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Abstract 
This paper reports the results of a numerical investigation on the buckling behavior of thin-walled 
steel tubes subjected to combinations of axial compression and external lateral pressure – these results are 
obtained by means of a GBT-based beam finite element formulation, recently developed by the authors, 
and also ANSYS shell finite element analyses. After providing a brief overview of the main concepts 
and procedures involved in performing GBT buckling analyses of circular cylindrical steel shells (such 
as cylinders/tanks and pipes), a parametric study is presented. It deals with the assessment of the buckling 
behavior of thin-walled steel tubes (radius-to-thickness ratio below 100) under various combinations of 
axial compression and external lateral pressure. In particular, the joint influence of the loading, length-to-
radius ratio and radius-to-thickness ratio on the tube critical buckling load and mode shape is investigated. 
 
 
1. Introduction 
The undersea or underground pipelines and jacket offshore platforms used in the petroleum industry 
are often formed by circular thin-walled steel tubes that are normally acted by combinations of axial 
compression and external lateral pressure. When such tubes exhibit slender cross-sections they are 
highly susceptible to the occurrence of local and/or global buckling phenomena, a feature that renders 
the numerical assessment of their structural behavior and strength a complex task (Teng & Rotter 2004). 
Various approaches have been used to assess the buckling behavior of circular cylindrical steel 
shells under hydrostatic external pressure. Probably the most popular of them consists of using the 
energy method to determine the critical buckling pressure (Arjomandi 2010). On the other hand, an 
analytical solution to obtain bifurcation/buckling loads of cylindrical tubes under combined external 
pressure and axial compression, using Donnell’s simplified equations, was developed, almost half a 
century ago, by Krishnamorthy (1974) – however, the major difficulty associated with the development 
and usage of closed form solution stems from (i) the presence of expressions with various undetermined 
coefficients and (ii) the mathematical determination of the number of lobes, i.e., circumferential waves 
associated with the tube buckling mode. The numerical assessment of the structural response of circular 
cylindrical steel shells under hydrostatic external pressure also constitutes a complex task. Indeed, rigorous 
numerical analyses can only be performed by resorting to shell finite element models, a time-consuming 
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approach still prohibitive for routine applications (e.g., Ross 2011). Moreover, the differential equation 
governing the adjacent equilibrium of a shell structure acted by external pressure and axial compression 
must take into account the follower nature of the lateral pressure, i.e., the fact that it changes direction 
during the shell deformation, in order to remain always normal to the shell wall (e.g., Paimushin 2008). 
 
A promising alternative approach is the use of Generalized Beam Theory (GBT), a thin-walled prismatic 
bar theory incorporating genuine plate/shell theory concepts. The authors have recently developed and 
numerically implemented a GBT formulation specifically aimed at investigating the buckling behavior 
of circular cylindrical shells subjected to axial compression and external pressure (Basaglia et al. 2016) 
– up to now, this GBT formulation has been validated and applied exclusively in the context of (i) tubes 
under external pressure alone and (ii) pressure vessels subjected to hydrostatic pressure (i.e., acted by 
small axial compressive stresses along its length). 
 
In the available literature on shell buckling, the curvature effects are often taken into account through 
the normalized/dimensionless Batdorf parameter 2 2 1/2(1 ) /Z L rtυ= − , where υ is Poisson’s ratio 
and L, r and t are the shell length, radius and thickness, respectively (Batdorf 1947) − the limit case of Z 
equal to zero corresponds to a flat plate. Basaglia et al. (2016) have shown that, when Z is small and the 
aspect ratio L/r is not too large, the buckling mode shape of shells/tanks under hydrostatic pressure 
exhibits a large number of circumferential half-waves. A thorough search of the relevant literature 
showed that very few results are available concerning the buckling behavior of thin-walled steel tubes 
with radius-to-thickness ratios ( /r t ) below 100 and subjected to combined axial compression and 
external pressure (e.g., Galletly & Pemsing 1985) – this is mostly due to the fact that major oil and gas 
land pipelines have /r t  values ranging between 20 and 40 (Kyriakides & Corona 2007). However, 
there are several results available in the literature dealing with the buckling behavior of cylindrical shells 
under combined loading and exhibiting geometries characterized by / 100r t ≥  and 4000Z <  − such 
geometries are fairly common in chimneys, silos, tanks and many aerospace/mechanical structures. In 
this context, it is worth noting the works due to Weingarthen & Seide (1965), Tennyson et al., (1978), 
Yamaki (1984), Shen & Chen (1991), Winterstetter & Schmidt (2002) and Sun et al. (2016). 
 
