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Abstract 
This paper presents analytical and numerical buckling analysis of a functionally-graded plate 
under uniaxial compression. Functionally graded materials (FGMs) are advanced composite 
materials which are characterized by gradual change in material properties within a given 
direction. The mechanical properties of the plate are assumed to vary continuously in the 
thickness direction using power law, sigmoid and exponential functions in terms of the volume 
fraction of constituent materials (metal and ceramic). Analytical and theoretical formulation for 
FGM plate buckling is conducted based on a first-order-shear deformation theory (FSDT) and 
the Galerkin method, an effective method for solving differential equations, was selected to solve 
an eigenvalue problem for determining the stability of FGM plate. Numerical analysis was then 
completed using ABAQUS to verify and validate the mathematical formulation. Parametric 
studies are then performed for different material models, aspect ratios, length to thickness ratios 
and plate boundary conditions. Finally, the optimum material gradation of the FGM plates was 
selected from numerical simulations. The results of this investigation demonstrate the potential 
application of FGMs as thin-walled structural component in the future development of resilient 
and sustainable structural components/systems. 
 
1. Introduction 
With increasing development in technology, manufacturing and construction process, the biggest 
challenge the material science and civil engineering community faces these days is selection of 
appropriate materials and the study of their responses under different loading environment. One 
of a new class of composite materials recently developed is functionally graded materials 
(FGMs). These are a new class of advanced materials characterized by non-homogenous material 
system with gradual gradation of material properties within a given dimension. This gradation is 
achieved by either combining two or more materials using volume-fraction or by treating a single 
material chemically to change its initial properties. The functionally graded composite material 
with then have a unique and different material properties from the individual constituent 
materials while preserving their individual benefits. Unlike the traditional composites, in which a 
reinforcing material is distributed throughout the bulk matrix material, FGMs are advanced 
composite in which two or more materials are mixed with a graded interface to avoid a distinct 
boundary between the bulk materials. 
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The history of man experimenting and combining two materials to get a better material is dated 
back to 2500 BC, when ancient humans learned to melt metals such as copper and tin from ore 
and began alloying the two metals to form bronze, which was much harder than its ingredients. 
Since then, for sole reason of improving material properties to modern day, man has been able to 
produce new class of material called composites. The original idea of compositional and material 
gradient for polymer materials was first proposed by Bever (1972) in 1972. The concept of FGM 
for engineering application was then first originated in Japan in 1984 during hypersonic space 
plane project as a thermal barrier to resist high temperature gradient (with outside temperature of 
2000K and inside temperature of 1000K across 10 mm or less thickness) for space shuttles 
(Karam Y. Maalawi 2011, Rasheedat M. Mahamood 2012).  That is, the body of the plane needs 
a composite material that would be exposed to a temperature gradient of 1000K, between the 
inside and outside of space plane. Conventional laminated composite was tried for this 
application, but they failed. The failure mode was due to delamination, that is the separation of 
the laminate composite materials from where the two materials were joined together. The 
researchers at the time understood that if the sharp interface between the two materials that forms 
the composite material could be eliminated, then the problem would be solved. Thus, they 
changed the sharp interface to gradient interface-by gradually introducing the second material to 
the first. Thus, using this method they were able to produce a new advanced material that was 
able to withstand the intended high temperature application. Numerous information about FGM 
are available in (Y. Miyamoto et al. 1999, Najafizadeh and Eslami 2002, Kieback et al. 2003, 
Birman and Byrd 2007, Bohidar et al. 2014, Bhavar et al. 2017). 

