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Abstract 
The lateral-torsional buckling behavior of singly-symmetric I-sections can be complicated due to 
significant variations in the sizes of the flanges. In many situations, the section is nonprismatic, 
which further complicates the lateral-torsional buckling behavior. There are substantial differences 
in the moment gradient factors in the AISC and AASHTO design specification. The AASHTO 
expression is relatively complicated to apply for realistic problems. This paper focuses on a 
parametric finite element study on the buckling behavior of singly-symmetric I-sections subjected 
to moment gradient. The study includes the effects of moment gradient on both prismatic and 
nonprismatic sections. Expressions in the commentary of the AISC specification are examined for 
application in bridge girders. Design recommendations are made for evaluating the lateral-
torsional buckling behavior in both the positive and negative moment regions. 
 
 
1. Introduction 
Lateral-torsional buckling (LTB) is a complex limit state that often governs the design of steel I-
girders. LTB is especially critical during construction when bracing on a noncomposite beam may 
be limited and/or the concrete deck has not cured. Without adequate bracing during erection and 
deck casting, the girders can buckle. In addition, questions often arise about stability in the negative 
moment region of composite girders in the final constructed state. 
 
To further complicate the LTB behavior, I-girders in bridge applications are often: (1) designed as 
singly-symmetric (or monosymmetric), (2) designed as nonprismatic, and (3) subjected to moment 
gradients. Due to composite action with the concrete deck, girder sections can be singly-symmetric 
and have a smaller top flange relative to the bottom flange. The relative difference between the 
flange sizes is characterized by the degree of monosymmetry, ρ, which is the ratio of weak-axis 
moment of inertia of the compression flange to the weak-axis moment of inertia of the entire cross-
section. 
 
Engineers often transition flanges and webs at discrete locations along the length of the span to 
accommodate variations in stress and to provide a more economical and efficient design. 
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Transitions on these nonprismatic beams can include any combination of increased plate 
thicknesses and/or widths. Estimating the LTB resistance of a singly-symmetric, nonprismatic 
beam subjected to moment gradient can be challenging. 
 
Current AASHTO (2016) and AISC (2017) specifications simplify the design procedure by 
making use of approximate solutions for estimating the LTB resistance of singly-symmetric 
beams. Despite being developed specifically for doubly-symmetric sections, these simplified 
equations provide accurate approximations of the exact solution. White and Jung (2003) found that 
the simplified design equations generally provide solutions within 12% of the exact solution for 
typical singly-symmetric sections but produce larger disparities for extreme monosymmetric 
sections. The exact solution for LTB of singly-symmetric sections under uniform moment is 
available in the literature (Galambos 1968, Ziemian 2010) and is given in the following expression: 
 

 

 

(1) 

 
where E is the modulus of elasticity, Iy is the weak-axis moment of inertia of the section, Lb is 
unbraced length of the beam segment, Cw is warping constant of the section, G is the elastic shear 
modulus, J is the St. Venant torsional constant of the section, and βx is a coefficient of 
monosymmetry, which is defined Ziemian (2010). 
 
Previous studies have primarily focused on the LTB behavior of singly-symmetric, prismatic 
sections including the impacts of moment gradient and load position (Helwig et al. 1997). The 
effects of nonprismatic sections on LTB, however, have been a less-researched problem; 
consequently, current AASHTO Specifications employ a conservative approach for estimating 
LTB resistance of nonprismatic girders in Section 6.10.8.2.3. Other than a few exceptions, 
AASHTO recommends using the smallest resistance to characterize the entire nonprismatic 
unbraced segment. 
 
Additionally, moment gradient effects on the LTB behavior have traditionally been considered 
with the use of a moment gradient factor (Cb). Most design specifications make use of buckling 
solutions that were developed for uniform moment loading, including Eq. 1 above. The Cb factor 
then amplifies the LTB resistance with respect to the uniform moment case. 
 
