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Abstract 
Columns with initial crookedness and twist are analyzed. Continuous elastic restraints resist 
bending and twisting as the compressive load is increased. The thin-walled columns are linearly 
elastic and deformations are small. Numerical results are presented for three examples of pinned 
columns with half-sine initial imperfection shapes. The first two are singly symmetric, a Cee 
section and a Tee section, with torsional bracing. Flexural-torsional coupling occurs between the 
twist and bending in the strong direction. The third example is a doubly symmetric I section with 
lateral bracing on one flange. Flexural-torsional deformation involves twist and bending in the 
weak direction. The effects of axial load, bracing stiffness, and relative orientations of the 
imperfections are investigated. Also, the stiffness required to restrict the twist to be a certain 
proportion of the initial twist is determined, which could be useful for designing compression 
members connected to sheathing. 
 
 
1. Introduction 
Thin-walled columns with open cross sections are considered. If the centroid and shear center of 
the cross section do not coincide, coupled flexural-torsional buckling (FTB) may occur if the 
column is perfect. For perfect, doubly symmetric columns with bracing that is offset from the 
centroid, FTB also may occur. When these columns are imperfect due to initial displacements, 
flexural-torsional deformation (FTD) is exhibited when axial compression is applied.  
 
In the present analysis, the columns are assumed to be restrained continuously along their length. 
(Discrete bracing is considered in a companion paper.) The bracing is assumed to be linearly 
elastic, with constant stiffness coefficients for twist and for bending in the two principal 
directions. The bracing acts on the additional displacements caused by the compressive axial 
load. An example of continuous bracing is sheathing attached to a flange (Lee and Miller 2001; 
Tian et al. 2007). Also, multiple discrete braces acting on a column are sometimes modeled by 
continuous bracing when analyzed (Helwig and Yura 1999; McCann et al. 2013).  
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For perfect columns, FTB of continuously braced, thin-walled columns has been considered 
previously, e.g., by Timoshenko and Gere (1961), Trahair and Nethercot (1984), Trahair (1993), 
Helwig and Yura (1999), Lee and Miller (2001), and Tian et al. (2007). For imperfect columns, 
research has been lacking. 
 
Hence, the problem considered here needs to be analyzed. It is formulated in Section 2 for the 
general case, and the solution procedure is described. Examples of a Cee section, a Tee section, 
and an I section are analyzed in Sections 3, 4, and 5, respectively, followed by concluding 
remarks in Section 6. 
 
2. Formulation 
The column is assumed to be uniform and linearly elastic. It has length L, cross-sectional area A, 
modulus of elasticity E, shear modulus G, principal moments of inertia Ix and Iy about the 
centroid, polar moment of inertia I0 about the shear center, torsion constant J, and warping 
constant Cw.  
 
In the cross section in Fig. 1(a) for the idealized perfect column, the centroidal coordinate axes 
are x (horizontal) and y (vertical). The axis along the centroids is z. The shear center is located at 
(x, y) = (x0, y0). The location at which continuous restraints act is denoted N and is located at (x, 
y) = (hx, hy). The line connecting the centroid C and the shear center S has angle γ with the x axis. 
 
The initial imperfect configuration is depicted in Fig. 1(b). The initial deflections in the x and y 
directions are u0(z) and v0(z), respectively, and the initial twist is φ0(z), positive as shown. The 
locations of the centroid and shear center are denoted C' and S', respectively. The axes (x', y') are 
rotated by angle φ0 from the (x, y) axes (cf. Fig. 4.8 of Chen and Atsuta (1977)). The bracing has 
rotational stiffness kφ per unit length along the z axis (into the page), and translational stiffnesses 
kx and ky per unit length resisting translation parallel to the x' and y' axes, respectively.   
 
The deflected configuration is shown in Fig. 1(c), with the springs left out of the picture. The 
column is subjected to compressive axial load P directed along the centroids of the cross sections 
of the idealized perfect configuration. The locations of the centroid and shear center are denoted 
C'' and S'', respectively. Compared with the initial imperfect configuration, the additional 
deflections of the shear center are u and v, and the additional twist is φ. 
 
The ends of the column, at z = 0 and z = L, are located at (x, y) = (0, 0). They are assumed to be 
simple supports (pinned), free to warp and to rotate about the x and y axes, but not allowed to 
rotate about the z axis or to deflect in the x and y directions. 
 
