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Abstract 

The lateral torsional buckling (LTB) resistance equations for beams in design specifications 

require the calculation of an effective length. In lieu of using rigorous analyses, design 

specifications allow the calculation of an elastic effective length factor (K) for beams. The most 

commonly used method in calculating K for LTB resistance of a critical beam span was proposed 

by Nethercot & Trahair, which makes use of alignment charts for braced columns, while 

accounting for the restraint provided by its adjoining segments. The authors find that this 

approach results in values of K that are larger or smaller than the true K for certain bracing and 

loading conditions. A K estimate that is larger than the true solution adversely effects the 

formulation of the design LTB curve, wherein a larger beam capacity is ascribed to a given 

effective length. A K estimate that is smaller than the true solution may result in unconservative 

design solutions. This paper discusses some conditions which are commonly encountered in 

design and experimental test setups, where unfavourable K estimates are made. The examples 

presented include cases such as multiple equal laterally unbraced lengths under a uniform 

moment, beams where the critical segment is an end segment, and cases where the critical 

segment is bounded by unsymmetric restraining conditions at its two braced ends. A modified 

approach to estimate K is presented for such cases, while also considering singly-symmetric 

cross-sections. The paper is limited to elastic buckling of compact (Class I) I-sections. 

1.Introduction 

The ultimate strength of a laterally unsupported I-beam with transverse loading is either 

governed by plastic capacity for short spans, or lateral torsional buckling (LTB) for intermediate 

and long spans. The elastic LTB capacity of simply-supported doubly-symmetric I-beams 

subjected to uniform moment derived by Timoshenko & Gere (1961) is  
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where, E is the elastic modulus, J is the St. Venant torsional constant, Iy is the minor axis 

moment of inertia, Cw is the warping constant and G is the shear modulus. 

The determination of LTB capacity depends on the boundary conditions of the critical unbraced 

length, inelasticity, and the in-plane loading on the critical segment and adjoining segments. 

Equations in design codes and specifications provide effective length factors for ideal boundary 

conditions, such as fixed, pinned, etc. Design codes also provide empirical equations to account 

for inelastic buckling in intermediate length members, along with moment gradient coefficients 

for various loading conditions. Equation(1) is modified to include these variations to 
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Where Cb is the moment modification factor, K is the elastic effective length factor, and Lb is the 

unbraced length. However, most practical conditions deal with beams that have intermediate 

lateral and torsional braces in the form of cross-beams or cross-frames connecting to adjoining 

parallel beams. Such beams may be simply-supported in-plane, but are continuous in the lateral 

or out-of-plane direction. The critical unbraced length gets partial torsional fixity from adjoining 

segments that do not fall under the ideal boundary classification available in design tables. This 

partial restraint is difficult to ascertain without the aid of computer programs, and most engineers 

use an elastic LTB effective length factor (K) of 1 for simplicity. However, substantial savings 

may be achieved by accounting for the appropriate K. Thus, there is a need for a hand-based 

calculation method to be generally available to engineers. The buckling load of a beam is the 

LTB capacity of span divided by the maximum end moment in the span 
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where, MA, MB are the end moments of the concerned span. 

Salvadori (1951) proposed a method to find the critical buckling load of a beam assuming lateral 

discontinuity at brace points between segments (K=1). The LTB capacity of each segment is 

calculated using Equation (3) assuming K=1, and the minimum buckling load is taken as the 

critical buckling load and the span with the critical buckling load is assigned as the critical span. 

This method gives a good lower bound estimate of the buckling load, but does not take into 

account the benefits of lateral bending and warping restraints from adjacent segments. 

Nethercot and Trahair (1976) proposed a method to calculate the elastic LTB effective length 

factor based on a column analogy, taking into account lateral bending restraint of adjacent 

segments. The K factor is calculated by first estimating the fixity at the two ends of the critical 

segment, and then using the alignment charts or K factor equations in literature for braced 

columns. This method is briefly outlined below. 

The Nethercot and Trahair method 

The elastic LTB capacity is calculated using Equation (2). 

The moment modification factor, Cb proposed by Salvadori (1955) is 

 
21.75 1.05 0.3 2.56bC k k      (4) 

where k is the ratio of the end moments acting on the segment such that k is less than one. 

The elastic effective length factor K is calculated approximately by making use of the similarity 

between buckling modes of compression member and those of beams under uniform moment. 

Just as in compression members buckling, stiffness ratios (GL, GR) are calculated to estimate K 

using braced-column alignment charts. 
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Stiffness ratios given by Equation (5) are the ratios of the member stiffness (αM) to the 

restraining member stiffnesses (αRR, αRL) at the right and left ends of the member. 
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The stiffness of the member (αM) is given by 
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where LM  is the length of member, and IyM is the minor axis moment of inertia. 

The stiffness of the restraining member is given by  
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where, LR is the length of the restraining member, and IyR is the minor axis moment of inertia of 

the restraining member. The factors PMS and PRS are the buckling load estimates given by 

Salvadori’s method, and n is the coefficient of restraining stiffness given by the far end 

conditions of the restraining member. The factor n is taken as two when the far end provides a 

restraint equal to that at the near end, while n is taken as three when the far end is hinged, and n 

is taken as four when the far end is fixed. 