The Cb expression in AASHTO Section 6.10.8.2.3 is based upon a long-standing equation that was 
applicable to beams with no loading between the brace points. Since all sections have loading 
between the brace points (i.e. self-weight), such a solution is not practical. As a result, the 
AASHTO expression includes a number of conservative exceptions to make the expression 
applicable for general use; the expression can also be cumbersome to calculate and implement. 
 
In contrast, the commentary of the AISC Specification provides an expression for the moment 
gradient factor that is generally simpler to apply and provides reasonable estimates of the buckling 
behavior. For singly-symmetric beams subjected to reverse-curvature bending, a special term Rm 
is added to the standard AISC Cb expression. The equation in full is presented below:  
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(2) 

 
where Mmax is the absolute value of the maximum moment in the unbraced segment, MA, MB, MC 
are the absolute value of the quarter-point, midpoint, and three-quarter-point moment in the 
unbraced segment, respectively, and Iyt/Iy (or ρtop) is the degree of monosymmetry with respect to 
the top flange. The term outside of the square brackets is referred to as Rm in the AISC 
Specification. For single curvature bending, Rm is taken as 1.0. The expression for Cb is capped at 
3.0, which takes effect for high values of ρtop (i.e. a much larger top flange than bottom flange). 
 
With that in mind, the intent of this paper is to examine the AISC Cb expression for common design 
conditions that occur in steel bridge applications, specifically the effects of nonprismatic sections. 
Through a parametric finite element study, the effects of varying span lengths, span configurations, 
intermediate bracing schemes, monosymmetry, flange transitions, and moment gradients are 
investigated and quantified with respect to the AISC Cb expression. Only midheight loading 
application and uniformly distributed loads are considered in the study. In general, this paper 
focuses on only the most common cases for each of these variables, and the results are intended to 
cover the majority of singly-symmetric, nonprismatic sections found in practice.  
 
Following this introduction, an overview of the variables considered in the parametric studies is 
provided along with a discussion of the procedures used to conduct the finite element analysis 
(FEA). Select results from the parametric studies are then presented and compared to the AISC 
Commentary equation for Cb. Based on the findings of the parametric studies, design 
recommendations are made for evaluating the LTB behavior of singly-symmetric and nonprismatic 
I-girders in both the positive and negative moment regions. 
 
2. Variables Considered in Parametric Study 
The following variables were investigated in the parametric FEA study: (1) span-to-depth ratio 
and intermediate bracing schemes, (2) moment gradients and span configurations, (3) degrees of 
monosymmetry, and (4) nonprismatic sections and flange transitions. A matrix was developed to 
address only practical combinations of these key variables. This paper does not study extreme 
cases but rather focuses on systems that fall into practical ranges encountered in design. The 
following subsections provide a brief overview of each variable. 
 
2.1 Span-to-Depth Ratio and Intermediate Bracing 
Span-to-depth ratios of 15, 20, and 25 were considered. These values represent common practice 
for bridge girders. Within each of the different span-to-depth ratios, different bracing schemes 
were evaluated for their effect on the LTB behavior. Braces only at the ends (Lb = L) and 
intermediate bracing schemes of one-half (Lb = L/2) and one-third (Lb = L/3) of the span length 
were considered, which produced unbraced length-to-depth ratios of {7.5, 10, 12.5} and {5, 6.67, 
8.33}, respectively. The cases with larger unbraced lengths are representative of steel girders 
during the erection process, and cases with smaller brace spacing represent girders during deck 
casting and in the final constructed state. 
 
2.2 Moment Gradient and Span Configuration 
With consideration of the various bracing schemes, nine different moment gradients along with 
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the uniform moment case were evaluated. These nine cases were considered the most 
representative for bridges throughout the construction and service life. Fig. 1 presents these cases 
graphically. An important aspect to understand is that when several braces are introduced, moment 
gradient effects are much less pronounced and the Cb factor tends to unity. As a result, cases with 
four or more braces are of less interest and are not considered in the study.  
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Figure 1: Moment gradients considered in the parametric study 

 
As illustrated in Fig. 1, the nine moment gradient cases categorize girder types into three span 
configurations: (1) simply-supported single span, (2) interior span of a continuous unit, and (3) 
end span of a continuous unit. Both single-curvature and reverse-curvature bending cases are 
included. These three conditions, aside from a cantilever or overhang condition often observed 
during erection, represent the most common span arrangements and support conditions for steel I-
girder bridges. 
 