It is assumed that deformations are small, with 1 + (u0')2 ≈ 1, 1 + (v0')2 ≈ 1, sinφ0 ≈ φ0, cos φ0  ≈ 
1, and similarly for u, v, φ, and u0 + u, v0 + v, φ0 + φ. Therefore u0 and u are approximately 
parallel to the x axis, and v0 and v are approximately parallel to the y axis. 
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Figure 1: Geometry of cross section: (a) idealized perfect configuration; 
(b) initial imperfect configuration; (c) deflected configuration 
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The governing equilibrium equations are as follows:  
 
EIyu0000 + Pu00 + kxu+ kx(y0 � hy)�+ Pyo�00 = �Puo

00 � Py0�0
00,

EIxv0000 + Pv00 + kyv � ky(x0 � hx)�� Pxo�00 = �Pvo00 + Px0�0
00,

ECw�0000 � [GJ � (PI0/A)]�00 + Py0u00 + kx(y0 � hy)u� Px0v00

�ky(x0�hx)v+kx(y0�hy)2�+ky(x0�hx)2�+k�� = �Py0u0
00+Px0v000

� P (I0/A)�0
00.

u0(z) = a1 sin(⇡z/L), v0(z) = a2 sin(⇡z/L),�0(z) = a3 sin(⇡z/L).
u(z) = c1 sin(⇡z/L), v(z) = c2 sin(⇡z/L),�(z) = c3 sin(⇡z/L)
↵11c1 + ↵13c3 = �1,
↵22c2 + ↵23c3 = �2,
↵13c1 + ↵23c2 + ↵33c3 = �3,
↵11 = (⇡/L)4EIy � (⇡/L)2P + kx,↵13 = �(⇡/L)2Py0 + kx(y0 � hy),
↵22 = (⇡/L)4EIx � (⇡/L)2P + ky,↵23 = (⇡/L)2Px0 � ky(x0 � hx),
↵33 = (⇡/L)4ECw+(⇡/L)2[GJ�(PI0/A)]+kx(y0�hy)2+ky(x0�hx)2+k�,
�1 = (⇡/L)2P (a1 + y0a3)), �2 = (⇡/L)2P (a2 � x0a3)),
�3 = (⇡/L)2P [y0a1 � x0a2 + (I0/A)a3].

1

 (1) 
 EIyu0000 + Pu00 + kxu+ kx(y0 � hy)�+ Pyo�00 = �Puo

00 � Py0�0
00,

EIxv0000 + Pv00 + kyv � ky(x0 � hx)�� Pxo�00 = �Pvo00 + Px0�0
00,

ECw�0000 � [GJ � (PI0/A)]�00 + Py0u00 + kx(y0 � hy)u� Px0v00

�ky(x0�hx)v+kx(y0�hy)2�+ky(x0�hx)2�+k�� = �Py0u0
00+Px0v000

� P (I0/A)�0
00.

u0(z) = a1 sin(⇡z/L), v0(z) = a2 sin(⇡z/L),�0(z) = a3 sin(⇡z/L).
u(z) = c1 sin(⇡z/L), v(z) = c2 sin(⇡z/L),�(z) = c3 sin(⇡z/L)
↵11c1 + ↵13c3 = �1,
↵22c2 + ↵23c3 = �2,
↵13c1 + ↵23c2 + ↵33c3 = �3,
↵11 = (⇡/L)4EIy � (⇡/L)2P + kx,↵13 = �(⇡/L)2Py0 + kx(y0 � hy),
↵22 = (⇡/L)4EIx � (⇡/L)2P + ky,↵23 = (⇡/L)2Px0 � ky(x0 � hx),
↵33 = (⇡/L)4ECw+(⇡/L)2[GJ�(PI0/A)]+kx(y0�hy)2+ky(x0�hx)2+k�,
�1 = (⇡/L)2P (a1 + y0a3)), �2 = (⇡/L)2P (a2 � x0a3)),
�3 = (⇡/L)2P [y0a1 � x0a2 + (I0/A)a3].

1

 (2) 
  
EIyu0000 + Pu00 + kxu+ kx(y0 � hy)�+ Pyo�00 = �Puo

00 � Py0�0
00,

EIxv0000 + Pv00 + kyv � ky(x0 � hx)�� Pxo�00 = �Pvo00 + Px0�0
00,

ECw�0000 � [GJ � (PI0/A)]�00 + Py0u00 + kx(y0 � hy)u� Px0v00

�ky(x0�hx)v+kx(y0�hy)2�+ky(x0�hx)2�+k�� = �Py0u0
00+Px0v000

� P (I0/A)�0
00.