The critical member is identified just as in Salvadori(1951).The restraining stiffness of the 

adjacent members are calculated based on their far end conditions, and the effective length factor 

may be calculated using the alignment charts for braced columns. Although Cb is used for 

accounting for moment gradient effects, the stiffness ratio calculations are principally based on 

an assumption of equivalent uniform moment concept throughout the unbraced span, which is 

not always practical. 

Although the Nethercot and Trahair method works well for several loading and restraint 

conditions, the authors observe that there are also several conditions in which the K estimate can 

be significantly smaller or larger than the true value. A K estimate that is larger than the true 

value predicts a smaller LTB capacity, and is acceptable from a designer’s perspective. However, 

it adversely affects the formulation of the design LTB curve. An experimentalist may incorrectly 

ascribe the beam capacity to a larger effective length, thereby shifting the entire design LTB 

curve to the right while fitting the experimental data. This results in unconservative design, as an 

engineer uses a larger beam capacity for a given effective length. 

The paper presents a number of loading and boundary conditions, and compares the true 

solutions (obtained via finite element (FE) simulations) and the Nethercot and Trahair (N&T) 

Method. Further, the paper presents modifications to the method in cases where substantial 

improvements to the LTB capacity is observed. 

2.Modelling  

The studies presented in this paper are modelled using finite element software. ABAQUS (2018) 

and SABRE2 (2016) are extensively used in these studies. Only compact (Class I) I-sections are 

studied in this paper. 

2.1 Material Modelling 

The material model for structural steel is used. The studies presented in this paper only deal with 

elastic buckling. The modulus of elasticity is taken as 29000ksi, and the shear modulus is taken 

as 0.385E, taking steel Poisson’s ratio as 0.3. 
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2.2 Boundary Conditions 

All cases studied in this paper are simply-supported in-plane with a single span. The end 

supports are laterally and torsionally simply-supported with warping-free restraints (fork 

boundary conditions). Vlasov kinematics are enforced at the end supports using the equations in 

Kim (2010) for test simulations with concentrated moments at ends. In this paper, “spans” refer 

to laterally-unbraced spans, i.e. each beam may have several intermediate torsional restraints, 

where each of the unbraced segments are referred to as spans. 

2.3 Finite Elements and Mesh discretization 

The flanges and webs of the I-beams are modelled in ABAQUS using four-node shell elements 

degenerated from a 3D solid element (S4R shell element). It is a general-purpose reduced-

integration shell element that adapts to both thin and thick shell theories. The transverse 

stiffeners are modelled using the B31 beam element which is compatible with the S4R element. 

Following a mesh convergence study, and validation of the models with closed-form solutions 

presented by Timochenko and Gere (1961), 12 elements are used along the width of the flange, 

and 20 along the web-depth. The element aspect ratios are maintained close to one. 

SABRE2 uses beam elements with seven degrees of freedom (with a warping DOF). Following a 

mesh convergence study, eight number of elements are used in each unbraced segment. The 

results obtained thus also provide good correlation with results from ABAQUS. 

3.Study 

3.1.Restraining effect of spans beyond the immediate adjacent segments 

Nethercot and Trahair’s method only takes into account restraining effect of spans immediately 

adjacent to the critical span. This method has its drawbacks in cases where the number of spans 

are greater than three. Figure 1 is an example of such a case. 

 

I I I I

N segments of equal length(L)
L L

 
Figure 1: Four point load with equal unbraced segments, with N spans subjected to uniform moment 

3.1.1. Four point load test: N spans in uniform moment with equal end span length 

In Figure 1, the N&T method identifies the mid segment and its immediate adjacent segments as 

equally critical, when N is greater than 3. This essentially means that one cannot consider 

adjacent segments of the same length under the same uniform load to provide any restraint to its 

adjoining segment. The buckling load of all such segments are equal, and K is taken as one. 

However, the authors have observed that there can be restraint from segments which are even 

two or more spans beyond the critical segment. Table 1 tabulates M(FEA)/M(N&T) for various 

doubly-symmetric cross-sections and values of N. As seen in Table 1, segments up to 3 spans 

away from critical have a restraining effect on the critical bucking capacity. However, the effects 

are increasingly negligible when there are more than two spans at the same buckling capacity 

and loading as the critical segment. It is further evident from Table 1 that the buckling capacity 

can be at least 10% larger than that predicted by the N&T method when N = 3. In this case, the 

second subsequent span is of equal length as the critical segment, but is subjected to a moment 
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gradient (with Cb = 1.75 as per Equation (4)). It is further observed by the authors that this 

increase in capacity becomes increasingly substantial when the end segment under moment 

gradient is of smaller lengths than the critical segment. This is discussed subsequently in the 

paper in more detail.  