As indicated by the moment diagrams in Fig. 1, only uniformly distributed loads are considered. 
During construction, the major transverse loads on girders are uniformly distributed (self-weight 
of steel and wet concrete), and substantial concentrated loads are seldom applied. In the final 
constructed stage, bridge girders are typically designed for a moment envelope, which generally 
follow shapes similar to the diagrams in Fig. 1. As such, point load moment gradients were 
considered less important for bridge applications and were thus not included in the parametric 
study. The recommendations in the paper will still likely have applications for moment gradients 
caused by concentrated forces; however, this study focused on the most common conditions facing 
designers. 
 
Moment gradients are abbreviated in this paper with an alphanumeric identifier, where the letter 
signifies the span configuration (S for simple span, I for interior span, E for end span) and the 
number signifies the number of intermediate braces (0 for zero intermediate braces, 1 for one 
intermediate brace, 2 for two intermediate braces).  
 
With these factors in mind, it is important to highlight where each of these simple moment 
gradients would occur during the construction and service life of a bridge. Cases S-0, I-0, and E-
0, in which no intermediate braces are used, represent worst-case conditions during steel erection 
where self-weight is the primary loading. Since bracing will often be introduced once two or more 
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girders are erected in a span, these cases specifically represent the first girder erected in a span. 
 
The corresponding cases with one or two intermediate braces largely represent a girder during 
deck casting or in its final constructed state, but only the more critical unbraced segments were 
considered. For example, cases I-2 and E-2 are especially important for evaluating the negative 
moment region of a composite girder. In summary, the nine moment gradient cases considered are 
not exhaustive but encompass the common loading conditions that are likely critical for girder 
stability. 
 
2.3 Degree of Monosymmetry 
The parametric study was conducted with degrees of monosymmetry, ρ, ranging from 0.1 to 0.9. 
Sections that do not satisfy 0.1 ≤ ρ ≤ 0.9 are essentially T-sections, for which the LTB is difficult 
to predict computationally due to web distortion and local buckling. As such, sections outside of 
this range were not included in this study. Given that both single-curvature and reverse-curvature 
bending cases are evaluated and that the compression flange may change between the top and 
bottom flanges along the unbraced length, the degree of monosymmetry with respect to the top 
flange is the adopted notation herein. As such, ρtop is defined as the ratio between the weak-axis 
moment of inertia of the top flange and the weak-axis moment of inertia of the entire section: 
 

 
 

(3) 

 
For practical bridge applications, ρtop ranges from 0.2 to 0.5, for which the size of the top flange is 
smaller than or equal to the size of the bottom flange. Although results for ρtop values outside of 
the practical range are presented in this paper for completeness, the primary focus of the 
conclusions is for sections where 0.2 ≤ ρtop ≤ 0.5. 
 
In order to streamline the parametric studies, the distance between the flange centroids was 
maintained at a constant 60 inches, and the web thickness was fixed at 7/8 of an inch. For all cases, 
the web satisfied the noncompact web slenderness limits as a means to safeguard against web 
distortion and local buckling. The various ρtop values were then achieved by adjusting the width 
and thickness of the top and bottom flanges. Flange width-to-thickness ratios were selected to 
satisfy slenderness and proportion limits established in AASHTO Section 6.10.2.2. Fig. 2 depicts 
a typical cross-section used in the computational studies for ρtop ≤ 0.5. Note that sections with ρtop 
≥ 0.5 are similar to its counterpart for ρtop ≤ 0.5, except that the flanges are flipped. 
 
For nonprismatic beams, the ρtop value may not be uniform along the unbraced length. For the sake 
of clarity, the ρtop values reported in subsequent results correspond to the monosymmetry of the 
small cross-section, or the base section, which is identified as ρtop,base. 
 
