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Abstract 
Thin cylindrical shells are highly sensitive to imperfections, and the presence of even small 
geometric imperfections reduces their capacity significantly. This high sensitivity reduces the 
inherited benefits of thin cylindrical shells and has long been an obstacle for the effective and 
efficient use of thin cylindrical shells. The current practices, to deal with this imperfection 
sensitivity, are through the use of knockdown factors and stiffeners. These methods, which are 
also used for designing wind turbine towers among many other structures, diminish the structural 
benefits and increase the cost of construction. Recently, a new approach has emerged to reduce the 
sensitivity of thin cylindrical shells to imperfections, and to increase the load carrying capacity. In 
this approach, wavy cross-sectional shapes are explored instead of circular cross-sections. The 
wavy cross-section shapes reduce the slenderness (𝑅𝑅/𝑡𝑡) of the cylindrical shells because the local 
radius of curvature is reduced and consequently, the imperfection sensitivity of thin cylindrical 
shells is also reduced. Past studies have been carried out using the wavy shape cross-sections and 
they present highly promising results.  These studies did not investigate the effect of residual 
stresses, which is the essential part of wavy cross-sectional cylindrical shells. Furthermore, an 
application of wavy cross-sectional thin cylindrical shells in tall wind turbine towers is explored 
to illustrate the benefits of wavy cylinders. 
 
 
1. Introduction 
Thin cylindrical shells are optimal structures (high load carrying capacity with low material 
volume), and they are widely used due to their structural efficiency and appeal to aesthetic. But 
the sensitivity of thin cylindrical shells to imperfections diminishes the structural efficiency 
associated with them. The presence of imperfections reduces the load carrying capacity of thin 
shells significantly, and imperfections are unavoidable. Thus, thin shells are designed very 
conservatively to account the presence of imperfections. To design thin cylindrical shells, we find 
the capacity of perfect shells and reduce them by a factor, known as knock-down factor, and the 
resulting value is assigned as the design capacity of the shells (NASA 1965). This is the accepted 
method for designing thin shells, and almost all the design codes, e.g., the Eurocode Part 1-6-2007, 
follow the similar procedure implicitly or explicitly. Although using this approach, the presence 
of imperfections is incorporated, the resulting designs are very conservative.  Another approach to 
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deal with imperfection sensitivity of thin cylinders is the use of stiffeners along the longitudinal 
and/or circumferential direction. Though stiffeners, to some degree, reduce the sensitivity to 
imperfections, they increase the cost of construction. The imperfection sensitivity of thin shells 
has long been a nuisance to the designers and they just learned to leave with this nuisance. Recent 
efforts have been trying to re-examine the knockdown factors accounting for realistic dimple 
imperfections, e.g., Gerasimidis et al (2018), Huhne et al (2008), Wagner et al (2017), Krasovsky 
et al (2011), Wagner et al (2018), Hilburger et al (2012), Haynie et al (2012) and Kriegesmann et 
al (2012).      
 
However, recently a novel approach has emerged which gives some hope to get rid of this nuisance 
called imperfection sensitivity. In this approach, wavy cross-sectional shapes are explored instead 
of circular cross-sections. The wavy shape cross-section reduces the slenderness (𝑅𝑅/𝑡𝑡) of the 
cylindrical shells because the local radius of curvature is reduced and consequently, the 
imperfection sensitivity of thin cylindrical shells is also reduced. Past studies have been carried 
out using the wavy shape cross-sections and they present highly promising results for axial 
compression loading scenarios and elasticity (Xing et al. 2015 and Xing et al. 2017). However, for 
many important applications, the primary load is bending, e.g., wind turbine towers and gas 
pipelines. The results of Xing et al. (2015) and Xing et al. (2017) cannot be directly interpolated 
in these loading scenarios and thus a study of imperfection sensitivity of thin wavy cylinders under 
bending is needed. Recently, Yadav et al. (2018) have extended the application of wavy cylinders 
under bending and their findings are very encouraging.  
 
In this paper, imperfection sensitivity of wavy thin cylindrical shells is explored in the inelastic 
range. First, the effect of imperfections on the bending behavior of wavy and circular thin 
cylindrical shells is investigated and compared. Next, the effect of the wave parameters, i.e., wave 
amplitude and the number of waves, on the load reduction factors is studied. The results we found 
are very encouraging and motivate further studies. Furthermore, an application of wavy cross-
sectional thin cylindrical shells in tall wind turbine towers is explored to illustrate the potential 
benefits of wavy cylinders.   
     