Table 1: Effect of subsequent spans on the buckling capacity of critical segment (doubly-symmetric sections) 

N 3 5 7 

D/tw = 60, D/bf = 6, bf /tf = 8 1.11 1.06 1.03 

D/tw = 60, D/bf = 4, bf /tf = 12 1.12 1.06 1.04 

D/tw = 60, D/bf = 4, bf /tf = 8 1.10 1.04 1.02 

D/tw = 40, D/bf = 4, bf /tf = 8 1.11 1.05 1.03 

The shortcoming in the N&T method lies in assuming K=1 in the buckling capacity of the 

restraining segment, used for estimating the restraining effect as in Equation (8). This 

assumption is valid when the far end of the restraining member is simply supported, or has zero 

restraining effect. This is a lower bound buckling capacity of the restraining segment. In the 

N&T method, the adjacent span’s restraining stiffness is given by  
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If the span adjacent to the far end of the restraining segment has a higher buckling load than the 

restraining segment, then this segment provides restraint to the restraining segment, thereby 

increasing its buckling load (i,e. Krestraining < 1). This larger buckling capacity of the restraining 

segment results in a larger r , and a larger buckling load of the critical span. 

The behaviour can be explained by arguing that the segment with a larger buckling load 

increases the buckling capacity of its immediately adjoining spans having lower buckling 

capacities. This restraining effect gets carried over several subsequent spans. The critical span 

can thus benefit from this restraining effect from multiple spans away. Table 1 however shows 

that this effect diminishes with increasing number of spans, and can be neglected when a 

segment with larger buckling load is more than two spans away (N ≥ 5 in Figure 1). This effect 

can be captured by following these steps: 

1. Calculate the buckling capacity of all spans assuming K =1, and appropriate Cb. 

2. Identify the segment with the largest buckling load. 

3. Use the buckling load of this segment (Mn) to calculate the effective length of its immediate 

segment in the direction towards the critical segment, and calculate its increased capacity 

(Mn-1). Do this for every segment until the increased capacity of the immediate adjacent span 

(the “restraining” segment) of the critical segment is found. Use this to calculate the 

restraining stiffness ratios on the left and right ends (GL and GR) of the critical segment. 

4. Calculate the effective length of the critical span using the stiffness ratios calculated above. 

As noted above, the effects of spans beyond two segments away from critical have negligible 

impact from a designer’s perspective. Thus, in order to make the modified process less 

cumbersome, it is sufficient to account for the effect of spans up to two segments away. Further, 

the authors found negligible benefit in making this process iterative, and recommend that the 

above process be carried out only once. The values of M(FEA) /Mn(Pr) for N equal to three in Table 

1 by following the above procedure is improved to an average of 1.025 from an average value of 

1.11. 
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 3.1.2. Four point load test: 3 spans in uniform moment with varying end span length 

Similar to the case in Figure 1, Nethercot and Trahair’s method consistently predicts K=1 

irrespective of the length of the end segments (mL) in Figure 2.  

I,mL I,L I,L I,mLI,L
 

Figure 2: Four point load with 3 equal-length spans subjected to uniform moment, and varying end segment lengths 

The case shown in Figure 2 is solved using the proposed method. The graphs in Figure 3 show 

the relation between the buckling capacity of the critical segment (normalized to the plastic 

moment capacity as M/Mp) to the elastic effective length. The plots compare the N&T method, 

the extended method, and ABAQUS results for the cross-section with D/tw =60, D/bf =4, and bf 

/tf = 8. With reduction in the length of the end span, the buckling capacity of the critical segment 

increases as expected. This is also captured by the proposed method. This increase in buckling 

capacity becomes substantial as the end span length approaches zero as seen in Figure 3. This 

increased capacity is not captured by the N&T method, while the proposed method is able to 

capture this effect within ten percent of the ABAQUS results. 

Most importantly, Figure 3 clearly illustrates how one may obtain an unconservative LTB curve 

while using the Nethercot & Trahair method to calculate K for a four-point bending test set-up 

with only three segments under uniform moment. 
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Figure 3: LTB curves of critical segment 
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3.2. Two-span cases where the critical segment is the end segment 

Unlike compression members which have a constant axial stress throughout the length, 

transversely loaded beams are subjected to varying flexural stresses throughout span. The N&T 

method treats the loading and boundary conditions independently with moment modification 

factors (Cb) and effective length factors (K). However, the authors find that this simplified 

treatment, which neglects the interaction of loading and boundary conditions can predict 

capacities significantly smaller or larger than the true capacities for various conditions. This is 

particularly observed for cases with high moment gradients and unsymmetric boundary 

conditions (or restraint conditions at the two ends of the critical segment). Cases where the end 

span is critical have unsymmetric boundary conditions, where one end is simply-supported i.e 

zero restraining end, and the other end is at a brace point, with restraint from adjacent spans. 

When these end spans are further subjected to high moment gradients throughout the span, this 

interaction effect is observed. These cases are discussed in this section. 