The work presented in this paper aims at contributing to fill the gap identified in the previous paragraph, 
by performing a parametric study dealing with the assessment of the buckling behavior of thin-walled 
steel tubes (i) subjected to combination of axial compression and external lateral pressure and (ii) 
exhibiting geometrical and material properties such that / 100r t ≤ and the Z parameter varies from small 
to large. The determination of the critical bifurcation load/pressure values and corresponding buckling 
mode shapes is carried out by means of a Generalized Beam Theory specialization that makes it possible 
to solve a large number of problems in a very short period of time – in this particular case, several 
combinations of loading, length-to-radius ratio and radius-to-thickness ratio are considered. For 
validation purposes, some GBT results are compared with values obtained by means of ANSYS 
shell finite element analyses (SAS 2013). Finally, on the basis of the results gathered, the key 
parameters governing the buckling behaviors under consideration are identified and discussed. 
 
 
2. GBT Main Concepts and Procedures 
Because the cross-section displacement field is expressed as a linear combination of mechanically 
meaningful deformation modes, GBT analyses (i) lead to equilibrium equations written in a rather 
convenient form and (ii) make it possible to perform modal analyses of prismatic thin-walled members, 
which provide very clear insight on their structural behavior. Figure 1 depicts a prismatic member with 
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a circular hollow section, having radius r and wall thickness t, and the global coordinate system X, Y, Z. 
In order to account for the cross-section in-plane deformation effects, it is preferable to consider the local 
coordinate system x, θ, z, (longitudinal coordinate x ∈ [0;L], angular coordinate θ ∈ [0;2π] and thickness 
coordinate z ∈ [-t/2; +t/2]) − u, v, w are the displacement components in the local coordinate system. 
 

 
Figure 1: Circular hollow section member and global and local coordinate system and displacement components. 

 
In order to obtain a displacement field representation compatible with the classical beam theory, each 
displacement component (u, v or w) at any given point of the cross-section mid-surface must be expressed 
as a combination of orthogonal functions. Therefore, one has 
 
 )()(),( , xuxu xkk φθθ =  )()(),( xvxv kk φθθ =  )()(),( xwxw kk φθθ =  ,   (1) 
 
where (i) the summation convention applies to subscript k and (ii) uk(θ), vk(θ) and wk(θ) are functions 
characterizing deformation mode k (Silvestre 2007). Since the thin-walled member is deemed made of an 
isotropic elastic material (e.g., constructional steel), the constitutive relation reads 
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where (i) E, G and υ are Young’s modulus, shear modulus and Poisson’s ratio and (ii) σij, εij, γij are the 
plane stress and strain components. The linear and non-linear (NL) kinematic relations adopted satisfy 
Love-Kirchhoff’s assumption and can be expressed, in terms of the mid-plane displacement components 
(u, v, w), as (Basaglia et al. 2016)4 
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4 Since the buckling behavior under torsion is not addressed in this work, the non-linear shear strain component is disregarded. 
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When performing buckling analyses of thin-walled members, such as cylinders and tubes, the application 
of the Principle of Virtual Work, leading to the member equilibrium equations, reads 
 
 δWint + δWext =δWL+δWNL+ δWext  = 0 ,   (8) 
 
where (i) δWint is the work done by the internal forces (pre-buckling stresses) on the virtual strains, which 
can still subdivided in two additive parts, namely the works done on the strains stemming from linear 
(δWL) and non-linear (δWNL) terms of the strain-displacement relations, and (ii) δWext is the (path-
dependent) work done by follower external pressure on the cylinder/pipe wall virtual displacements5. 
 