u0(z) = a1 sin(⇡z/L), v0(z) = a2 sin(⇡z/L),�0(z) = a3 sin(⇡z/L).
u(z) = c1 sin(⇡z/L), v(z) = c2 sin(⇡z/L),�(z) = c3 sin(⇡z/L)
↵11c1 + ↵13c3 = �1,
↵22c2 + ↵23c3 = �2,
↵13c1 + ↵23c2 + ↵33c3 = �3,
↵11 = (⇡/L)4EIy � (⇡/L)2P + kx,↵13 = �(⇡/L)2Py0 + kx(y0 � hy),
↵22 = (⇡/L)4EIx � (⇡/L)2P + ky,↵23 = (⇡/L)2Px0 � ky(x0 � hx),
↵33 = (⇡/L)4ECw+(⇡/L)2[GJ�(PI0/A)]+kx(y0�hy)2+ky(x0�hx)2+k�,
�1 = (⇡/L)2P (a1 + y0a3)), �2 = (⇡/L)2P (a2 � x0a3)),
�3 = (⇡/L)2P [y0a1 � x0a2 + (I0/A)a3].

1

 (3) 
   
These equations were previously given in Timoshenko and Gere (1961) and Tian et al. (2007) for 
perfect columns (i.e., the right-hand sides were zero). The right-hand sides can be obtained from 
Szalai (2017) and Moen and Plaut (2018). 
 
The initial displacements are assumed to be half-sine shapes, given by 
 

EIyu0000 + Pu00 + kxu+ kx(y0 � hy)�+ Pyo�00 = �Puo
00 � Py0�0

00,
EIxv0000 + Pv00 + kyv � ky(x0 � hx)�� Pxo�00 = �Pvo00 + Px0�0

00,
ECw�0000 � [GJ � (PI0/A)]�00 + Py0u00 + kx(y0 � hy)u� Px0v00

�ky(x0�hx)v+kx(y0�hy)2�+ky(x0�hx)2�+k�� = �Py0u0
00+Px0v000

� P (I0/A)�0
00.

u0(z) = a1 sin(⇡z/L), v0(z) = a2 sin(⇡z/L),�0(z) = a3 sin(⇡z/L).
u(z) = c1 sin(⇡z/L), v(z) = c2 sin(⇡z/L),�(z) = c3 sin(⇡z/L)
↵11c1 + ↵13c3 = �1,
↵22c2 + ↵23c3 = �2,
↵13c1 + ↵23c2 + ↵33c3 = �3,
↵11 = (⇡/L)4EIy � (⇡/L)2P + kx,↵13 = �(⇡/L)2Py0 + kx(y0 � hy),
↵22 = (⇡/L)4EIx � (⇡/L)2P + ky,↵23 = (⇡/L)2Px0 � ky(x0 � hx),
↵33 = (⇡/L)4ECw+(⇡/L)2[GJ�(PI0/A)]+kx(y0�hy)2+ky(x0�hx)2+k�,
�1 = (⇡/L)2P (a1 + y0a3)), �2 = (⇡/L)2P (a2 � x0a3)),
�3 = (⇡/L)2P [y0a1 � x0a2 + (I0/A)a3].

1

 (4) 
 
The additional displacements due to the axial load P have the same form: 
 

EIyu0000 + Pu00 + kxu+ kx(y0 � hy)�+ Pyo�00 = �Puo
00 � Py0�0

00,
EIxv0000 + Pv00 + kyv � ky(x0 � hx)�� Pxo�00 = �Pvo00 + Px0�0

00,
ECw�0000 � [GJ � (PI0/A)]�00 + Py0u00 + kx(y0 � hy)u� Px0v00

�ky(x0�hx)v+kx(y0�hy)2�+ky(x0�hx)2�+k�� = �Py0u0
00+Px0v000

� P (I0/A)�0
00.

u0(z) = a1 sin(⇡z/L), v0(z) = a2 sin(⇡z/L),�0(z) = a3 sin(⇡z/L).
u(z) = c1 sin(⇡z/L), v(z) = c2 sin(⇡z/L),�(z) = c3 sin(⇡z/L)
↵11c1 + ↵13c3 = �1,
↵22c2 + ↵23c3 = �2,
↵13c1 + ↵23c2 + ↵33c3 = �3,
↵11 = (⇡/L)4EIy � (⇡/L)2P + kx,↵13 = �(⇡/L)2Py0 + kx(y0 � hy),
↵22 = (⇡/L)4EIx � (⇡/L)2P + ky,↵23 = (⇡/L)2Px0 � ky(x0 � hx),
↵33 = (⇡/L)4ECw+(⇡/L)2[GJ�(PI0/A)]+kx(y0�hy)2+ky(x0�hx)2+k�,
�1 = (⇡/L)2P (a1 + y0a3)), �2 = (⇡/L)2P (a2 � x0a3)),
�3 = (⇡/L)2P [y0a1 � x0a2 + (I0/A)a3].

