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Abstract 
Torsional bracing is often used to stabilize beams in building and bridge applications. The 
bracing improves the stability by restraining twist of the cross section.  Adequate stability 
bracing must satisfy both stiffness and strength requirements. The torsional brace strength 
requirements in the latest edition of the AISC specification (2016) was significantly changed 
from previous editions of the specification (2010). This paper outlines a parametric study on the 
strength requirements of beam torsional bracing. The paper demonstrates that the latest 
expression results in brace strength predictions that can be significantly unconservative. The 
paper recommends returning the strength provisions that were provided in previous editions of 
the specification. 
 
1. Introduction 
Lateral torsional buckling (LTB) is a limit state that may control the design of I-girder systems.  
The critical stage for LTB often occurs during placement of the concrete slabs since the non-
composite steel girders support the entire construction load. The LTB resistance is improved by 
reducing the unsupported length of the beam utilizing bracing. Effective bracing can be achieved 
by either preventing lateral movement of the compression flange or by restraining twist of the 
beam. Bracing that restrains twist is aptly referred to as torsional bracing. Torsional braces occur 
in many forms including plate diaphragms, cross frames, or a transverse flexural member 
framing between adjacent beams. As demonstrated by Winter (1960), effective bracing must 
satisfy both strength and stiffness requirements. Winter developed a simple model that 
demonstrated the impact of imperfections and the stiffness that was provided on the brace 
strength requirements.  
 
Winter’s work primarily focused discrete/nodal bracing systems for columns and also made 
some simplifications to extend the method to beams.  Although Winter’s method focused on just 
discrete/nodal bracing, the fundamental concepts of stiffness and strength translate to all 
stability-related bracing systems.  
 
The focus of this study is on torsional bracing of beams. There have been a number of previous 
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investigations on the behavior of torsional bracing, including the work of Taylor and Ojalvo 
(1966) who provided a solution for the LTB buckling capacity of beams with continuous 
torsional bracing that could be used to determine the required stiffness of the beam. Yura (2001) 
extended the solution for application with discrete torsional braces as well as a number of other 
variables including moment gradient, load position, and cross sectional distortion. 
 
An important concept to understand with regards to bracing behavior is concept of the “ideal” 
stiffness, which is the brace stiffness that is required for a perfectly straight member to reach a 
specified load – which is often taken equal to the load corresponding to buckling between the 
brace points. The concept established by Winter (1960) and extended by Yura (2001) in the 
development of the bracing provisions in the AISC specification is to provide at least twice the 
ideal stiffness to control brace forces and deformations. For columns, Winter’s model 
demonstrated that the amount of deformation that will occur at a brace point is equal to the 
magnitude of the initial imperfection, when twice the ideal stiffness is provided. Therefore, the 
brace force is often taken as the brace stiffness multiplied by the magnitude of the initial 
imperfection. For torsional bracing systems, simplifications were applied to the stiffness 
formation outlined in Yura (2001) to produce the following required stiffness: 
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wherein βTbr is the system torsional brace stiffness; L is the span length; Mr and n are the 
maximum factored moment and the number of intermediate braces within the span; Iyeff is the 
effective moment of inertia; f is the resistance factor; and Cb is the moment gradient factor 
assuming the beam buckles between the brace points. Prior to the 2016 AISC specification, the 
brace strength requirement was given by the following expression:  
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Equation (2) is based upon the assumption that twice the ideal stiffness was provided so that the 
twist at the brace was equal to the initial imperfection.  Additional simplifications were applied 
as outlined in the AISC Commentary (2010) were applied. The expression also is based upon the 
assumption that the section has the critical shape initial imperfection. Wang and Helwig (2005) 
demonstrated that the critical shape imperfection for torsional bracing consists of a lateral sweep 
of the compression flange equal to Lb/500 (sweep tolerance) and the tension flange is straight, 
producing an initial twist equal to Lb / 500h0 where Lb and h0 are the respective unbraced length 
and distance between flange centroids. The latest AISC Specification (2016) included a change 
in the torsional brace moment based on the recommendations from Prado and White (2015). 
Prado and White (2015) carried out a detailed investigation on the stability bracing requirements 
including the behavior in the inelastic region. The study was focused heavily on the requirements 
to reach the plastic bending strength for beams with relatively short unbraced lengths and 
resulted in the following torsional brace moment: 
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Where, Mr is the design moment in the beam. Although the simplicity of Equation (3) is 
attractive, the applicability of the expression for general design situations is questionable. In 



 

particular, beams with unbraced lengths at or near the elastic buckling limit can experience 
significantly larger brace moments than 2% of the design moment. 
 