The work done by the internal forces (pre-buckling stresses) on the virtual strains is given by 
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where (i) L, r and t are the member length, cross-section mid-surface radius and thickness, respectively, 
and (ii) 0

xxσ  and 0
θθσ  are the pre-buckling longitudinal stresses due to axial compression and hoop 

stresses (stresses acting along the circumferential direction) caused by the applied external pressure 
p0, as illustrated in Figure 2 − the hoop stresses are given by 
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Figure 2: Pre-buckling longitudinal 0

xxσ and hoop 0
θθσ stresses. 

 
On account of the above (i) displacement approximations, (ii) constitutive law and (iii) kinematic 
relations, it is possible to rewrite the works done by the internal forces on the strains due to the linear and 
non-linear strain-displacement relation terms as 
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5 Since the shell material behavior is linear elastic, δWint can also be viewed as the first variation of the shell strain energy. 



 5 

  ++=
L

xixkjikikjikxixk
xx

jik
NL dxXXXW )( ,,

21
,, δφφδφφδφφδ θθσθθσσ  ,   (12) 

 
where the tensors stem from the cross-section integration of displacement components and derivatives 
– their expressions can be found in Basaglia et al. (2016). In the presence of (follower) external lateral 
pressure, Paimushin (2008) showed that, as long as the rotations are small-to-moderate, the external work 
is given by the expression 
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or, incorporating the displacement approximations expressed in Eqs. (1), by (Basaglia et al. 2016) 
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2.1 Deformation Modes 
The cross-section analysis, performed to obtain the deformation modes and corresponding mechanical 
properties, comprises a set of sequential operations already described in detail by Schardt (1989), 
Silvestre (2007) and Basaglia et al. (2015). The deformation modes most relevant for the buckling 
analyses carried out in this paper (i.e., those with significant contributions to the tube buckling mode 
shapes) consist of (i) a shell-type deformation mode family (originally considered by Schardt 1989) 
and (ii) an axisymmetric mode (first unveiled by Silvestre 2007). The shell-type modes, based on the 
assumption of null membrane shear strains and transverse extensions, constitute the core of the GBT 
analysis of circular hollow section members − the in-plane shapes of the first 14 shell-type modes are 
depicted in Figure 3. The axisymmetric mode, identified by the label “a”, involves only in-plane 
displacements and accounts for the cross-section deformation due to the extension in the circumferential 
direction – thus, the associated displacement profile is characterized by ua=0, va=0 and wa=1 (see Fig. 4). 
 

 
Figure 3: In-plane shapes of the first 14 shell-type deformation modes of a circular hollow cross-section. 
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Figure 4: Axisymmetric (a) deformation mode of a circular hollow cross-section. 

 
2.2 Beam Finite Element Formulation 
After incorporating the cross-section mechanical, geometric and follower pressure properties into the 
variational equation (see (8)), one is lead to 
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a system of equilibrium equations (one per deformation mode) that, together with the member support 
conditions (written in modal form), defines a one-dimensional eigenvalue problem expressed in terms of 
the modal amplitude functions φk(x). The solution of this problem consists of the member bifurcation 
pressure values (eigenvalues) and corresponding buckling mode shapes (eigenvectors). Such solution 
is obtained by means of a GBT-based beam finite element formulation similar to that recently developed 
and implemented by the authors (Basaglia et al. 2015, 2016) 
 
 
3. Results and Discussion 
Results concerning the elastic buckling behavior of several circular cylindrical steel tubes subjected 
to combination of axial compression and external lateral pressure are presented and discussed next. All 
tubes are simply supported, i.e., the end cross-sections are local and globally pinned and may warp freely. 
For validation purposes, some GBT-based critical buckling pressures and mode shapes are compared 
with values obtained by means of ANSYS shell finite element analyses (SAS 2013) – the cylindrical 
shells are discretized by means of refined meshes of SHELL181 elements, employed with a “full 
integration” option and accounting for distributed pressure follower effects. For cylinders/tubes under 
combined loading, the critical longitudinal stress ( c

xxσ ) and pressure ( cp ) components are given by 
 
 ,

c
xx xx crσ λ α σ= ⋅ ⋅  c

crp pλ β= ⋅ ⋅  1α β+ =  ,   (18) 
 
where (i) λ is a load parameter (eigenvalue), (ii) α and β are compression-pressure parameters and (iii) 

,xx crσ  and crp  are the member critical longitudinal stress and lateral pressure values when acted only by 
compression (α=1 and β=0) and only by lateral pressure (α=0 and β=1), respectively. By varying the 
values of parameters α and β between 0 and 1, it is possible to determine a values of λ associated with 
any given load combination. 
 