2.4 Nonprismatic Sections 
A major focus of the investigation was to evaluate the effects of a nonprismatic section on the LTB 
behavior of an unbraced girder segment. In particular, variations in flange thickness have been 
considered. Similar to the other variables, only common cases for flange transitions were included 
in the parametric study. To simplify the computations, all transitions were assumed to occur at 
0.3L and 0.7L of the full span, as demonstrated by Fig. 3. For the simple span condition, flange 

ρtop=
I𝑦𝑦𝑦𝑦
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transitions were considered near the middle of the beam; for the continuous span cases, transitions 
were considered in the negative moment regions. This is consistent with common bridge 
engineering practice. 
 
For each case outlined above, only the thickness of the flanges was increased within the transition 
region; the flange width was held constant. The increase in flange thickness is described as a 
multiplier to the weak-axis moment of inertia (Iyt or Iyb) of the base, smaller section. In other words, 
Iyt multiplier = Iyb multiplier = 1 represents a prismatic beam. Iy multipliers included 1, 1.25, 1.5, 
and 1.75. As an example, a specific case is depicted in Fig. 2, which illustrates the plate thicknesses 
used to develop the nonprismatic girder for the simple span case (S) with Iyt and Iyb multipliers of 
1 and 1.5, respectively. All combinations of these parameters are then illustrated in Fig. 3. 
 

 
Figure 2: Typical cross-section used in the parametric study and an example showing how a simply-supported 

nonprismatic girder with flange transitions is developed 
 

Note that a case in which the top flange multiplier exceeds the bottom flange multiplier was not 
considered, as this is uncommon in bridge engineering practice. The Iyt value was therefore either 
equal to or less than the Iyb value for all cases. By varying the bottom flange thickness relative to 
the top flange thickness, it is apparent that the ρtop is no longer constant along an unbraced length, 
as shown in the example in Fig. 2. 
 
The flange transitions shown in Fig. 3 were also maintained for the single intermediate bracing 
scheme. No flange transitions were considered for the two-intermediate bracing scheme given the 
close proximity of L/3 and 0.3L. To clarify, an example of this is presented in Fig. 4 for the simple 
span cases (S-0, S-1, and S-2). A similar layout is considered for the continuous, interior span and 
continuous, end span cases. 
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Note: Iyt is the weak-axis moment of inertia of the top flange; Iyb is the weak-axis moment of inertia of the 
bottom flange; “Varies” indicates that the section is nonprismatic 

Figure 3: Flange transitions considered in the parametric study 
 

Bracing Scheme 
Lb = L Lb = L/2 Lb = L/3 

   
Figure 4: Flange transition cases for simply-supported condition with different intermediate bracing schemes 

 
3. Finite Element Model 
The finite element software Abaqus (2017) was used to conduct the parametric studies outlined 
above. Eigenvalue buckling analyses were conducted to determine bifurcation loads and therefore 
critical buckling moments. Cross-sections of the girders were modeled with shell elements, and 
transverse stiffeners were included to eliminate any potential for local buckling or web distortion 
that may affect the LTB response. Brace points were represented by simple torsional support 
conditions, in which the top and bottom flange-to-web junctions were restrained against out-of-
plane translation. Though, the cross sections were still free to warp. 
 
Specific moment gradients and intermediate bracing schemes were achieved in Abaqus by 
modeling only the unbraced segment of interest. Thus, the warping restraint and contributions from 
adjacent, unbraced segments were conservatively neglected in the FEA models, which is consistent 
with general design specifications. By only modeling the critical unbraced segment, the moment 
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gradients were achieved with a combination of a uniformly distributed transverse load and end 
moments, which were represented as effective line loads on the top and bottom flanges. An 
example of the applied loading for cases S-0, S-1, and S-2 is demonstrated in Fig. 5. This method 
of modeling is consistent with the loading conditions utilized in Helwig et al. (1997).  
 