3.2.1. Two span cases (single curvature spans) 

Figure 4 shows simply-supported beams with two unbraced segments of different lengths, but 

same cross-sections. The right segment is designed to be critical; the boundary conditions on the 

critical segment here is such that it receives restraint from the adjacent span at one end and no 

restraint on the other end (simple support). Therefore, the boundary condition is referred to as 

unsymmetric. While the bending moments shown in Figure 4 is purely theoretical, it is chosen 

here to illustrate the behavior of unsymmetric beams. This concept is then extended to other 

loading conditions. Figure 4(a) is a case where the maximum moment in the critical segment is 

adjacent to a restraining segment, while the case in Figure 4(b) has the maximum moment at a 

zero-restraint end. The length L of the restraining end is varied between one (near-zero length) to 

240 inches (equal to the length of the critical segment). 

 

I I

L 240 in

I I

L 240 in

(a) (b)
 

Figure 4: Bending moment diagrams of laterally braced spans 

Table 2 shows the difference between FE results from SABRE2 to the estimates from the N&T 

method for the cases in Figure 4 for D = 30in, bf = 7.5in, tw = 0.5in, tf = 0.9375in. The N&T 

method predicts the same capacity for both cases shown in Figure 4, while it is evident from the 

SABRE2 analysis that the N&T predictions can be as much as 36% conservative to 20% 

unconservative. The N&T method consistently predicts unconservatively for Figure 4(b) and 

conservatively for Figure 4(a). In Figure 4(a), the location of the maximum bending moment 

within the critical segment is adjacent to the restraining segment. Thus, the effect of the 

restraining segment is more pronounced here as opposed to the case in Figure 4(b), where the 

maximum moment is located at a pin support that offers no restraint. In general, when the larger 

moment acts closer to the braced point, Nethercot and Trahair’s method predicts smaller 

capacities (conservative), and when the larger moment acts closer to the pin support, Nethercot 

and Trahair’s method predicts larger buckling strengths (unconservative).  
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Table 2: Comparison of buckling capacities from FE simulations and the N&T method for beams with two unbraced 

spans in single curvature 

L 

(in) 

M(SABRE2) 

(in-kips) 

Fig. 4(a) 

M(SABRE2) /M(N&T) 

Fig. 4(a) 

M(N&T) (in-kips) 

 

M(SABRE2)/M(N&T) 

Fig. 4(b) 

M(SABRE2) 

(in-kips) 

Fig. 4 (b) 

240 17861 1.16 15329 0.93 14218 

120 20636 1.22 16949 0.89 15016 

60 23675 1.28 18477 0.86 15803 

30 26030 1.33 19634 0.84 16396 

15 27460 1.35 20375 0.82 16768 

7.5 28232 1.36 20800 0.82 16977 

1 28918 1.36 21203 0.81 17172 

 

As the length of the restraining segment (L) is reduced, the unsymmetry in the restraining effect 

from both ends of the critical span increases. As seen in Table 2, for Figure 4(a) and (b), the 

N&T predictions become increasingly offset from the true capacities as the length of the 

restraining segment reduces. From this, it is concluded that an improved procedure to determine 

K is desirable when high moment gradients are applied to highly unsymmetric boundary 

conditions. 

In the procedure developed for such conditions, referred to as the load-boundary condition 

(LBC) interaction method, the authors define a term “Distribution Factor”, which accounts for 

the moment gradient within the critical segment, while recognizing the difference in behavior 

between the braced point being at the location of the maximum or minimum bending moment. 

For linearly varying moments, the unsymmetricity of moments can be captured by discretizing 

moments as given by Equations (9) and (10). 

 00.75 0.25far LM M M    (9) 

 00.25 0.75near LM M M    (10) 

where, ML is the moment at length L from the braced point (i.e moment at the pin support), and 

M0 is the moment at the brace point. The change in moment from the near end to the far end 

from the concerned brace is captured by defining a Distribution Factor (DF) in Equation (11) 

 0.33 3
far

near

M
(DF)=

M
    (11) 

A distribution factor smaller than one indicates that the larger moment is at the restraining end 

(brace point), while a DF greater than one indicates that the larger moment is at the simply-

supported end.  

3.2.1.1. Conservative prediction cases (DF<1, when maximum moment acts at the brace point) 

Nethercot and Trahair’s method predicts conservatively for cases where the larger moment acts 

at the brace point. The following steps detail a modified procedure developed by the authors for 

these cases, which significantly improve the estimate of K, and the buckling capacities. 

1. Calculate the stiffness ratio as defined in Nethercot and Trahair’s method, say G(N&T). 

2. Calculate the Distribution Factor (DF) using Equation (11) 

3. Calculate β using Equation (12) 

4. Calculate K using Equation (15) (Dumonteil 1992) 

The stiffness ratio calculated using Nethercot and Trahair’s method is modified to define a new 

variable β as in the equation (12) 
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The subscripts A and B on β and G denote the values at the two ends of the critical segment.  

Figure 5 shows the improvement of the proposed method over Nethercot and Trahair’s method in 

calculating K for several loading conditions with end-span critical and smaller moment at the 

brace point. 

The plots in Figure 5 show the predictions of K for different ratios of restraining segment lengths 

to the critical segment lengths. The following points may be gleaned from these results. 

1. The proposed modified method consistently predicts better effective length factors when 

compared to the conventional Nethorcot and Trahair’s method. 