Initially, a few results concerning the buckling behavior of steel tubes acted by simple loadings (axial 
compression or lateral pressure) are presented and discussed, in order to provide a first illustration of the 
GBT analysis capabilities. Then, steel tubes under combinations of axial compression and lateral pressure 
are addressed, together with an investigation on the influence of the radius-to-thickness and length-to-
radius ratios on the critical buckling loading and mode shape, carried out in the context of tubes with 

/ 100r t ≤  and Z parameter values covering a wide range, from small (≈250) to large (≈215000). 
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3.1 Tubes Subjected to Simple Loadings 
Let us consider steel (Young’s modulus E=210GPa and Poisson’s ration υ=0.3) thin-walled tubes 
with wall thickness t=0.12cm, radius r=6cm (r/t=50), r=9cm (r/t=75) and r=12cm (r/t=100), and 
subjected to either axial compression or lateral pressure. Figures 5 and 6 display the variations of 
the critical longitudinal stress (σxx,cr) or lateral pressure (pcr) with the tube length L, respectively. 
Moreover, these figures also show (i) ANSYS 3D critical buckling loadings and mode shapes, and (ii) an 
indication of the GBT deformation modes contributing to the tube critical buckling modes (the values 
in brackets indicate the buckling mode longitudinal half-wave number). The observation of these buckling 
results prompts the following comments: 
(i) The GBT and ANSYS critical buckling loadings are practically identical, as the differences never 

exceed 3.5%. Moreover, there is also very close agreement between the buckling mode shapes 
provided by the two analyses. 

 

  

  

 
Figure 5: Variation of the critical longitudinal stress σxx,cr and buckling mode shape with the tube length L. 
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Figure 6: Variation of the critical lateral pressure pcr and buckling mode shape with the tube length L. 

 
(ii) In the compressed tubes, there is an expected visible critical load drop in the intermediate-to-long 

length range, which is associated with critical buckling in flexural modes (deformation mode 2). In 
tubes under lateral pressure, on the other hand, a critical value drop occurs in the short-to-intermediate 
length range, associated with the critical buckling modes exhibiting 3 or more circumferential 
waves (i.e., deformation modes 6 or higher − see Fig. 3). In both loading cases, the above critical 
value drops are more pronounced in the r=6cm tubes (r/t=50). 

(iii) Between L=20cm and L=400cm, the tubes under lateral pressure buckle in critical modes exhibiting 
2 to 7 circumferential waves (deformation modes 4 to 14 − see Fig. 3) and a single longitudinal 
half-wave – no critical buckling mode has a contribution from the flexural deformation mode 2. 
Conversely, for the same length range the compressed tubes buckle in critical modes exhibiting up to 
6 circumferential waves (deformation mode 12) and two longitudinal half-waves – moreover, with 
the exception of the r=12cm tube, the flexural mode 2 always participates in the buckling mode. 
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(iv) Tubes with r=6cm exhibit the same buckling mode shape under axial compression and lateral 
pressure for the following length intervals: (iv1) 17cm ≤ L ≤ 19cm (deformation mode 8), (iv2) 
29cm ≤ L ≤ 39cm (deformation mode 6) and (iv3) 60cm ≤ L ≤ 98cm (deformation mode 4 (1)). 
The same happens in tubes with r=9cm and r=12cm. In the first case, for the length intervals 
(iv1) 20cm ≤ L ≤ 21cm (deformation mode 10), (iv2) 31cm ≤ L ≤ 36cm (deformation mode 8), 
(iv3) 52cm ≤ L ≤ 71cm (deformation mode 6) and (iv4) 110cm ≤ L ≤ 180cm (deformation mode 4 
(1)). In the second case, for the length intervals (iv1) 31cm ≤ L ≤ 33cm (deformation mode 10), 
(iv2) 47cm ≤ L ≤ 54cm (deformation mode 8), (iv3) 80cm ≤ L ≤ 110cm (deformation mode 6) 
and (iv4) 171cm ≤ L ≤ 275cm (deformation mode 4 (1). 