This paper focuses on the brace strength requirements of steel beams with torsional braces. The 
applicability of Equations (2) and (3) for the general stability design requirements of steel beams 
is covered. The paper begins by providing background information that is necessary to 
understand the fundamental behavior of torsional bracing systems. The results from a parametric 
study on the torsional bracing behavior of beams are covered including the effects of material 
inelasticity and the number of intermediate braces. Finally, recommendations are made for the 
strength requirements of torsional braced beams. 
 
2. Background 
There are a number of factors that impact the stiffness behavior of bracing systems.  For 
torsional bracing of beams, there are three primary stiffness components: 1) brace stiffness, βb; 
2) cross-sectional distortion, βsec, and 3) in-plane stiffness of the beams, βg. Most bracing 
systems tend to follow the expression for springs in series (Yura, 1992), resulting in the 
following expression for the system torsional brace stiffness, βT: 
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The nature of Eq. (4) is such that bT is smaller than the smallest of the three components.  From 
a design perspective, for a given bracing system, the system stiffness given by Eq. (4) must be 
larger than the stiffness requirement from Eq. (1).  Therefore, from a behavioral perspective, 
failure can occur if any of the three stiffness components in Eq. (4) are less than that stiffness 
required given by Eq. (1).  Although this previous statement may seem obvious, there have been 
a number of near failures of torsional braced beams because the in-plane stiffness, βg, is often 
overlooked. The impact of in-plane girder stiffness on the effectiveness of torsional bracing was 
first documented by Helwig (1993) through investigating twin-girder systems. The internal force 
components developed in a cross-frame include shears that act upward on one girder and 
downward on the other girder. The shears and corresponding girder deformation can lead to a 
rigid-body rotation of the systems that dramatically decreases the effectiveness of torsional 
bracing. They also put forward the following Eq. (5) for the in-plane stiffness of twin girders, 
which was later extended to Eq. (6) (Yura et. al, (1993), Helwig and Yura (2015)) for systems 
containing more than two girders, where S and Ix are the respective girder spacing and the in-
plane moment of inertia; and ng is the number of girders across the width of the system. 
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The in-plane stiffness effect (βg) is mainly important on systems with a relatively narrow width 
compared to the span, such as two- and three-girder systems. The AISC specification includes 
expressions for βb and βsec that have been shown to produce good predictions on the behavior. 
Because many building systems tend to have significant width across the width compared to the 
span, the in-plane stiffness component (βg) was not included in the AISC bracing provisions. 



 

However, the collapse of the Marcy Pedestrian Bridge (unbraced tub girder) as well as near-
collapses of several narrow 2- and 3-girder systems exposed the profession to a mode of 
buckling that is often referred to as the “system mode of buckling” outlined in Yura et al. (2008). 
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From a general behavioral perspective, the system mode of buckling given by Eq. (7) will 
typically control when the in-plane stiffness (βg) is less than the torsional brace stiffness required 
given by (1). The mode of buckling is not generally sensitive to the brace stiffness or spacing. 
Improving the behavior requires changes in the girder geometry or additional restraints from 
lateral bracing. Additional work has recently been carried out in Han and Helwig (2016) to 
extend the application of the above expression considering the impact of moment gradient, girder 
continuity, second order effects, and the impact of imperfections on the mode. Although the 
system effect outlined in Eq. (7) may appear relatively involved compared to torsional bracing 
moment behavior discussed in this paper, understanding the basic behavior of the mode is 
important with respect to the finite element modelling decisions that are outlined in the next 
section. 
 