1

 (5) 
 
where the amplitudes c1, c2, and c3 are to be determined. 
 
Substituting Eqs. (4) and (5) into Eqs. (1)-(3), and then dividing by sin(πz/L), leads to the 
following three algebraic equations for c1, c2, and c3: 
 

EIyu0000 + Pu00 + kxu+ kx(y0 � hy)�+ Pyo�00 = �Puo
00 � Py0�0

00,
EIxv0000 + Pv00 + kyv � ky(x0 � hx)�� Pxo�00 = �Pvo00 + Px0�0

00,
ECw�0000 � [GJ � (PI0/A)]�00 + Py0u00 + kx(y0 � hy)u� Px0v00

�ky(x0�hx)v+kx(y0�hy)2�+ky(x0�hx)2�+k�� = �Py0u0
00+Px0v000

� P (I0/A)�0
00.

u0(z) = a1 sin(⇡z/L), v0(z) = a2 sin(⇡z/L),�0(z) = a3 sin(⇡z/L).
u(z) = c1 sin(⇡z/L), v(z) = c2 sin(⇡z/L),�(z) = c3 sin(⇡z/L)
↵11c1 + ↵13c3 = �1,
↵22c2 + ↵23c3 = �2,
↵13c1 + ↵23c2 + ↵33c3 = �3,
↵11 = (⇡/L)4EIy � (⇡/L)2P + kx,↵13 = �(⇡/L)2Py0 + kx(y0 � hy),
↵22 = (⇡/L)4EIx � (⇡/L)2P + ky,↵23 = (⇡/L)2Px0 � ky(x0 � hx),
↵33 = (⇡/L)4ECw+(⇡/L)2[GJ�(PI0/A)]+kx(y0�hy)2+ky(x0�hx)2+k�,
�1 = (⇡/L)2P (a1 + y0a3)), �2 = (⇡/L)2P (a2 � x0a3)),
�3 = (⇡/L)2P [y0a1 � x0a2 + (I0/A)a3].

1

 (6) 

EIyu0000 + Pu00 + kxu+ kx(y0 � hy)�+ Pyo�00 = �Puo
00 � Py0�0

00,
EIxv0000 + Pv00 + kyv � ky(x0 � hx)�� Pxo�00 = �Pvo00 + Px0�0

00,
ECw�0000 � [GJ � (PI0/A)]�00 + Py0u00 + kx(y0 � hy)u� Px0v00

�ky(x0�hx)v+kx(y0�hy)2�+ky(x0�hx)2�+k�� = �Py0u0
00+Px0v000

� P (I0/A)�0
00.

u0(z) = a1 sin(⇡z/L), v0(z) = a2 sin(⇡z/L),�0(z) = a3 sin(⇡z/L).
u(z) = c1 sin(⇡z/L), v(z) = c2 sin(⇡z/L),�(z) = c3 sin(⇡z/L)
↵11c1 + ↵13c3 = �1,
↵22c2 + ↵23c3 = �2,
↵13c1 + ↵23c2 + ↵33c3 = �3,
↵11 = (⇡/L)4EIy � (⇡/L)2P + kx,↵13 = �(⇡/L)2Py0 + kx(y0 � hy),
↵22 = (⇡/L)4EIx � (⇡/L)2P + ky,↵23 = (⇡/L)2Px0 � ky(x0 � hx),
↵33 = (⇡/L)4ECw+(⇡/L)2[GJ�(PI0/A)]+kx(y0�hy)2+ky(x0�hx)2+k�,
�1 = (⇡/L)2P (a1 + y0a3)), �2 = (⇡/L)2P (a2 � x0a3)),
�3 = (⇡/L)2P [y0a1 � x0a2 + (I0/A)a3].

1

 (7) 

EIyu0000 + Pu00 + kxu+ kx(y0 � hy)�+ Pyo�00 = �Puo
00 � Py0�0

00,
EIxv0000 + Pv00 + kyv � ky(x0 � hx)�� Pxo�00 = �Pvo00 + Px0�0

00,
ECw�0000 � [GJ � (PI0/A)]�00 + Py0u00 + kx(y0 � hy)u� Px0v00

�ky(x0�hx)v+kx(y0�hy)2�+ky(x0�hx)2�+k�� = �Py0u0
00+Px0v000

� P (I0/A)�0
00.