2. Geometry, modeling and material properties of wavy cross-sectional cylindrical shells 
In this section, the geometry of the wavy cross-sectional cylindrical shells, material properties, and 
FEM modeling are described. 
 
2.1 Geometry of wavy cross-sectional cylindrical shells 
The cross-section of wavy cylindrical shells is created by modifying the cross-section of circular 
cylindrical shells. The equation of a circular cross-section, whose center is at the origin, in the 
polar coordinate is:  
 
 𝑟𝑟(𝜃𝜃) = 𝑅𝑅 (1) 
 
Where 𝑟𝑟 is the distance of the trace point from the center of the cross-section, 𝑅𝑅 is the radius of 
circle and 𝜃𝜃 is the angle from the polar-axis as shown in Fig. 1. There are many ways to create 
wavy cross-sections, we chose a simple equation, given by Xing et al. (2015), to make the wavy 
cross-section due to its simplicity. In this equation, the wavy cross-section is created by 
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superposing a sinusoidal wave on the equation of the circle. The mathematical expression of the 
wavy cross-section is: 
 
 𝑟𝑟(𝜃𝜃) = 𝑅𝑅 + 𝐴𝐴𝑟𝑟 sin(𝑁𝑁𝜃𝜃) (2) 
 
Where 𝑟𝑟 is the distance of the trace point from the center of the cross-section, 𝑅𝑅 is the radius of 
the circle, 𝜃𝜃 is the angle from the polar-axis, 𝐴𝐴𝑟𝑟 is the amplitude of sinusoidal wave and 𝑁𝑁 
represents the total number of waves. The wavy cross-section is shown in Fig. 1. In this study, the 
value of 𝑅𝑅 and the ratio of radius to the thickness (𝑅𝑅/𝑡𝑡) are taken as 2 m and 120 respectively. The 
length of the cylinder in all the analyses is 20 m, which yields to 𝐿𝐿

𝑅𝑅
= 10. These values represent a 

typical section of a tall wind turbine tower (Yadav et al). 
 

 
 

Figure 1: Cross-section of circular and wavy cylindrical shells along with their mathematical expression. 
 
2.2 Stress-strain relationship of the material 
Thin steel cylindrical shells, for 𝑅𝑅

𝑡𝑡
= 120, are expected to fail inelastically and therefore the 

material hardening model plays a highly important role in their behavior (Kyriakides et al. 2007). 
We use a version of Ramberg-Osgood stress-strain relationship, which is expressed as (Kyriakides 
et al. 2007): 
 

 𝜀𝜀 = 𝜎𝜎
𝐸𝐸
�1 +  3

7
� 𝜎𝜎
𝜎𝜎𝑦𝑦
�
𝑛𝑛−1

� (3) 

 
In the present paper, the value of modulus of elasticity 𝐸𝐸 is 210 Gpa, the Poisson’s ratio ν is 0.3, 
the yield stress 𝜎𝜎𝑦𝑦 is 355 Mpa and the value of 𝑛𝑛 is 9. 
 
2.3 Geometry of imperfection 
To study the effect of geometric imperfections, an axisymmetric geometric imperfection is chosen, 
whose amplitude is slightly biased toward the center. This imperfection is in the shape of a 
sinusoidal wave, whose wavelength is 2λ (where λ is the half wavelength of the cylindrical shell 
under the compressive load whose value is 1.72√𝑅𝑅𝑡𝑡  (Timoshenko et al. 1961)). Mathematically 
this imperfection can be described as (Kyriakides et al. 2007): 
 
 𝑤𝑤 = −𝑅𝑅 �𝑎𝑎𝑜𝑜𝑜𝑜 + 𝑎𝑎𝑜𝑜 cos �𝜋𝜋𝜋𝜋

𝜆𝜆𝜆𝜆
�� cos �𝜋𝜋𝜋𝜋

𝜆𝜆
� (4) 
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Where w represents the deviation from the original position in the radial direction, 𝑘𝑘 is the number 
of waves along the length, 𝜆𝜆𝑘𝑘 is the length of the cylinder whose value is 20 m in this study, 
𝑅𝑅(𝑎𝑎𝑜𝑜𝑜𝑜 + 𝑎𝑎𝑜𝑜) is the amplitude of imperfection and 𝑥𝑥 is the axial coordinate with the origin at the 
center of the cylinder. 𝑅𝑅𝑎𝑎𝑜𝑜𝑜𝑜 and 𝑅𝑅𝑎𝑎𝑜𝑜 are the unbiased and biased components of the amplitude 
respectively. In this study, the value of 𝑎𝑎𝑜𝑜𝑜𝑜 and 𝑎𝑎𝑜𝑜 are chosen such the ratio 𝑎𝑎𝑜𝑜𝑜𝑜

𝑎𝑎𝑜𝑜
  is 5. 