2. The N&T method is most conservative for the unloaded restraining segment (Figure 5(a)), 

with improving accuracy as the bending moment in the beam approaches a uniform bending 

moment (Figure 5(c)). 

3. The N&T method is most conservative at shorter lengths of the restraining segments, as 

opposed to cases with larger lengths of restraining segments. This is due to the increased 

unsymmetry in restraints at two ends and the warping restraint provided by shorter segments, 

but is not accounted for in the N&T method. 

4. The proposed method performs consistently well for all loading conditions and for all lengths 

of the restraining segments. The coefficient of variation (COV) of KFEA /KPr across different 

lengths is 0.01 as opposed to a COV = 0.12 for KFEA /KN&T. 

3.2.1.2. Unconservative cases (DF > 1, when the maximum moment acts at the pin support) 

Nethercot and Trahair’s method predicts greater buckling strengths for cases where the larger 

moment acts at the simply-supported end. This study proposes modifications to the Nethercot 

and Trahair’s method to predict better effective length factors. The proposed steps here are 

essentially the same as those for the case with the maximum moment in the critical span at the 

brace location. The difference is only in the expressions for the coefficients a and b in Equation 

(12) for β.  

 max( ,1)
2

DF
a =   (16) 

 
10

-DF
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Figure 5: Effective length factor estimates of N&T and proposed methods when maximum moment is at brace point  

Figure 6 shows the improvement of the proposed method over Nethercot and Trahair’s method in 

calculating K for several loading conditions with end-span critical and larger moment at the 

brace point. The following points may be gleaned from these results. 

1. The proposed modified method consistently predicts better effective length factors when 

compared to the conventional Nethorcot and Trahair’s method. The proposed method 

predicts effective length factors conservatively within 3%. 

2. The N&T method is most unconservative for the unloaded restraining segment (Figure 6(a)), 

with improving accuracy as the bending moment in the beam approaches a uniform bending 

moment (Figure 6(c)). 
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3. The N&T method is most unconservative at shorter lengths of the restraining segments, as 

opposed to cases with larger lengths of restraining segments. 

4. The proposed method performs consistently well for all loading conditions and for all lengths 

of the restraining segments. The coefficient of variation (COV) of KFEA /KPr across different 

lengths is 0.01 as opposed to a COV = 0.07 for KFEA /KN&T. 
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Figure 6: Effective length factor estimates of N&T and proposed methods when maximum moment is at pin location 
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3.2.2 Two-span cases subjected to reverse curvature 

The restraining segment typically loaded to a certain extent, loses its stiffness and its restraining 

effect with it. To account for this loss of stiffness, a lower bound modification factor 1 m

r

P

P

 
 

 
  is 

multiplied with the assumed stiffness. 

 1 m
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PEI
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L P

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 
  (18) 

In Equation (18), Pm and Pr are the buckling loads of the critical segment and restraining 

segments respectively. The modification factor in Equation (18) holds valid when the beam is in 

single curvature, i.e. the compression flange is also restrained by a flange in compression. 

Conversely, when the beam is subjected to reverse curvature, the compression flange in the 

critical segment is restrained by a flange in tension. In such a scenario, the modification factor 

for the loss of stiffness is not valid. In reality, an increased stabilizing effect is observed when 

the restraining flange is in tension instead of compression. To address this issue, a lower bound 

estimate assuming zero reduction in stiffness would predict better results. 

 
r

EI
n

L
    (19) 

Figure 7 shows the improvement of the proposed method over Nethercot and Trahair’s method in 

calculating K for two reverse curvature cases. The 240 inch span is the critical segment. Figure 

7(a) shows a case with equal moments at the two ends of the beam (with the zero bending 

moment at midspan), while the case in Figure 7(b) has a concentrated moment at brace point. 

The brace point is at a distance L from the left support, and does not necessarily coincide with 

the midspan. 

The following points may be gleaned from the results shown in Figure 7. 

1. The proposed method in general predicts better results than the N&T method for beams 

subjected to reverse curvature. In Figure 7(a), the coefficient of variation (COV) of KFEA /KPr 

across different lengths is 0.06 as opposed to a COV = 0.23 for KFEA /KN&T. In Figure 7(b), 

while the COV of KFEA /KPr across different lengths is comparable to the COV of KFEA /KN&T, 

the predictions via the proposed method are vastly improved (by at least 10%). 

2. The proposed method works better for the loading condition in Figure 7(a), when compared 

to the loading in Figure 7(b). Both the proposed and N&T methods are conservative in Figure 

7(b). This may be rationalized by noting that the restraining flange in Figure 7(b) is in 

tension at the brace location, and has a stabilizing effect that is larger than an unloaded 

segment. This is conservatively neglected in Equation (19). The N&T method uses Equation 

(18), which makes it even more conservative. 

3. The prediction of the proposed and N&T methods changes from unconservative to 

conservative in Figure 7(a) because of the location of the intermediate brace relative to the 

location of zero bending moment. It is unconservative when the critical segment is in reverse 

curvature, and conservative when the critical segment is in single curvature. However, the 

proposed method is less than 5% unconservative as compared to 15% by the N&T method. 