3. Finite – Element Model 
To investigate the torsional brace strength behavior, parametric finite element analyses was 
carried out on twin I-girder systems using ABAQUS (2017). The cross sections of the girders 
were modelled using shell elements. The torsional braces consisted of cross frames that framed 
between the two adjacent girders. Cross frames are commonly used in bridges and in some 
building applications. The cross frames were modelled by the linear truss element T3D2. The 
cross frames shared nodes located at the flange to web juncture at the top and bottom of the I-
sections. Because the torsional braces were “full-depth” there was no cross sectional distortion 
associated with web flexibility. The girders were with the 4-node full integration shell element 
S4. The shell elements were square with a mesh size of 2 in. (50.8 mm). Three different cross 
sections were considered in the study as depicted in Fig. 2.  The span of the girders was equal to 
100 ft. (30.48 m). Since the three girders had a web depth of 48 in. (1.219 m), the span-to-depth 
ratio L/d was 25, which is representative of beams used in practice. A web thickness of 0.75 in. 
(19.05 mm) was used for all the girders to maintain a relatively stocky web and avoid local 
buckling in the web. The thickness of the flanges were selected to give a compact flange with a 
width/thickness ratio of 8, which is compact for grade 50 steel and therefore avoided local flange 
buckling. The flange sizes of the three sections provided flange width to depth ratios of 1/6, 1/4, 
and 1/3. The value of 1/6 is the extreme limit allowed in the AASHTO bridge specification 
(2016), while the value of 1/3 is consistent with many rolled sections. 
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Figure 1: Cross sections considered in parametric study 
 
The number of braces provided on the beams ranged from 1 to 5, resulting in unbraced lengths 
ranging from 50 ft. (15.24 m) to 16.67 ft. (5.08 m). To avoid issues with system buckling 
discussed in the previous section, the girder spacing ranged from 20 ft. (6.10 m) to 30 ft. (9.14 
m). The larger spacing of 30 ft. (9.14 m) was required for cases with a larger number of 
intermediate braces to improve the system mode buckling capacity so that it didn’t control over 
buckling between the brace points. Fig. 3 shows the layout and boundary conditions of the twin-
girder systems. Both elastic and inelastic analyses are carried out in this paper. In the inelastic 
analysis, the elastic perfectly plastic steel constitution is employed for the girders. However, 
sometimes the simulation cannot converge because of the stress concentration at the end of 
girders. Therefore, the ends of girders with a length of 12 in. (0.30 m) in the models use the 
elastic material. The in-plane boundary conditions of the twin-girders consist of the simple 
support at the mid-height points of cross sections. Twist was restrained at the ends of the girders 
by stopping lateral movement at the top and bottom of the webs. The sections were free to warp 
at the supports. 
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Figure 2: Layout and boundary conditions of twin-girder systems 

 
As for initial imperfections, Wang and Helwig (2005) showed that the critical shape imperfection 
for beam torsional bracing consists of a lateral sweep of compression flange while the tension 
flange remains straight. The distribution of the imperfection along the length was the same as 



 

utilized by Prado and White (2015) which consists of an asymmetric initial imperfection shape is 
applied on the top flanges by forced lateral displacements, as depicted in Fig.5. 
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Figure 3: Initial imperfection shape 

 
The critical segment for buckling was always the section near midspan where the moment was 
the largest. In cases with more than 1 brace, the critical segment often received warping restraint 
from the adjacent segments with lower moment levels.  To avoid accounting for the warping 
restraint on the buckling capacity, Timoshenko’s buckling solution for a doubly-symmetric 
section was used to identify the moment level corresponding to buckling between the brace 
points: 
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where, Lb is the spacing between cross frames, J is the torsional constant, Cw is the warping 
constant, E is the elastic modulus, and G is the elastic shear modulus. Eigenvalue buckling 
analyses were conducted to obtain the ideal stiffness requirements of the bracing to reach the 
corresponding moment level. The ideal stiffness was determined as the stiffness required to reach 
the moment level corresponding to buckling between the brace points using Eq. (8). For all the 
analysis, twice the ideal stiffness was provided, matching the current assumption in the AISC 
provisions. 
 
4. Finite – Element Results 
Prior to the discussion of the strength behavior of torsional braces, an overview of how the brace 
moments were calculated is warranted. Table 1 shows the brace forces for an analysis on Section 
2 for the case with a single cross frame at midspan for various load levels M/Mcr. The brace 
moments are sketched for the case M/Mcr = 75% in Fig. 6. As the system deforms, shears 
develop at the interface between the girder and the brace. One girder has an upward shear, while 
the other has a downward shear. The shears cause the moment in the girder on the left to be 
larger than moment in the girder on the right. Wang and Helwig (2005) showed that the cross 
frame forces are a function of the girder moment. In this case, because the girder on the left has a 
higher moment, the brace force is higher than the brace moment for the girder on the right. An 
idealized maximum and minimum force couple can be obtained from the strut forces. For 
example, the maximum value would be the top strut force multiplied by the depth of the brace as 
1.49 k × 48 in. = 71.5 k·in. (8.08 kN·m). The minimum is 1.37 k × 48 in. = 65.8 k·in. (7.43 
kN·m), and the average is 68.7 k·in. (7.76 kN·m). In design, an engineer would normally have 