 
2.4 Computational Analyses 
For the analyses of cylinders, a displacement-based method of analysis is used with one end of the 
cylinder is fixed while the rotation is applied at the other free end as shown in Fig. 2. The 
simulation is performed in ABAQUS by utilizing the Riks method and using four nodes reduced 
integration shell (S4R) elements (ABAQUS). Four integration points are utilized along the 
thickness of each element. Two rigid body constraints with reference points are imposed at the end 
cross-sections, which make sure that the end cross-sections do not change their shape, i.e., 
ovalization is prevented during the analysis. These constraints represent the rigid rings, which are 
used in cylindrical shells at regular intervals to prevent the ovalization. After performing an 
extensive mesh convergence analysis, it was found that around 25000 elements provide an element 
size of 100 mm x 100 mm which is less than 1.72√𝑅𝑅𝑡𝑡. Fig. 2 shows the circular and wavy 
cylindrical shells along with their boundary conditions and mesh elements. 
 

 
Figure 2: Circular and wavy cylindrical shells along with their boundary conditions. 

 
3. Effect of imperfections 
Fig. 3a shows the moment-rotation diagrams of the perfect and the imperfect circular cylindrical 
shells, and Fig. 3b shows the moment-rotation diagrams of the perfect and the imperfect wavy 
cylindrical shells. The values of 𝑅𝑅 and 𝑅𝑅/𝑡𝑡 for both cylinders (circular and wavy) are 2 m and 120 
respectively. For the wavy cylinder, the value of 𝐴𝐴𝑟𝑟 and 𝑁𝑁 are 3𝑅𝑅/70 m and 15 respectively. The 
amplitude of imperfections (see section 2.3) varies from 0 (perfect) to 2𝑡𝑡 (𝑡𝑡 is the thickness of 
cylinders) with an interval of 𝑡𝑡/20 and total 41 models, i.e., one perfect and forty imperfects, are 
analyzed for both circular and wavy sections. Fig. 3 illustrates very clearly that the difference 
between the peak moment of the perfect cylinder and the imperfect cylinder is large for the circular 
cylindrical shells as compared to the wavy cylindrical shells. Thus, the circular cylindrical shell is 
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extremely sensitive to the imperfections while the wavy cylindrical shell is slightly sensitive to the 
imperfections. 
 
Another significant observation from Fig. 3 is that the moment capacities of wavy cylindrical shells 
(both perfect and imperfect) are significantly higher than the moment capacities of circular 
cylindrical shells. For more clarity, the moment capacities of circular and wavy cylindrical shells 
are drawn in Fig. 4a. Fig. 4a illustrates very clearly the higher moment capacities of wavy cylinders 
as compared to the circular cylindrical shells. So, the benefits of using wavy cylindrical shells are 
twofold: first, it reduces the imperfection sensitivity, and second, it also increases the moment 
capacities. 
 

 
Figure 3: Moment-rotation diagrams of perfect and imperfect (a) circular cylindrical shells and (b) wavy cylindrical 

shells. 
 
In Fig. 4b, the load reduction factor λ is drawn with respect to the imperfection amplitude 
(normalized by the thickness t of the cylinder) for the circular and the wavy cylinders. Many 
important observations could be made from figure 4b. 
 
 

 
Figure 4: (a) Moment capacities of circular and wavy cylindrical shells. (b) Load reduction factors of circular and 

wavy cylindrical shells. 
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First, the load reduction factor λ for the wavy cylinders is always less than the λ of the circular 
cylinders for all the range of imperfection amplitudes included in this study (form 𝑡𝑡/20 to 2𝑡𝑡). 
Second, for small imperfection amplitude (imperfection amplitude < 0.3𝑡𝑡) the reduction in load 
carrying capacity of the wavy cylinders is insignificant while for the circular cylinders the 
reduction in load carrying capacity is significant. For the imperfection amplitude more than 0.3𝑡𝑡, 
the reduction in λ becomes visible for the wavy cylinders. The third observation is that the 
difference between λ for the circular and wavy cylinders is reducing as imperfection amplitude is 
increasing. The first observation is significant because the amplitude of imperfections is generally 
less than 0.3𝑡𝑡, and the advantage of wavy cylindrical shells is pertinent in this range. 
 