 
Figure 1: Development in engineering materials 

 
The stability of rectangular functionally graded plates has been studied by several researchers in 
recent years. Reddy (2000) developed a finite element formulation theory for thermo-mechanical 
response of FGM using the higher-order shear deformation theory. Local buckling of rectangular 
FGM-stiffened plates based on classical plate theory was studied in Abdolvahab (2016). Stability 
and bifurcation analysis of a simply-supported FGM rectangular plate subject to transversal and 
in-plane excitations was studied by Sahari et al. (2016). Bodaghi and Saidi (2010) developed an 
exact analytical solution for buckling of functionally graded rectangular plates subjected to non-
uniformly distributed in-plane loading acting on two opposite simply supported edges resting on 
elastic foundation. Ferreira et al. (2005) explores and analyze static deformations of a simply 
supported functionally graded plate modeled by a third-order shear deformation theory. Shariat 
et al. (2005) studied the buckling behavior of rectangular functionally graded plates with 
geometrical imperfections using equilibrium, stability, and compatibility equations using the 
classical plate theory for an imperfect functionally graded plate. Qian et al. (2004) studies the 
static deformations and free and forced vibrations of a thick rectangular functionally graded 
elastic plate by using a higher-order shear and normal deformable plate theory (HOSNDPT) and 
a meshless local Petrov–Galerkin (MLPG) method.  Using the FSDT and finite element method, 
Anil Gite (2015) explores the buckling behavior of functionally graded plates under in-plane 
compression considering effect of geometrical parameters (i.e., aspect ratio, and slenderness 
ratio) on the mechanical buckling of FGM plate.  
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In this paper a mathematical formulation for FGM plate under uniaxial compression is derived 
using FSDT and the results are compared with available literature and with numerical simulation 
using FE package ABAQUS. The deformation and stress in the FGM plate are derived based on 
the assumptions provided in Chi and Chung (2006). Line elements perpendicular to the middle 
surface of the plate before deformation remain normal and un-stretched after deformation; the 
deflection of the FGM plate is small in comparison with its thickness h, such that the linear strain 
displacement relations are valid; the normal stress in the thickness direction can be neglected 
because the thickness which is assumed in the range 1/20 ~ 1/100 of its span is small and for the 
non-homogeneous elastic FGM plate, the Young’s modulus and Poisson’s ratio of the FGM plate 
are functions of the spatial coordinate (thickness).  
 
2. Mechanical properties of FGM plate 
FGMs are a mixture of ceramic and metal or a combination of different metals made by 
gradually varying the volume fraction of the constituent materials. The functionally graded 
material can be continually produced by varying the constituent multi-phase materials in a 
predetermined profile. The constitutive material property which varies with a given direction is 
expressed using volume fraction variation. This volume fraction variation can be described using 
power law function, sigmoid function or exponential function. 

 
Figure 2: Material properties variation across the plate thickness 

 
2.1 Power-law material function (P-FGM) 
The volume fraction variation of FGM in power law function can be expressed with Eqn.1 along 
the thickness direction. 
 

                                                                                                                       (1) 

 
Once the local volume fraction is defined, the functional relation of material properties at any 
point across the thickness of the plate can be expressed according to the general rule of mixtures. 
The young’s modulus variation for P-FGM can be calculated Eq. 2 
 
                                                                                                     (2) 

 
Where E1 and E2 are the Young’s moduli of the FGM plate at bottom (h/2) and top (-h/2) 
surfaces. The variation of E(z) in the plate thickness direction for P-FGM model is shown in Fig. 
3. 
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Figure 3: Variation of Young’s modulus for P-FGM plate 

 
2.2 Sigmoid material function (S-FGM) 
The volume fraction variation of FGM in sigmoid function can be expressed with Eqns. (3- 4) 
along the thickness direction which is divided in to two parts of the FGM thickness. 

 

                                                                                                     (3) 

                                                                                           (4)

  
By using the rule of mixture, the Young’s modulus of the S-FGM can be calculated by: 

                                                                          (5) 

                                                                       (6) 

 

 
Figure 4: Variation of Young’s modulus for S-FGM plate 
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2.3 Exponential material function (E-FGM) 
The exponential function is used by many researchers to describe the variation of elastic modulus 
with the following function 

                                                                                                                             (7) 

 Where         and  

 
Figure 5: Variation of Young’s modulus for E-FGM plate 

 
3. Mathematical formulation of FGM plate 
Based on the first assumption stated in (Chi and Chung 2006) , the transverse strain components 
are negligibly small. Therefore, the displacement at any point in the x, y and z direction can be 
expressed as: 
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                                                                                                          (13) 

 
3.1 Constitutive stress–strain relation of FGM plate 

Based on the last two assumptions, the constitutive stress–strain relation for plane stress for an 
FGM plate can be expressed as: 
 

                                                                                (14) 

                                                                                (15) 

                                                                                   (16) 

 
3.2 The axial forces, shear forces and the bending moment of FGM plate 

 
Figure 6: Forces in small solid FGM element  
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                                                         (17)                                                                     

Where the coefficients Aij, Bij and Cij are the integration of the material properties of the FGM 
plate along the thickness and they are expressed as: 
                     

                          

                    

                              (18) 

 
Flexural rigidity of FGM plate with constant poison ratio and varying Young’s’ modulus can be 
obtained from the coefficients with the following equation (Chi and Chung 2006)  
 

                                                                                                                     (19)  
                                          

3.3 Flexural rigidity solution for P-FGM plates 
For P-FGM, substituting Eq. (2) into Eqn. (18), with MATLAB aid, one can obtain simplified 
solution for coefficients , and  as shown below 
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                                                                                                                             (21) 

Where: 

                                                                                                         (22a) 

                                                                                            (22b) 

                                                                    (22c) 

For a uniformly graded (Isotropic and homogenous) plate, Ec-Em=0, such that Eqn. (21) can be 
reduced to well-known flexural rigidity for plate as 
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When element is in equilibrium, resultant forces in x-direction must be zero 

 

 or  

                                                                                                                      (27a) 

Similarly, the resultant forces in y-direction yields, 
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                                               (27c)   
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Figure 7: Rectangular FGM plate subjected to in-plane loading 
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assumed to have isotropic and homogenous material property using the volume fraction and the 
overall thickness would attain a gradual variation of material property from one face to other. 
The Young’s modules for metal (Em) and ceramic (Ec) considered are 29500 ksi and 55114 ksi 
for metal and ceramic respectively. The poison ratio was assumed to be constant for each layer 
with a value of 0.3. 