 



 13 

  

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.5 1

K
F

E
A
/K

T
h

eo
re

ti
ca

l

L/240

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 0.5 1

K
F

E
A

 /K
T

h
eo

re
ti

ca
l

I I

L 240 in

I I

L 240 in

KFEA /KN&TKFEA /KLBC

(a)

(b)

Dw= 30 in, tw = 0.5 in

bf =7.5 in, tf = 0.9375

for all cases and lengths

M

-M

M

-M

 
Figure 7: Effective length factor accuracy comparison of N&T and Proposed method 

3.3.Three-span cases where the critical segment is the end segment (Three-point bending): 

Incorrect identification of critical segment 

The loading conditions discussed in this Section deal with cases where the current N&T method 

tends to unconservatively predict the buckling capacities due to an incorrect identification of the 

critical segment. The two important steps of the N&T method are to identify the most critical 

segment, and to estimate the restraining effect from its adjacent spans. 

Figure 8 shows a three-point loading scenario. It is evident that for cases where L < 240 inches, 

and assuming K = 1 (as required by the N&T method), the mid-segment is identified as the most 

critical segment. This is due to the more severe loading in the mid-segment as compared to the 

two end segments. However, it is observed that the right end-segment is in fact the most critical 

segment. This is because of the pin support at one of its ends. The mid-segment obtains sufficient 

restraint at both its ends, which increases its buckling capacity despite its higher load. This raises 

the question on whether simply using K = 1 on each segment is a valid method of identifying the 

critical segment. 
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Figure 8: Comparison of the proposed iteration method to the N&T method when critical segment is re-evaluated 

after first iteration 

In order to address this shortcoming, the authors recommend that the N&T method may still be 

used, but with a caveat that may require an iterative process. If one uses the N&T method, and 

computes the buckling capacity of the critical segment (incorrectly identified as the mid-

segment), it is found that the final buckling capacity is larger than the buckling capacity of the 

right end-segment at the end of the N&T process. If and when this occurs, one may repeat the 

N&T method a second time by using the buckling loads calculated in the first pass. Obviously, 

the right end-segment should be considered as the critical segment in the second iteration, owing 

to its smaller buckling capacity. This iterative process consistently predicts capacities which are 

conservative within 10% as seen in Figure 8. It is important to note that the N&T method 

predicts capacities that can be up to 30% unconservative in such cases. 

3.4.Three-span cases where the critical segment is the middle segment (Three-point bending): 

Incorrect estimation of restraining effect 

The previous section discussed the possibility of incorrectly identifying the critical segment. This 

section discusses cases where the N&T method can be significantly unconservative, and may 

require an iterative process due to significant over-estimation of the restraining effect of the 

adjacent spans. The restraining effect of the adjacent spans is given by 

 0

( 1)
1

( 1)

m
r

r

P KEI
n

L P K


 
  

 
  (20) 

The critical buckling capacity calculated using the N&T method is say Pm1. If 

1 1 0( 1)m m r rP P K      (αr1 is the restraining stiffness calculated using the new buckling 

load Pm1, αr0 is the restraining stiffness calculated initially), i.e. the restraining effect reduces 

significantly from that estimated in the first pass. This effect is particularly significant when the 

buckling capacity of the restraining member and the change in the critical member buckling load 

(Pm1- Pm0) are comparable. This problem demands an iterative process as suggested in Section 

3.3 to predict better results. Such a case is shown in Figure 9 comparing the iteration method to 

the single-pass N&T method. 
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Figure 9: Comparison of the proposed iteration method to the N&T method when the restraining effect is re-

evaluated after the first iteration 

As seen in Figure 9, the iteration method predicts the buckling load with greater accuracy as the 

change in buckling capacity increases. It is also observed that Iteration 5 predicts very similar 

buckling loads to Iteration 2 (within 3%). It is sufficient to repeat the N&T method just once 

when the first pass satisfies the condition stated above. 

3.5 Singly-symmetric sections 

The Nethercot and Trahair method, and all the modifications proposed in this paper for doubly-

symmetric sections can be extended to include singly-symmetric I-sections. This paper considers 

cross-sections with the larger flange in tension (considered more critical for LTB). The LTB 

buckling capacity for singly-symmetric cross-sections given by Timoshenko & Gere (1961) is 
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  (21) 

The stiffness ratios are calculated as the ratio of member stiffness to restraining member stiffness 

( M
L

RL

G



  and M

R

RR

G



 ), where M  is the member stiffness for singly-symmetric sections, and  

given by Equation (22) 
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and the restraining member stiffnesses for singly-symmetric sections is given by Equation (23) 
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The term (bfctfc+hctw/6) is derived for singly-symmetric sections by taking the compression flange 

and one-sixth the web depth in compression as equivalent compression columns given in White 

and Jung (2003) and White (2008). In the above equations, rt is effective radius of gyration for 

LTB, LbL,bR is the length of restraining segment on the left and right respectively, Lb.critical is the 

length of the critical segment, bfc is the width of the compression flange, tfc is the thickness of the 
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compression flange, hc is the depth of the web in compression, tw is the thickness of the web and 

βx  is a cross sectional property for singly-symmetric sections. 