To study the effect of wave parameters (𝐴𝐴𝑟𝑟 and 𝑁𝑁), five different wave amplitudes and five 
different number of waves are used as shown in Table 1 and total 25 different wavy cylindrical 
shells are created. 
 

Table 1: The amplitude of waves and the number of waves used in this study to create wavy cylindrical shells. 
𝐴𝐴𝑟𝑟 𝑁𝑁 𝑁𝑁 𝑁𝑁 𝑁𝑁 𝑁𝑁 
𝑅𝑅/70 3 5 15 20 25 

2𝑅𝑅/70 3 5 15 20 25 
3𝑅𝑅/70 3 5 15 20 25 
4𝑅𝑅/70 3 5 15 20 25 
5𝑅𝑅/70 3 5 15 20 25 

 
Fig. 5 shows the load reduction factor 𝜆𝜆 for the five wavy cylindrical shells, which have different 
number of waves, along with the load reduction factor 𝜆𝜆 of the circular cylinder. The values of 
wave amplitude 𝐴𝐴𝑟𝑟 is  2𝑅𝑅

70
 m.  

 

 
Figure 5: Effect of the numbers of waves along circumferential direction on the load reduction factors. The 
imperfection sensitivity is reducing with increase of the numbers of wave, the wave amplitude is constant.   

 
From Fig. 5, it can be concluded that the imperfection sensitivity of wavy cylinders reduces as the 
number of waves increases. For small wave amplitude the load reduction factor 𝜆𝜆 of the wavy 
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cylinder approaches to the load reduction factor 𝜆𝜆 of the circular cylinder. This is expected because 
the circular cylinder is a special case of the wavy cylinder; wavy cylinder becomes a circular 
cylinder when the wave amplitude reaches to zero. 
 
To study the effect of wave amplitude on the bending behavior of the wavy cylinder, five different 
amplitudes (i.e., 𝐴𝐴𝑟𝑟 = 𝑅𝑅

70
, 2𝑅𝑅
70

, 3𝑅𝑅
70

, 4𝑅𝑅
70

, 5𝑅𝑅
70

) of the wave are chosen as given in table 1. Fig. 7 shows 
the impact of wave amplitudes on the load reduction factor 𝜆𝜆. The load reduction factor 𝜆𝜆 is 
significantly affected by the wave amplitude. For the number of waves 𝑁𝑁 = 15, the wave 
amplitude has a big impact on 𝜆𝜆 if its value is more than  𝑅𝑅

70
  while for the wave amplitude less 

than 𝑅𝑅
70

, the load reduction factor 𝜆𝜆 of the wavy and circular cylinder have slightly differed to each 
other.  
 

 
Figure 6: Effect of the wave amplitude on the load reduction factors. The imperfection sensitivity is reducing with 

increase of the wave amplitude, the numbers of waves is constant. 
 
4. A potential application of thin wavy cylinders for making tall wind turbine towers: A 
case study 
Wind turbines are the critical source of green and clean energy. Their demand has been increased 
from the last couple of years due to the increased awareness of climate change and the push toward 
sustainable development. With this increased demand, the need to make them more efficient is 
also getting an impetus. The efficiency of wind turbines is closely related to the height of their 
towers as the winds are steady at the higher elevation. This correlation of height and efficiency of 
wind turbines coupled with their high demand drive engineers to make higher and higher wind 
turbine towers. Tall wind turbine towers are mostly made by thin cylindrical shells and thus are 
very sensitive to imperfections. As a result, these towers are designed conservatively to account 
the presence of imperfections. This increases the cost of wind turbine towers and poses a big 
obstacle to scaling up the use of wind turbines.             
 
This conservative design of tall wind turbine towers could be avoided if we make the towers 
insensitive to imperfections. It is possible to make the towers insensitive to imperfections if we 
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use wavy cross-sectional thin cylinders instead of circular cross-sectional thin cylinders for making 
the towers. In the previous sections, we demonstrated that thin wavy cylinders are insensitive to 
imperfections as compare to thin circular cylinders under bending. It is interesting to see how a 
tall wind turbine, made by wavy cylinders, response to imperfections. We study the response of 
the towers, made by thin circular and thin wavy cylinders, to imperfections. We found that the 
tower made by wavy cylinders are indifferent to imperfections (for imperfection amplitude less 
than the thickness of cylinder), while the tower made by circular cylinders are reducing their 
capacity significantly due to the presence of imperfections. The details about the tower and its 
response to imperfections are described in the following sections. 
 