  
(a)                                                                            (b) 
Figure 8: Critical buckling load for a/b=4 (a) P-FGM and (b) S-FGM 

 

   
          (a)                                                                                            (b) 

Figure 9: Critical buckling load for P-FGM (a) a/b=3 and (b) a/b=2 
 

  
          (a)                                                                                            (b) 
Figure 10: Critical buckling load for P-FGM (a) a/b=1.5 and (b) a/b=1.0 
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From Fig. 6-10 it can be observed that the higher the FGM plate thickness the higher the critical 
buckling load in all the three FGM material functions. Another observation is that the Sigmoid 
function (S-model) results in relatively similar critical buckling loads for each plate thickness 
with varying p values. Exponential function (E-model) resulted in the smallest critical buckling 
loads in all aspect ratios considered in the analyses. Power-law function (P-model) with index 
n=5.0 resulted the highest critical buckling load not only among other n-values but also from all 
the three material functions considered. The first critical buckling mode has also been changed 
from a single half-wave for plate aspect ratio of 0.5 and 1.0 to four half-waves for aspect ratio of 
4.0 and two and three half-waves in between. Critical buckling load shows three distinct patterns 
in P-FGM model, where there is a reduction in buckling load from aspect ratio 0.5 to 1.0 and 
increases from 1.0 to 1.5 and then decreases from 1.5-4.0. 
 

   
(a)                                                                                           (b) 

    
                                       (c)                                                                                                (d) 

                             Figure 11: Critical buckling load versus index value for P-FGM model 
 
Critical buckling load comparison for SSSS and CCCC boundary conditions for plate aspect 
ratio of 1.0 is presented in Tables 1 and 2 below. It can be observed that the critical buckling 
loads for fixed-fixed boundary condition for all power-law index values is higher than the one 
with simply supported FGM plate. 
  

Table 1: Critical buckling load for SSSS FGM plate (104 lb) P-FGM model 
h b/h n=5 n=2 n=1 n=0.5 n=0.1 
8 5 147.22 138.336 130.948 123.688 112.960 
4 10 21.999 20.740 19.774 18.828 17.4004 
2 20 2.954 2.7884 2.666 2.5472 2.3658 
1 40 0.3804 0.3592 0.3439 0.3289 0.3061 

0.5 80 0.04818 0.0455 0.0436 0.04172 0.03885 
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Table 2: Critical buckling load for CCCC FGM plate (104 lb) P-FGM model 
h b/h n=5 n=2 n=1 n=0.5 n=0.1 
8 5 208.868 195.06 182.88 171.132 156.19 
4 10 35.338 33.259 31.616 30.009 27.607 
2 20 4.8848 4.609 4.4056 4.207 3.905 
1 40 0.6292 0.5942 0.5689 0.5443 0.5066 

0.5 80 0.0793 0.0749 0.0718 0.0687 0.0641 
 
5. Conclusions 
In this paper buckling analysis of a rectangular functionally graded plate was investigated 
through both analytical solution and numerical simulations. Analytical solution was obtained 
using the Galerkin method of solving differential equations which are derived from equilibrium 
and compatibility equations. Numerical simulation was also performed for all FGM material 
functions, aspect ratio and different boundary conditions. From the results, it was observed that 
the power-law function (P-FGM) with index n=5.0 resulted the highest critical buckling load for 
all plate aspect ratio and both plate boundary conditions. Sigmoid function (S-FGM) results in 
relatively similar critical buckling loads for each plate thickness and exponential function (E-
FGM) resulted in the smallest critical buckling loads in all aspect ratios considered in the 
analyses. Critical buckling load for CCCC boundary conditions was observed to be higher than 
SSSS plate for all material functions, plate thickness as well as plate aspect ratio. 
 
The results presented herein considered only uniaxial compression load, two boundary 
conditions. In order to fully understand the buckling behavior of FGM plates and to consider this 
newly developed materials for civil engineering application, future research effort need to extend 
these observations by conducting experimental tests, simplify the analytical solution for easy use 
and perform parametric study to include different loading conditions, boundary conditions and 
material models.  
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