u0(z) = a1 sin(⇡z/L), v0(z) = a2 sin(⇡z/L),�0(z) = a3 sin(⇡z/L).
u(z) = c1 sin(⇡z/L), v(z) = c2 sin(⇡z/L),�(z) = c3 sin(⇡z/L)
↵11c1 + ↵13c3 = �1,
↵22c2 + ↵23c3 = �2,
↵13c1 + ↵23c2 + ↵33c3 = �3,
↵11 = (⇡/L)4EIy � (⇡/L)2P + kx,↵13 = �(⇡/L)2Py0 + kx(y0 � hy),
↵22 = (⇡/L)4EIx � (⇡/L)2P + ky,↵23 = (⇡/L)2Px0 � ky(x0 � hx),
↵33 = (⇡/L)4ECw+(⇡/L)2[GJ�(PI0/A)]+kx(y0�hy)2+ky(x0�hx)2+k�,
�1 = (⇡/L)2P (a1 + y0a3)), �2 = (⇡/L)2P (a2 � x0a3)),
�3 = (⇡/L)2P [y0a1 � x0a2 + (I0/A)a3].

1

 (8) 
   
where   
 

EIyu0000 + Pu00 + kxu+ kx(y0 � hy)�+ Pyo�00 = �Puo
00 � Py0�0

00,
EIxv0000 + Pv00 + kyv � ky(x0 � hx)�� Pxo�00 = �Pvo00 + Px0�0

00,
ECw�0000 � [GJ � (PI0/A)]�00 + Py0u00 + kx(y0 � hy)u� Px0v00

�ky(x0�hx)v+kx(y0�hy)2�+ky(x0�hx)2�+k�� = �Py0u0
00+Px0v000

� P (I0/A)�0
00.

u0(z) = a1 sin(⇡z/L), v0(z) = a2 sin(⇡z/L),�0(z) = a3 sin(⇡z/L).
u(z) = c1 sin(⇡z/L), v(z) = c2 sin(⇡z/L),�(z) = c3 sin(⇡z/L)
↵11c1 + ↵13c3 = �1,
↵22c2 + ↵23c3 = �2,
↵13c1 + ↵23c2 + ↵33c3 = �3,
↵11 = (⇡/L)4EIy � (⇡/L)2P + kx, ↵13 = �(⇡/L)2Py0 + kx(y0 � hy),
↵22 = (⇡/L)4EIx � (⇡/L)2P + ky, ↵23 = (⇡/L)2Px0 � ky(x0 � hx),
↵33 = (⇡/L)4ECw+(⇡/L)2[GJ�(PI0/A)]+kx(y0�hy)2+ky(x0�hx)2+k�,
�1 = (⇡/L)2P (a1 + y0a3), �2 = (⇡/L)2P (a2 � x0a3),
�3 = (⇡/L)2P [y0a1 � x0a2 + (I0/A)a3].

1

 (9)   
 
For the case of a perfect column (a1 = a2 = a3 = 0), the critical load is found by setting the 
determinant of the matrix of the coefficients αij equal to zero. For imperfect columns, Eqs. (6)-
(8) are solved for c1, c2, and c3. FTD involves twist and bending. In the examples to be 
considered in the following section, bending in one direction will be uncoupled, and FTD will 
involve twist and bending in either the strong or weak direction. 
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3. Example 1 
The first example is a cold-formed steel stud column with singly symmetric 362S162-54 lipped 
Cee cross section (SSMA 2001), as shown in Fig. 2. It was analyzed in Moen and Plaut (2018) 
with no bracing, and approximately in Moen (2018) with a discrete torsional brace at midheight. 
 
The column has L = 2438 mm (8 ft), A = 272 mm2 (0.422 in.2), Ix = 363,370 mm4 (0.873 in.4), Iy 
= 64,100 mm4 (0.154 in.4), I0 = Ix + Iy + (x0

2 + y0
2)A = 716,363 mm4 (1.728 in.4), J = 188 mm4 

(4.51×10–4 in.4), Cw = 122,720,891 mm4 (0.457 in.4), E = 200 kN/mm2 (29,000 kip/in.2), and G = 
E/2.6. Unless otherwise stated, the amplitudes of the imperfections are a1 = a2 = L/1000 and a3 = 
0.00766 rad for this example.    
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Figure 2: Example 1 cross section; idealized perfect configuration is dashed, 

initial imperfect configuration is solid 
 
The overall depth of the cross section is 92.1 mm (3.625 in.), the overall width of the flanges is 
41.3 mm (1.625 in.), the overall length of the lips is 12.7 mm (0.5 in.), and the thickness of the 
cross section is 14.4 mm (0.057 in.). The distance of the shear center to the centerline of the web 
is 19.7 mm (0.774 in.), x0 = –32.59 mm (–1.283 in.), and y0 = 0. A torsional spring with stiffness 
kf acts on the cross section along the column. Its location in Fig. 2 is arbitrary.   
 