(v) In long tubes (L>300cm), as expected (recall the works of Iwata et al. 1991 and Basaglia et al. 2016), 
the critical pressure value is length-independent and corresponds to an ovalized buckling mode 
(deformation mode 4). 

 
3.2 Tubes Subjected to Combined Loadings 
The tubes analyzed in this section exhibit the same cross-section dimensions, material properties and 
boundary conditions considered in the previous section, dealing with simple loadings. In order to 
cover wide Z parameter (265 ≤ Z ≤ 211986) and L/r ratio (of 1.67 ≤ L/r ≤ 66.67) ranges, six tube lengths 
were selected: L=20; 50; 100; 200; 300; 400cm. The GBT and ANSYS results are plotted in Figures 7 to 9, 
which make it possible to assess the critical buckling loadings of tubes with three radius values, namely 
r/t=50; 75; 100. The loadings consist of continuously varying combinations of axial compression and 
lateral pressure, and the figures exhibit plots ,/c

xx xx crσ σ  vs. /c
crp p  − recall that (i) σxx,cr and pcr are 

the critical axial compression and external lateral pressure (acting alone), respectively, and (ii) c
xxσ  

and cp define the critical σxx-p combinations associated with combined loadings (see eq. (18)). 
 
While the GBT analyses involve tube longitudinal discretizations in 8 beam finite elements and include 
7 deformation modes (2+4+6+8+10+12+14), which amounts to a total of 112 degrees of freedom, 
the ANSYS SFE analyses involve tube discretizations into fairly refined meshes, which lead to degree of 
freedom numbers varying between 11088 (L=20cm + r=12cm) and 211728 (L=400cm + r=12cm). 
Although no special effort was made to minimize/optimize the shell finite element discretization, it is 
clear that the degree of freedom numbers involved in the two approaches are orders of magnitude apart. 
This difference is even more striking if one realizes that it is possible to include in the GBT analyses 
only a fairly small fraction (appropriately selected, of course) of the deformation modes determined. 
 
The analysis of the GBT and ANSYS buckling results presented leads to the following remarks: 
(i) Once again, the GBT and ANSYS critical loadings are very close (differences below not 3.7%) and 

there is an excellent agreement between the corresponding buckling mode shapes. 
(ii) The interaction diagrams, providing critical combinations of axial compression and lateral pressure, 

are either linear or multi-linear − in the latter case, all of them exhibit a “convex shape”6. 
(iii) In the multi-linear interaction diagrams, the transition points between linear segments are associated 

with sudden changes in the tube critical buckling mode shape. It should be mentioned that the 
most pronounced transitions occur in the longer tubes (L=200; 300; 400 cm) and correspond to either 
(iii1) critical buckling modes changes from flexural (deformation mode 2) to ovalized (deformation 
mode 4) or (iii2) decreases in the critical buckling mode longitudinal half-wave number. 

                                                 
6 Since all the tubes analyzed are such that Z > 20, no interaction diagram exhibits a “concave shape”, like those reported by 

Tennyson et al. (1978). 
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Figure 7: GBT and ANSYS critical combined loadings and buckling modes for r=6 cm tubes. 

 
(iv) The interaction diagram is linear in the tubes with (iv1) L=20 cm, for r=9 cm and (iv2) L=50; 100; 

200 cm, for r=12 cm − the observation of Figures 5 and 6 shows that these tubes exhibit identical 
buckling modes under axial compression and lateral pressure: deformation mode 10, for L=20 cm, 
r=9 cm, deformation mode 8, for L=50 cm, r=12 cm, deformation mode 6, for L=100 cm, r=12 cm, 
and deformation mode 4, for L=200 cm, r=12 cm. It is worth noting that, for very thin shells, a linear 
interaction diagram is prescribed in EN 1993-1-6:2007 (CEN 2007) − linear interaction diagrams 
were also proposed in the NASA-SP-8007 (1968) report. 