 

“equal” girder design moments from a first-order analysis, and therefore the average force is 
used in all graphs throughout this paper. In reality, one girder will have a higher brace moment 
and the other girder will have a smaller brace moment. The relative difference in the brace 
moments will generally be significant for twin girder systems and become smaller for wider 
systems with more girders. 
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(a) Forces and moments                                              (b) Failure mode 
Figure 4: A brace moment example 

 
Table 1: Brace forces under various girder moments 

M /Mcr 
Fb,top 
/kips 

Fb,bot 
/kips 

Fb,diag 
/kips 

Mb,max 
/(kips·in) 

Mb,min 
/(kips·in) 

Mb,avg 
/(kips·in) 

0.25  0.15  0.15  0.30  7.20  6.99  7.09  
0.50  0.55  0.52  1.06  26.27  24.95  25.61  
0.75  1.49  1.37  2.85  71.54  65.75  68.64  
1.00  5.31  4.65  9.89  254.90  223.10  239.00  

*Mb = Fb · d, d is the depth of bracing and girders. 
 
Before general results are shown for all three sections, a discussion of the behavior for cases with 
elastic and inelastic material response is warranted. In the graphs of applied load versus brace 
moments, the applied load is normalized by the critical buckling moment (Mcr) using Eq. 8 
whereas the brace moments are normalized by the applied moment (M). Fig. 7 shows a graph of 
the normalized applied moment versus the corresponding brace moment for Section 2 with 5 
intermediate braces for the case with uniform moment loading. Four curves are shown 
corresponding to cases with an elastic material and inelastic material limits. The inelastic 
material limits correspond to fy = 36 ksi, 50 ksi, and 70 ksi (248, 345 and 483 MPa). The curves 
are essentially coincident up until the cases with inelastic limits exhibit yielding in the material. 
The curves then diverge from one another and the cases with inelastic materials reach a 
maximum strength corresponding to plastification of the cross section. Although the maximum 
brace moments for these cases with inelastic materials are smaller than the case with elastic 
materials, the comparison is not significant since the analyses were controlled by different limit 
states. The case with elastic materials were controlled by stability with the beam supporting 
larger applied moments and experiencing more significant buckling related deformations. Many 
of the cases considered by Prado and White (2015) had a relatively short unbraced length and 
were controlled by plastification of the cross section assuming Gr. 50 steel. Tailoring the stability 
brace moments around a specific material yield strength can result in unconservative predictions 



 

of the stability brace moments since the problem is not controlled by stability but is instead 
limited by cross sectional strength. The provisions for brace strength should consider the number 
of intermediate brace points and be applicable for cases with both larger and smaller unbraced 
lengths. Subsequent results of the brace strength demonstrate solutions with both elastic and 
inelastic materials. The inelastic material solutions used an arbitrary yield strength of 50 ksi (345 
MPa). These results are mainly shown as an indicator for when yielding with a common grade of 
steel would control. 
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Figure 5: Brace moments under varying material limits 

 
Fig. 8 shows the brace moments under uniform moment loading for all three sections that were 
considered. This observation is consistent with the study presented in Wang and Helwig (2005) 
that found the brace force is a function of the moment in the girder at the brace location. Three 
cases are graphed using an elastic analysis in addition to the one case is shown utilizing a 
material with an inelastic material (fy = 50 ksi = 345 MPa) for the case of n=5. Although inelastic 
materials were also considered for n=1, and n=3, the curves were not significantly different than 
the elastic cases except at very large deformations when P-delta effects led to yielding of the 
section. For all three sections, considering the cases with elastic materials, the relative magnitude 
of the brace forces at the maximum girder moments decrease with an increase in the number of 
intermediate braces. The relative change in brace force tends to decrease as more braces are 
added (i.e. There is a large reduction going from n=1 to n=3, but the reduction is smaller going 
from n=3 to n=5). Some of the analyses did not reach convergence beyond 90~98% of Mcr for 
the cases with n=3 and n=5 due to excessive girder deflections. However, this level of 
convergence is reasonable since it is within the resistance factor (f=0.9) and provides a 
representative level of the bracing moment. The curve for inelastic materials with n=5 had 
smaller brace moments than the cases with elastic materials, which is consistent with the 
observations outline for Fig. 6. As noted in the earlier discussion, the sections were controlled by 
the limit state of cross sectional yielding and the results are not representative of the limit state 
for stability bracing. As a result, all subsequent results presented in the paper focus on elastic 
materials since such conditions are more critical than cases with inelastic materials. Finally, a 
comparison of the brace moments for the three different sections show that the magnitude of the 
brace moments in descending order are for Section 1, Section 2, and Section 3, which indicates 