4.1 Geometry of the wind turbine tower 
The wind turbine tower investigated in this study is a 61 m hollow tubular steel tower supporting 
1.5 MW capacity three-bladed horizontal axis NORDEX S70/1500 (Sadowski et al. 2017).  
 

 
Figure 7: (a) Circular wind turbine tower; it is original prototype. (b) Wavy wind turbine tower, which is created by 

modifying the original circular tower.   
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The outer diameter of the tapering tower varied from 4025 mm at the base to 2955 mm at the top. 
The thickness of the shell varies from 25 mm at the base to minimum 10 mm near the top. The 
diameter to thickness ratio varied from minimum 161 at the base to maximum 375 near the top of 
the tower. In total 24 tapered thin cylinders are used to create this tower along with three 
circumferential stiffeners (two in the middle and on at the top). There is a door near the base 
cylinders, but in this study, we ignore the presence of the door. Fig. 7a shows this circular tapered 
wind turbine tower. 
 
This wind turbine tower is slightly modified by changing the circular cross-sections to wavy cross-
sections of tapered cylinders. The total number of waves along the circumferential direction 𝑁𝑁 is 
15 and the amplitude of waves 𝐴𝐴𝑟𝑟 is 3𝑅𝑅𝑚𝑚𝑜𝑜𝑚𝑚

70
 m., Here 𝑅𝑅𝑚𝑚𝑜𝑜𝑛𝑛 represents the minimum radius of the 

circular cylinders by which the actual tower is made. These waves are superimposed on the circular 
tower along the whole length (including the stiffeners to avoid any discontinuity) and a wavy tower 
is created. Fig. 7b shows the wind turbine tower made by tapered wavy cylinders. For the analysis 
purpose, we assume that the material used in these towers are same as describe in section 2.2 and 
follow the strain-stress relationship described by Eq. 3.    

   
4.2 Effect of imperfections on load carrying capacity of towers under bending 
The analysis is done in ABAQUS by utilizing the Riks method and using four nodes reduced 
integration shell (S4R) elements. Four integration points are utilized along the thickness of each 
element. Two rigid body constraints with reference points are imposed at the top and the bottom 
of the tower, which make sure that the top and bottom do not change their shape. We are interested 
in the bending capacity of the tower as bending is the primary load on the tower. The rotation is 
applied at the top and the bottom is fixed. To study the effect of imperfections, an imperfect 
circular tower and an imperfect wavy tower are created by inducing their respective first eigen 
mode (under bending) shapes with given imperfection amplitudes as shown in Fig. 8a and 8b.   
 

 
 

Figure 8: (a) Inducing geometric imperfection in the circular tower. (b) Inducing geometric imperfection in the wavy 
tower. 
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We created ten imperfect wavy and circular towers with varying imperfection amplitude and found 
their capacity. Fig. 9a shows the moment capacities of the imperfect wavy and circular towers with 
respect to imperfection amplitude. The imperfection amplitude is varied from 0 to 𝑡𝑡𝑚𝑚𝑜𝑜𝑛𝑛, where 
𝑡𝑡𝑚𝑚𝑜𝑜𝑛𝑛 is the minimum thickness of cylinders used in making the towers (i.e., 10 mm). From Fig. 8a, 
it is clear that the moment capacity of the wavy tower is higher than the capacity of the circular 
tower. The difference between the capacities of circular and wavy towers is significant when the 
imperfection amplitude is more than 0.4𝑡𝑡𝑚𝑚𝑜𝑜𝑛𝑛. This is due to the indifference of wavy towers to 
imperfections and high sensitivity of circular tower to imperfections.  
 