A 



 11 

  

  

 
Figure 8: GBT and ANSYS critical combined loadings and buckling modes for r=9 cm tubes. 

 
(v) However, the code and report mentioned in the previous item pay no attention to tubes for which 

the critical buckling mode shapes under axial compression and external lateral pressure differ − 
these tubes are addressed ahead in the paper. 

(vi) In the longer tubes, with L/R > 40 and Z > 100000 (i.e., L=300 or 400 cm and r=6 cm, or L=400 cm 
and r=9 cm − see Figs. 7 and 8), the buckling behavior is governed by axial compression, associated 
with flexural critical buckling modes (deformation mode 2) and the influence of the external lateral 
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Figure 9: GBT and ANSYS critical combined loadings and buckling modes for r=12 cm tubes. 

 
 pressure is minute up to very large fractions of pcr − note the “almost horizontal” line segments in 

the last two plots of Figure 7 and the last plot of Figure 8. 
(vii) The sole use of parameter Z to classify the tubes and to assess the curvature effects on their buckling 

behavior is clearly inadequate. This assertion can be confirmed by looking at Figure 10, which 
display the interaction diagrams of tubes with (i) r=6 cm, t=0.12 cm and L=203.7 cm, (ii) r=9 cm, 
t=0.12 cm and L=249.5 cm, and (iii) r=12 cm, t=0.12 cm and L=288.1 cm, all three sharing the same 
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Figure 10: Critical combined loadings for tubes with Z=55000. 

 
 parameter Z value (Z=55000) − also shown is the linear interaction diagram. Note that none of the 

three interaction diagrams is linear − while those concerning the r=12 cm and r=9 cm tubes are 
bi-linear, the one related to the r=6 cm tube is tri-linear. Moreover, it is also clear that these 
interaction diagrams “move away” from the linear one (i.e., become “more convex”) as the tube 
radius decreases − indeed, while the r=12 cm tube bi-linear interaction diagram is “almost linear”, 
the r=6 cm tube tri-linear interaction diagram is “substantially convex”. 

 
 
4. Conclusion 
This paper presented and discussed the available results of an ongoing numerical investigation on the 
buckling behavior of thin-walled steel tubes subjected to combinations of axial compression and 
external lateral pressure. These results were obtained by means of a beam finite element implementation 
of a computationally efficient GBT formulation specifically developed for circular cylindrical shells 
and tubes, and making it possible to solve a large number of problems in a very short period of time – 
for validation purposes, some GBT results were compared with values obtained by means of ANSYS 
shell finite element analyses. After providing a brief overview of the main concepts and procedures 
involved in performing GBT buckling analyses, numerical illustrative examples were presented 
and discussed. Initially, a few results concerning the buckling behaviour of steel tubes acted by simple 
loadings (only axial compression or external lateral pressure) were addressed. Then, a limited parametric 
study was performed for steel tubes under various combined loadings, consisting of combinations of 
axial compression and external lateral pressure − this parametric study also aimed at investigating 
the influence of the radius-to-thickness and length-to-radius ratios on the critical buckling loading and 
mode shape, in the context of tubes with / 100r t ≤  and Z parameter values varying between ≈250 and 
≈215000. The results obtained demonstrated that the sole use of parameter Z to classify tubes and 
assess the curvature effects on their buckling behavior is inadequate. Moreover, it was also clearly 
shown that adopting a linear interaction diagram to predict the critical buckling loading of tubes subjected 
to combinations of axial compression and external lateral pressure, as has been proposed in the literature 
and is still prescribed by the current European code (CEN 2007), may lead to very conservative estimates, 
particularly for tubes exhibiting large length-to-radius ratios. Further research is needed in order to 
achieve a more efficient (less conservative) critical buckling loading prediction. 
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