 

that more flexible (slender sections with smaller bf/d) sections tend to have larger brace moments. 
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Figure 6: Brace moments under uniform moment loading 
 
The typical brace moments ranged from approximately 3% to 6% of the maximum applied 
moment. The curves of the applied moment versus brace force tend to be relatively “flat” as 
M/Mcr = 1. As noted earlier, in some cases convergence was not reached above 90-98% of Mcr. 
In subsequent discussions, the brace moments are presented for either M/Mcr = 1 or the largest 
load that convergence was achieved. Table 2 summarizes the strength requirements of torsional 
bracing for the twin-girders with different cross sections and numbers of intermediate bracing 
considering various loading conditions. The value of M/Mcr denotes the load level that the brace 
moment was recorded. Although some of the brace moments tabulated are approximately 2% at 
M/Mcr = 90% (for cases that did not converge), referring back to Fig. 7, the brace moments 
increase dramatically in loading from M/Mcr = 90% to M/Mcr=1. As noted earlier, in all cases, 
the brace moment is anticipated to be significantly larger than the 0.02M that would be predicted 
using the current AISC expression given in Equation 3. 

Table 2: Strength requirements of torsional bracing 
n 1 3 5 

bf / d 1/6 1/4 1/3 1/6 1/4 1/3 1/6 1/4 1/3 
Mb / M 6.9% 3.9% 3.7% 2.7% 2.2% 2.2% 2.0% 2.0% 3.0% 
M / Mcr 100% 100% 100% 90% 90% 90% 90% 90% 90% 



 

 
As noted earlier, the expression given in Eq. 3 was based upon analyses by Prado and White 
(2015) with closely spaced braces and the sections were generally controlled by the cross section 
capacity and not stability. The expression in Equation 2 was based upon generally elastic 
behavior as well as the assumption that at least twice the ideal stiffness was provided leading to a 
twist at the brace point equal to the initial imperfection of the section. Equation 2, can be treated 
to obtain an estimate of the behavior as a function of the required design moment for 
comparisons with the 2% in the current AISC equation. For cases with moment gradient and 
several braces, the moment gradient factor (Cb) tends 1.0 since the critical unbraced segment 
near the maximum moment has a relatively uniform moment diagram. In addition, the unbraced 
length can be expressed as a function of the number of intermediate braces using the expression: 
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Inserting Cb = 1.0 and Eq. 9 into Eq. 2 produces the following expression: 
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Considering different numbers of intermediate bracing, the following Table 3 can be generated: 
 

Table 3: Results of Equation 10 
n 1 2 3 4 5 … 10 

Mbr / Mr 0.048  0.036  0.032  0.030  0.029  … 0.026  
 
The expression that was included in past AISC specifications tends to a practical minimum value 
of 2.6%Mr. Although significantly larger values than 0.048 were achieved in the FEA studies 
presented in this paper, the past expression better follows the observed trend that the brace 
moments are a function of the number of intermediate braces with the brace moment decreasing 
for additional braces. One of the reasons the expression underestimates the force is related to the 
assumption that providing a stiffness of twice the ideal stiffness results in a deformation at the 
brace equal to the magnitude of the initial imperfection, θ0. Although the assumption of 
providing twice the ideal stiffness limits the deformation to a value equal to the initial 
imperfection has been shown to work well with columns, the assumption does not work as well 
with beams; however it does provide reasonable estimates of the brace moment. Additional work 
was undertaken in the study presented herein on the stiffness required to limit the deformation to 
a value equal to the initial imperfection, which will be covered in a different paper.  
 
5. Summary 
This paper conducts a parametric study on the strength requirement of beam torsional bracing. 
The considered influential factors include the cross section, the intermediate bracing number, and 
the material inelasticity. The results show that when inelastic strength controls track along the 
elastic curves, the limit state is controlled by the cross sectional capacity. The lateral and 
torsional deformations are smaller since stability is not as critical. The torsional bracing moments 
are higher than 2% of the girder moments even if the girder moments are 90% of Mcr in some 
cases. The results demonstrate that the latest expression significantly underestimates the brace 



 

moment resulting in unconservative strength predictions. The paper recommends returning the 
strength provisions that were provided in previous editions of the specification. 
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