The case in  

Figure 10 is solved using the extended method to account for restraining effect of spans beyond 

adjacent span to critical span (detailed in Section 3.1) and the loading-boundary condition (LBC) 

interaction method (detailed in Section 3.2) independently, and together. This case is chosen only 

to illustrate the benefits of using all proposed methods in tandem. 

y
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I I

120 in L240 in

I
critical restraining restraining
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D
=0.62

 
Figure 10: Loading for singly-symmetric case with smaller flange in compression 

Figure 11 shows the comparison between the N&T method and the accuracy of each of the 

proposed methods with respect to the true capacities (FE results from ABAQUS).  
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Figure 11: Comparison of various methods in the LTB prediction for singly-symmetric cross-sections 

As seen in Figure 11, combining the two methods predicts the best results. Using the methods 

independently also predict better results compared to the N&T method. The critical span is the 

left-most span, but the effect of the right-most span is observed to be considerable. The N&T 

method, and the LBC method do not take into account this effect of a segment that is not 

immediately adjacent to the critical segment. This is accounted in the extended method, and 

hence, performs better than the LBC in this case. Combining the two methods give the best 

results as it captures both the effect of high moment gradients on unsymmetric boundary 

conditions and the restraining effects of spans more than two segments away from the critical 

span. 

4. Illustrative examples using various methods 

This Section provides sample calculations for the various methods referred to in this paper. 

4.1 Nethercot and Trahair’s method (Nethercot and Trahair 1976) 

The steps to Nethercot and Trahair’s method are as follows: 
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1. Calculate the buckling load using Equation (3) for each span assuming effective length factor 

(K) as unity and appropriate moment modification factors (Cb). 

2. Identify the critical segment as the one with the smallest buckling load. 

3. Calculate the stiffness ratios as shown in Equation (24). 

4. Calculate the effective length factor (K) from the alignment chart for braced columns.  

5. Calculate the buckling capacity using Equation (2) 
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  (24) 

where, n is two for far end having equal restraint as near end, n is three for far end hinged and n 

is four for far end fixed. The problem in Figure 2  is solved below using this method. The spans 

from left to right are numbered one through five. 

The LTB load of each unbraced span calculated using Equation (2) are 

P1= P5=1.75M, P2= P3= P4= M 

Assign segment three as critical, with spans 2 and 4 designated as the restraining segments. 
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From column charts, the effective length factor K=1. 

Using Equation (3), Mcr=M = 6747 in-kips for cross-section with dimensions, Dw = 30 in, tw = 

0.5 in, bf = 7.5 in, tf =0.9375 in. Critical buckling load given by ABAQUS is 7391 in-kips. 

4.2 Extended method 

This method refers to the modified procedure wherein the restraining effect of spans adjacent to 

the immediate restraining segment is also considered. The steps are as follows: 

1. Identify the critical segment just as in the Nethercot and Trahair method. 

2. Identify the restraining segments and calculate their buckling capacities using Nethercot and 

Trahair’s method. 

3. Calculate the stiffness ratios using the new buckling capacity of restraining segments from 

Step 2. 

4. Calculate the effective length factor and buckling capacity of the critical segment. 

The problem in Figure 2 solved above is again solved here using the extended method. 

Similar to the Nethercot and Trahair method, Assign segment three as critical, with spans two 

and four designated as the restraining segments. 

Calculate the buckling capacity of span two using Nethercot and Trahair’s method: 

Restraining segment for span two is span one, while span three is assumed to give no restraint as 

its buckling capacity is smaller than that of span two. 
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From the braced column alignment chart, K2 = 0.91 

For section with dimensions Dw = 30 in, tw = 0.5 in, bf = 7.5 in, tf = 0.9375 in: using Equation (3), 

buckling capacity of span two is M2 =7839 in-kips. 

Calculate the buckling capacity of span four: 

By symmetry, span four has the same capacity as span two, M4 = M2 =7839 in-kips 

Calculate the buckling capacity of span three: 
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From the braced column alignment chart, K3 =0.95 

Using Equation (3), critical buckling load is M3 =7318 in-kips. 

Critical buckling load given by ABAQUS is 7391 in-kips. 

4.3 Loading and boundary condition (LBC) interaction method 

The steps to take into account loading and boundary condition interaction are as follows: 

1. Calculate the stiffness ratios of critical member as suggested in Nethercot and Trahair (1976). 

2. Calculate distribution factor (DF) using Equation (11). 

3. Calculate β using Equation(12), select a and b based on whether DF < 1 or DF > 1. 

4. Calculate the effective length factor using Equation (15). 

To solve the problem in Figure 5(b) for L = 60in for cross section with dimensions Dw = 30 in, tw 

= 0.5 in, bf = 7.5 in, tf =0.9375 in: spans from left to right are numbered one and two. 

From Nethercot and Trahair’s method, span two is critical and G12 = 0.169, Gright = ∞ 

KN&T = 0.76. 
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The effective length factor predicted by SABRE2, KSABRE2 = 0.81. 