Since y0 = ky = 0, Eq. (6) becomes uncoupled from Eqs. (7) and (8), and FTD involves twist φ 
and deflection v in the strong direction. For the idealized perfect column (a1 = a2 = a3 = 0), the 
critical load for FTB is plotted versus kφ in Fig. 3. It is equal to 19.5 kN when kφ = 0. The critical 
load for bending in the weak direction is π2EIy/L2, which is 21.3 kN. For both types of buckling, 
the buckling mode is given by Eq. (5), i.e., a half-sine shape (for any value of kφ). 
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Figure 3: Flexural-torsional critical load versus kφ for Example 1 

 
For the imperfect column, Eqs. (7) and (8) are solved for c2 and c3. The effect of kφ on the total 
midheight twist a3 + c3 is depicted in Fig. 4 for three loads: P = 5, 10, and 15 kN. As kφ is 
increased from zero, initially the twist decreases sharply, and then the additional twist 
φ approaches zero. A similar behavior is observed in Fig. 5 for the coupled strong-direction 
midheight deflection a2 + c2. 
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Figure 4: Total midheight twist versus kφ for Example 1; P = 5, 10, 15 kN 
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Figure 5: Total midheight deflection in strong direction versus kφ for Example 1; P = 5, 10, 15 kN 

 
If a vertical spring were included in Fig. 2 with stiffness ky, and if ky were increased from zero, 
the twist and the deflection in the strong direction would decrease. 
 
The signs of the initial imperfections can affect the response. For the standard case, the 
amplitudes in Eqs. (4) are taken to be positive, with the initial deflection in the strong direction 
being a2 = L/1000 = 2.438 mm in this example. Figs. 6 and 7 show the effects of this amplitude 
being zero or –L/1000, while the initial twist amplitude a3 remains 0.00766 rad. The stiffness kφ 
is fixed at 0.25 kN/rad. At a given load P, the magnitude of the twist is largest for the case a2 = 
L/1000 (Fig. 6), whereas the magnitude of v0(L/2) + v(L/2) does not depend significantly on the 
sign of a2 (Fig. 7).  
 
If the signs of both v0 and φ0 were changed, the signs of v and φ would change but their 
magnitudes would remain the same. 
 
Winter (1960) has suggested that torsional bracing should be sufficiently stiff so that the 
additional twist is not greater than the initial twist. For the standard values of a2 and a3, this 
condition is depicted by the middle curve in Fig. 8, where the load is plotted versus kf. The lower 
curve gives the required stiffness for the additional twist to be half the initial twist, and the upper 
curve gives the required stiffness for the additional twist to be twice the initial twist. For 
example, if P = 10 kN, kf must be at least 0.187 kN/rad to assure that the additional twist will not 
be greater than the original twist. Since the initial twist and additional twist both have half-sine 
forms, their ratio is the same along the column. 
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Figure 6: Load versus midheight twist for Example 1 with kf = 0.25 kN/rad; a2 = L/1000, 0, -L/1000 

 

a2>0a2=0a2<0

-4 -2 0 2 4
0

10

20

30

40

midheight v0 + v(mm)

P
(k
N
)

 
Figure 7: Load versus total midheight deflection in strong direction for Example 1 with kf = 0.25 kN/rad;  a2 = 

L/1000, 0, –L/1000 
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Figure 8: Load versus kφ for Example 1; c3 = a3/2, a3, 2a3 

 
4. Example 2 
The second example is a steel column with singly symmetric Tee cross section MT6.25×6.2 
(AISC 2017), as sketched in Fig. 9. It has L = 6100 mm (20 ft), A = 6450 mm2 (10.0 in.2), Ix = 
1.357×107 mm4 (32.6 in.4), Iy = 2.527×107 mm4 (60.7 in.4), I0 = 4.17×107 mm4 (100.2 in.4), J = 
624,350 mm4 (1.50 in.4), Cw = 8.62×108 mm6 (3.21 in.6), E = 200 kN/mm2 (29,000 ksi), and G = 
E/2.6. Unless otherwise stated, the amplitudes of the imperfections are a1 = a2 = L/1000 and a3 = 
0.0192 rad for this example.  
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Figure 9: Example 2 cross section; idealized perfect configuration is dashed, 

initial imperfect configuration is solid 
 
The overall depth of the cross section is 178 mm (7.02 in.), the width of the flange is 254 mm 
(10.0 in.), the thickness of the web is 10.5 mm (0.415 in.), and the thickness of the flange is 46.0 
mm (1.81 in.). The shear center is at the intersection of the centerlines of the web and flange, x0 
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= 0, and y0 = –23.6 mm (–0.930 in.). A torsional spring with stiffness kφ acts on the cross section 
along the column. Its location in Fig. 9 is arbitrary. 
 