Another important feature of Fig. 8a is that for higher imperfection amplitude the capacities are 
stabilized, i.e., the further increase in imperfection amplitude does not affect the moment 
capacities. To see the effect of imperfections more clearly, load reduction factor λ is plotted against 
the normalized imperfection amplitude in Fig. 8b. It should be noted that load reduction factor λ 
is found by dividing the capacity of the imperfect tower to the capacity of the respective perfect 
tower. From this figure, it is very clear that the reduction in the bending capacity of the circular 
tower is significant whereas in case of the wavy tower the reduction is marginal. For imperfection 
amplitude 0.1𝑡𝑡𝑚𝑚𝑜𝑜𝑛𝑛, the reduction in the circular tower is around 20% and the reduction in wavy 
cylinder is around 3.5%. Similarly, for imperfection amplitude 0.4𝑡𝑡𝑚𝑚𝑜𝑜𝑛𝑛, the reduction in case of 
the circular tower is around 38% whereas the reduction in case of the wavy tower is around 8%. 
For imperfection amplitude, more than 0.4𝑡𝑡𝑚𝑚𝑜𝑜𝑛𝑛, the load reduction factors for both circular and 
wavy cylinders are almost constant, and a plateau can be seen in Fig. 8b. These observations show 
very clearly that not just wavy cylinders (as shown in section 3) but also the towers made by 
tapered wavy cylinders are insensitive to imperfections.  In this paper, we just used the respective 
first eigenmodes of the circular and wavy towers as the imperfection shape. However, we got 
similar results with other eigenmodes, i.e., the wavy tower is less sensitive to imperfections as 
compared to the circular tower. These primary results are very encouraging and demand a thorough 
study, which we are currently doing. 
 

 
 

Figure 9: (a) Moment capacities and (b) Load reduction factors of circular and wavy towers against imperfection 
amplitude.  
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5. Conclusions 
This study aims to understand the bending behavior of thin wavy cross-sectional steel cylindrical 
shells and to investigate their superiority to thin circular cylindrical shells. We utilized a simple 
equation to characterize the wavy cylindrical shells; this equation requires three parameters, e.g., 
the radius 𝑅𝑅, the wave amplitude 𝐴𝐴𝑟𝑟, and the number of waves 𝑁𝑁 to fully define the cross-section 
of wavy cylindrical shells. To understand the bending behavior of thin wavy cylindrical shells, 
Finite Element Method is performed using the commercial software ABAQUS. The rotation is 
applied at the one end of the cylinder while the other end is fixed. For the analyses purpose, a 
version of the Ramberg-Osgood model is used as the cylinder is expected to fail inelastically for 
the given  𝑅𝑅/𝑡𝑡 ratio.  
 
This study reveals that wavy cylindrical shells under bending are insensitive to the imperfections 
and the presence of imperfections does not reduce the load carrying capacity significantly. It is an 
important finding for cylinders under bending. Previous studies (Xing et al. 2015 and Xing et al. 
2017) have revealed similar conclusions but for the thin cylindrical shells under the axial 
compression. Comparison between the load reduction factor 𝜆𝜆 of the wavy cylinders and the 
circular cylinders is also performed and we found that for the small amplitude of imperfection 
(𝑤𝑤 < 0.3𝑡𝑡) the reduction in bending capacities is high for the circular cylinders compared to the 
insignificant reduction for the wavy cylinders. Apart from this, we also found that the bending 
capacities of wavy cylinders are higher than the bending capacities of the circular cylinders. To 
investigate the effect of wave amplitude (𝐴𝐴𝑟𝑟) and the number of waves (𝑁𝑁), a parametric analysis 
is performed. It is found that the effectiveness of the wavy cylinder increases as the number of 
waves and wave amplitude increase. This means that for the high wave amplitude and the high 
number of waves, wavy cylinders are less sensitive to imperfections, and their bending capacities 
are high. 
 
To explore potential applications of wavy thin cylindrical shells, an actual tall wind turbine tower, 
which is made by thin tapered circular cylinders, is modified slightly and a new tower is created, 
which is made of wavy tapered thin cylinders. We make these towers, i.e., circular and wavy, 
imperfect by introducing their respective first eigen modes under bending with given amplitudes. 
We found that the wavy tower is insensitive to imperfections whereas circular tower (the actual 
tower) is highly sensitive to the imperfections and loss its significant capacity due to the presence 
of imperfections. This finding, although preliminary in nature, demonstrates that the capacity of 
wind turbine tower can be increased, and imperfection sensitivity can be reduced if wavy cylinders 
are used to make them.       
 
These results are very promising because imperfection sensitivity of thin cylindrical shells has 
been a big obstacle for their economic applications for a long time. This study shows that if wavy 
cross-sectional cylindrical shells are used, the inherent drawback (high imperfection sensitivity) 
of thin circular cylindrical shells can be circumvented and material can be used optimally. This 
study is limited in many respects: the manufacturing feasibility of wavy cross-sectional thin 
cylindrical shells has not been studied, the specific  𝑅𝑅/𝑡𝑡 ratio (120) is used, and the cost comparison 
of wavy cylinders with circular cylinders has not been done. Nevertheless, this study divulges an 
important aspect of thin wavy cylindrical shells and in the future other territories of thin wavy 
cylindrical shells can be explored. 
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