4.4 The iteration method 

The iteration method follows as: 

1. Calculate the buckling load (P0) for each span with K=1 to identify the critical segment and 

estimate the stiffness ratios. 

2. Calculate the critical buckling load (P1) following Nethercot and Trahair’s method. 

3. Use the buckling load P1 to re-identify the critical segment and estimate the stiffness ratios if 

P1 is larger than the buckling load of its restraining segments. 

4. Calculate the final critical buckling load P2 following Nethercot and Trahair’s method for the 

correct critical segment. 

To solve the problem in Figure 8 with L=120 in. for cross section with dimensions Dw = 30 in, tw 

= 0.5 in, bf= 7.5 in, tf=0.9375 in: spans from left to right are numbered one to three. 

Calculate the buckling load for each span: 

P01 = 116407 in-kips, P02 = 9671 in-kips, P03 = 11807 in-kips 

Span 2 is identified as the critical segment, and the restraining segments are spans one and three. 
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Buckling loads are calculated using Nethercot and Trahair: 

P11 = 116407 in-kips, P12 = 14774 in-kips, P13 = 11807 in-kips 

The critical segment is now identified as span three, and the restraining member is span two. 

The buckling loads are once again calculated using the Nethercot and Trahair method: 

P21 = 116407 in-kips, P22 = 14774 in-kips, P23 = 12498 in-kips 

There is no further change in the identification of the critical member, and there is no significant 

difference (like 1.5 times) in P13 to P23. Hence, further iteration is not required. 

The buckling load predicted by SABRE2 is 12636 in-kips. Nethercot and Trahair’s method 

would predict a capacity equal to P12=14774 in-kips.  

4.5 Extended method + LBC method 

This method is applicable for the case where the end span is critical. Proceed in the steps of the 

extended method with the exception of modifying the stiffness ratios (G) to β as directed in the 

LBC method. 

To solve the problem in  

Figure 10 for L=30in for singly-symmetric section with cross-section dimensions Dw=30 in, 

tw=0.5 in, bfc=7.5 in, tfc=0.9375 in, bft=15in, tft=0.9375 in. Spans from left to right are numbered 

one to three. 

Buckling capacity of each span using Equation(21): 

P1 = 22692 in-kips, P2 = 30894 in-kips, P3 = 356748 in-kips 

Critical segment is span one and the restraining segment is span two 

Calculating the buckling capacity of span two: 

Restraining segment for span two is span three, while span one is assumed to give no restraining 

effect because its buckling capacity is lower than that of span two. 

From the Nethercot and Trahair method G12 = ∞, G32 = 0.18 

Distribution factor (DF) of span two = 0.82 

Calculate β using Equation(12) as DF < 1: 

β12 = ∞, β32 = 0.11 

Effective length factor (K) using Equation(15), K = 0.74 

Buckling capacity of span 2 using equation(21) is P2 = 53222 in-kips 

Calculate the buckling capacity of span 1: 

First, calculate the restraining effect of span 2 using the new buckling load (P2) 

Stiffness ratios calculated as directed in Nethercot and Trahair, G21 = 0.87, Ghinge = ∞ 

Distribution factor (DF) of span one = 0.33 

Calculate β using Equation(12) as DF < 1: 

βhinge = ∞, β21 = 0.4 

Effective length factor (K) using Equation(15), K = 0.81, 

Critical buckling capacity calculated using Equation(21) is P1 = 30649 in-kips 

Critical buckling capacity predicted by SABRE2 is PFEA = 32718 in-kips 

Critical buckling capacity predicted by N&T method is PN&T = 25446 in-kips. 

5. Conclusions 

Design engineers often look for simple hand-based techniques, rather than advanced analysis 

tools to estimate the LTB capacities of beams with multiple unbraced spans. Some of the 

drawbacks of the existing Nethercot and Trahair method are discussed and various methods are 

proposed in this paper to reduce the error in effective length prediction. While it is obvious why 

unconservative predictions using the N&T method is undesirable, this paper has also shown how 
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one may incorrectly formulate the design LTB curve while using conservative predictions from 

the N&T method. The key findings in the paper are summarized below: 

1. The methods proposed capture the restraining effects of spans beyond the immediate adjacent 

segment. It is shown that although the N&T method is conservative compared to the 

proposed method (extended method) in such cases. 

2. A modified procedure is proposed in this paper when the beam is subjected to a linear 

bending moment, and the end segment is critical. It is shown that the N&T method is overly 

unconservative when the maximum moment is at the pin support, and overly conservative 

when the maximum moment is at the brace location. The proposed procedure greatly reduces 

the error in these predictions. This is also validated for beams subjected to reverse curvature. 

3. The paper presents potential conditions, where the critical segment may be wrongly 

identified, resulting in larger estimates of buckling capacities. 

4. The paper also discusses conditions where the restraining effect of adjacent segments is 

grossly over-estimated leading to extremely unconservative solutions. 

5. Finally, the paper has verified all the above procedures for singly-symmetric cross-sections, 

while also showing that where applicable, all the above modifications may be used 

simultaneously for the best results. 
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