For this example, x0 = kx = 0 and Eq. (7) is uncoupled from Eqs. (6) and (8). Twist is again 
coupled with the strong-direction deflection, which now is u. The critical load for FTB of the 
idealized perfect column is plotted versus kφ in Fig. 10. The range on the vertical axis is 1310 to 
1340 kN. The critical load is equal to 1316 kN for the unbraced column (kφ = 0), whereas the 
critical load for bending in the weak direction is π2EIx/L2 = 720 kN. For both types of buckling, 
the mode is given by Eq. (5). 
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Figure 10: Flexural-torsional critical load versus kφ for Example 2 

 
For the imperfect column, the effect of kφ on the twist is shown in Fig. 11 for P = 200, 400, and 
600 kN. The range on the vertical axis is 0.019 to 0.025 rad. The behavior is similar to that in 
Fig. 4. In this example, kφ has little effect on the midheight deflection in the coupled strong 
direction, so a graph similar to Fig. 5 is not presented. (As kφ increases from 0 to 100 kN/rad, a2 
+ c2 decreases by 0.01%, 0.07%, and 0.28%, respectively, for P = 200, 400, and 600 kN.) 
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Figure 11: Total midheight twist versus kφ for Example 2; P = 200, 400, 600 kN 

 
If a lateral spring were included in Fig. 9 with stiffness kx, and if kx were increased from zero, the 
twist would tend to increase and the deflection in the strong direction would decrease. 
 
Figs. 12 and 13 are similar in form to Figs. 6 and 7, respectively, but the right curves here are for 
negative initial deflection a2 in the strong direction, and the left curves are for positive a2. 
Another difference is that the twist remains positive for the range shown in Fig. 11, unlike Fig. 6. 
 

a1>0

a1=0

a1<0

0.010 0.015 0.020 0.025 0.030
0

200

400

600

800

1000

midheightϕ0 + ϕ(rad)

P
(k
N
)

 
Figure 12: Load versus midheight twist for Example 2 with kφ = 10 kN/rad; a1 = L/1000, 0, –L/1000 

 
 



 12 

a1>0a1=0a1<0

-30 -20 -10 0 10 20
0

200

400

600

800

1000

midheightu0 + u(mm)

P
(k
N
)

 
Figure 13: Load versus total midheight deflection in strong direction for Example 2 with kφ = 10 kN/rad; a1 = 

L/1000, 0, –L/1000 
 
Finally, Fig. 14 is similar to Fig. 8, showing the required value of kφ to restrict the additional 
twist to be either half, the same as, or twice the initial twist. The range on the vertical axis is 800 
to 1400 kN. 
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Figure 14: Load versus kf for Example 2; c3 = a3/2, a3, 2a3 
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5. Example 3 
The third example is a steel column with doubly symmetric I cross section W18×35 (Liu et al. 
2013) and lateral bracing that is offset from the centroid (Fig. 15). The column has L = 2438 mm 
(8 ft), A = 6650 mm2 (10.3 in.2), x0 = 0, y0 = 0, Ix = 2.12×108 mm4 (510 in.4), Iy = 6.37×106 mm4 
(15.3 in.4), I0 = 2.19×108 mm4 (525 in.4), J = 2.11×105 mm4 (0.506 in.4), Cw = 3.06×1011 mm6 
(1140 in.6), E = 200 kN/mm2 (29,000 ksi), and G = E/2.6. Unless otherwise stated, the 
amplitudes of the imperfections are a1 = a2 = L/1000 and a3 = 0.00766 rad for this example. 
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Figure 15: Example 3 cross section; idealized perfect configuration is dashed, 
initial imperfect configuration is solid 

 
The overall depth of the cross section is 450 mm (17.7 in.), the width of the flanges is 152 mm 
(6.00 in.), the thickness of the web is 7.62 mm (0.300 in), and the thickness of the flanges is 10.8 
mm (0.425 in.). A lateral spring with stiffness kx acts at the bottom of the lower flange, attached 
at the centerline of the web, so that hx = 0 and hy = 225 mm (8.85 in.). 
 
