm2 L, mode #2, τcr=1105 N/mm2 

  
D, mode #1, τcr=1768 N/mm2 D, mode #2, τcr=3018 N/mm2 

  
G+D, mode #1, τcr=1111 N/mm2 G+D, mode #2, τcr=1320 N/mm2 

  
G+D+L, mode #1, τcr=764.1 N/mm2 G+D+L, mode #2, τcr=812.3 N/mm2 

  
no constraints, mode #1, τcr=718.6 N/mm2 no constraints, mode #2, τcr=755.5 N/mm2 

 
Figure 6: Example #4, buckling results by enforcing various constraints 
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The examples are essentially identical to the previous ones (e.g., same geometries, same 

supports, same material), the only difference is the loading. Pure shear loading is applied, 

realized by distributed loading, applied to all 4 edges, always parallel with the actual edge. The 

load intensity is defined so that the shear stress in the whole sheet would be equal to 1 N/mm2. 

Linear buckling analyses have been performed by using the same constraining options as in the 

previous Section. The results are summarized in Figs. 6, 7 and 8, for Example #4, #5 and #6, 

respectively. For all the constraining options the first two buckling modes are given. 
 

  
L, mode #1, τcr=1104 N/mm2 L, mode #2, τcr=1104 N/mm2 

  
D, mode #1, τcr=980.0 N/mm2 D, mode #2, τcr=985.1 N/mm2 

  
G+D, mode #1, τcr=870.4 N/mm2 G+D, mode #2, τcr=929.1 N/mm2 

  
G+D+L, mode #1, τcr=688.4 N/mm2 G+D+L, mode #2, τcr=723.1 N/mm2 

  
no constraints, mode #1, τcr=639.3 N/mm2 no constraints, mode #2, τcr=672.2 N/mm2 

 
Figure 7: Example #5, buckling results by enforcing various constraints 
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In general, the tendencies and observations are similar to those from the previous examples. For 

example, L buckling takes place in the wider (i.e., lower) flanges, but now the buckled shapes 

show the classic shear plate buckling patterns. The critical stress values are marginally affected 

by the number of corrugations, the lowest pure L critical stresses being around 1105 N/mm2. 

 

  
L, mode #1, τcr=1104 N/mm2 L, mode #2, τcr=1104 N/mm2 

  
D, mode #1, τcr=823.0 N/mm2 D, mode #2, τcr=853.9 N/mm2 

  
G+D, mode #1, τcr=819.2 N/mm2 G+D, mode #2, τcr=845.2 N/mm2 

  
G+D+L, mode #1, τcr=671.0 N/mm2 G+D+L, mode #2, τcr=687.9 N/mm2 

  
no constraints, mode #1, τcr=622.0 N/mm2 no constraints, mode #2, τcr=637.3 N/mm2 

 
Figure 8: Example #6, buckling results by enforcing various constraints 

 

Pure distortional buckling exists also in the case of shear loading. Similarly to the pure 

compression case, the value of the lowest pure D critical stress is strongly dependent on the 

number of corrugations: in the case of 3 corrugations the pure D critical stress is rather high 

(approx. 1770 N/mm2), but this critical value is rapidly decreasing as the number of corrugations 

is increasing (e.g., approx. 820 N/mm2 for 7 corrugations). Unlike in the case of pure 

compression, however, the buckling pattern is hardly affected by the number of corrugations. 
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G deformations have important role. It is to observe that the buckled shapes from the G+D 

options are visually identical to those from the ‘no constraints’ solutions. However, the critical 

values from the G+D and from the ‘no constraints’ solutions are fairly different. This indicates 

the importance of L and O deformations. By looking at the G+D+L critical values, however, it 

turns out that L deformation have pronounced role in these actual examples. 

 

6. Conclusions 

In this paper the constrained finite element method has been applied to study the buckling 

behavior of trapezoidal sheets. Since the method interprets the behavior as the superposition of 

global, distortional, local and other deformation modes, it makes possible to understand the 

complex buckling behavior of trapezoidal sheets as a superposition of modal behavior 

components. In the paper a few elementary examples are shown and discussed. Based on the 

results, the following conclusions can be drawn:  

 The constrained finite element method is applicable not only to beam-like thin-walled 

members, but also to plates, including trapezoidal sheets. 

 The G+D+L classification of the deformations can readily and meaningfully be applied to 

trapezoidal sheets. Though it is not typical to discuss distortional buckling of simple 

trapezoidal sheets, D deformations exist. Pure D buckling exists, too. If the corrugation 

number is large enough, pure D critical value might be reasonably close to the regular finite 

element solution (without constraints), which suggests that D deformations are dominant.  

 Even if the boundary conditions do not allow pure G deformations (that is, they do not allow 

pure G buckling), G deformations are crucially important in the behavior. 

 Pure L, or pure D buckling exist for various loading situation, including pure shear loading. 

 

Though it is not discussed in this paper, the results show that the support conditions have 

important effect on the behavior. Also, the exact realization of the loading is an important factor 

to consider. Most surely the sheet geometry has important effect. All these questions should be 

studied in the future. 
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