For this example, Eq. (7) is uncoupled due to x0 = hx = 0. Eqs. (6) and (8) are coupled due to kx 
and hy being nonzero, so that FTB and FTD involve twist and bending in the weak direction 
(unlike Examples 1 and 2). For the idealized perfect column (a1 = a2 = a3 = 0), the critical load 
for FTB is plotted versus kx in Fig. 16. The vertical axis has range 2100 to 2700 kN. The critical 
load is equal to 2115 kN when kx = 0. The critical load for bending in the strong direction is 
π2EIx/L2, which is 70,400 kN. For both types of buckling, the mode is given by Eq. (5). 
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Figure 16: Flexural-torsional critical load versus kx for Example 3 

 
For the imperfect column, the effect of kx on the twist is shown in Fig. 17 for P = 250, 500, and 
750 kN. The range on the vertical axis is 0.008 to 0.012 rad. The behavior is opposite to that in 
Figs. 4 and 11, where the horizontal axis was a rotational spring stiffness rather than the stiffness 
of a lateral spring offset from the centroid. For a given load P, as kx is increased, the total twist 
increases. In Fig. 18, the coupled deflection in the weak direction decreases with increasing 
bracing stiffness, as in Fig. 5. The range on the vertical axis in Fig. 18 is 2.6 to 3.8 mm. 
 
If a rotational spring were included in Fig. 15 with stiffness kφ, and if kφ were increased from 
zero, the twist and the deflection in the weak direction would decrease. 
 
Fig. 19 is similar to Fig. 6 except that the coupled deflection here is the deflection in the weak 
direction, and the twist remains positive for the range shown. The lateral spring stiffness is fixed 
at kx = 0.01 kN/mm2. The range on the horizontal axis is 0.006 to 0.013 mm. Finally, Fig. 20 is 
similar to Fig. 7, with a1 replacing a2 in Fig. 20. 
 
No figure is presented similar to Figs. 8 and 14, since the twist does not decrease as kx increases. 
 
Liu et al. (2013) considered an I section with bracing similar to that in Fig. 15 but with no 
imperfections and with N fixed in space, so that N was the center of twist (i.e., constrained-axis 
FTB). The critical load for FTB for that case can be computed from the present analysis (see last 
paragraph of Section 2) by letting kx → ∞. 
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Figure 17: Total midheight twist versus kx for Example 3; P = 250, 500, 750 kN 
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Figure 18: Total midheight deflection in weak direction versus kx for Example 3; P = 250, 500, 750 kN 
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Figure 19: Load versus midheight twist for Example 3 with kx = 0.01 kN/mm2; a1 = L/1000, 0,    –L/1000 
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Figure 20: Load versus total midheight deflection in weak direction for Example 3 with kx = 0.01 kN/mm2; a1 = 

L/1000, 0, –L/1000 
 
6. Concluding Remarks 
Flexural-torsional deformation (FTD) of thin-walled columns with open cross sections has been 
analyzed. The columns have initial deflections and/or twist, and are subjected to an axial 
compressive load that acts along the centroids of the cross sections of the idealized perfect 
column. Continuous bracing is modeled by distributions of translational and torsional springs. It 
is assumed that deformations are small, and that the column and restraints are linearly elastic.  
 



 17 

It is assumed that the column ends are pinned and free to warp, and that the initial imperfections 
are half-sine shapes. The general equilibrium equations were presented and solved. For three 
examples, the effects of the bracing stiffness, senses (signs) of the imperfections, and magnitude 
of the compressive load were examined.  Also, the required bracing stiffness for a specified 
restriction on the twist was determined for Examples 1 and 2. Flexural-torsional buckling (FTB) 
was discussed for the case of a perfect column. 
 
A Cee section with torsional bracing was considered in Example 1. FTD involved twist and 
deflection in the strong direction. A Tee section with torsional bracing was studied in Example 2, 
and FTD again involved twist and deflection in the strong direction. In Example 3, an I section 
was considered, with lateral bracing acting on one flange, and FTD involved twist and deflection 
in the weak direction. 
 
For perfect columns, it was stated in Gardner and Nethercot (2005) and Ziemian (2010) that FTB 
does not occur if the centroid and shear center coincide. However, Example 3 demonstrated that 
it can if there is lateral bracing that is offset from that location on the cross section. 
 
It was found that a change in sense of the initial deflection involved in FTD, or a lack of that 
imperfection, can cause a significant change in the displacements under axial load.  
 
If the initial imperfections in Eq. (4) were to contain additional functions sin(jπz/L) with j > 1, 
the corresponding displacements to be superposed could be obtained using Eqs. (4)-(9) with π 
replaced by jπ. 
 
It would not be easy to develop design formulas or charts for FTD, since many parameters are 
involved. In nondimensional terms, these could include Ix/Iy, I0/Iy, ECw/(GJL2), x0/L, y0/L, hx/L, 
hy/L, PL2/(EIy), kx/E, ky/E, kφL2/(EIy), and the amplitudes and shapes of the initial imperfections. 
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