Bracing Scheme 
Lb = L Lb = L/2 Lb = L/3 

 
  

Figure 5: Applied loading scheme for simply-supported condition with different intermediate bracing schemes 
 
4. Results and Comparisons to AISC Cb Expression 
Nonprismatic sections have been shown to affect the LTB behavior of beams with respect to both 
moment gradient factors and the accuracy of the Eq. 1 and similar design expressions; however, 
the focus of this paper is quantifying the effects of flange transitions on traditional Cb factors. 
 
Cb factors are derived computationally by comparing the critical buckling load corresponding to 
uniform moment along an unbraced segment to the critical buckling load corresponding to a 
moment gradient along the same segment. In order to determine the finite element solution for Cb, 
two eigenvalue buckling analyses were carried out: (1) the beam with moment gradient (Mcr FEA,MG) 
and (2) the beam with uniform moment (Mcr FEA,UM). This expression is shown in Eq. 4: 
 

 
 

(4) 

 
Note that the subscript, FEA, is added to emphasize that they are based on finite element results 
and to differentiate them from the theoretical solution in Eq. 1. For prismatic sections in single-
curvature bending, Cb,FEA need only be checked at the location of maximum moment in the 
compression flange. For singly-symmetric, nonprismatic sections with reverse-curvature bending, 
the calculation of Cb,FEA involves several checks. The moments corresponding to the critical 
buckling load in all unique compression flanges were checked against the uniform moment case. 
 
This section of the paper investigates moment gradient effects by comparing FEA results for 
uniform moment and FEA results for various moment gradients. Critical buckling loads were 
obtained from the Abaqus output, and the analytical solutions for Mcr,FEA,MG and Mcr,FEA,UM are 
compared to Eq. 2, the AISC design equation for estimating Cb. 
 
This procedure was performed for all variables in the parametric study. For brevity, only 
representative examples are presented in this paper. The variables considered were previously 
outlined in Section 2 of this paper. One of those variables, span-to-depth ratio, has a relatively 
small influence on the Cb,FEA, as shown in Fig. 6. 
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Figure 6: FEA results compared to the AISC approximate solution (Eq. 2) for various span-to-depth ratios and 

moment gradient cases I-0 and E-0. 
 

Fig. 6 shows the FEA-based results for Cb,FEA (Mcr,FEA,MG / Mcr,FEA,UM) compared to the AISC 
design equation (Eq. 2) for two sample moment gradient cases, I-0 and E-0. Only the results for 
prismatic beams are presented. This data demonstrates that the Cb,FEA varies slightly with the L/h 
ratio, especially for ρtop,base > 0.5. For ρtop,base < 0.5, girders with L/h = 15 result in lower moment 
gradient factors than girders with L/h = 25. Unless noted otherwise, the remainder of the figures 
in this paper will set L/h at 15, given that it is most critical for practical values of ρtop,base. 
 
Fig. 7 and Fig. 8 present the FEA-based Cb results for various flange transitions, intermediate 
bracing schemes, ρtop,base values, and moment gradients. Fig. 7 displays the results for cases with 
zero and one intermediate brace, whereas Fig. 8 displays the results for cases with two intermediate 
braces. Within each of the flange transitions considered, several Iy multiplier cases {Iyt multiplier, 
Iyb multiplier} are plotted in the figures: prismatic beam segment {1,1}, nonprismatic segment with 
only the bottom flange increasing {1,1.5}, nonprismatic segment with both flanges increasing 
{1.5,1.5}. The remainder of the cases are similar but are not presented in this paper. As stated 
earlier, the cases with two intermediate braces do not consider a flange transition since the 
transition was so close to the end. 
 
For case S-0, Eq. 2 approximates the moment gradient factor Cb,FEA well for all variations of Iyt 
and Iyb multipliers. In fact, the AISC equation provides more conservative estimates for 
nonprismatic girder segments than for prismatic segments. A similar observation is made for 
moment gradient S-1, for which one intermediate brace is added. 
 
For case I-0, the AISC equation provides a reasonable estimate for Cb,FEA when ρtop,base ≤ 0.5 for 
all cases shown and conservative estimates for ρtop,base > 0.8; however, the Cb values are higher 
than 3.0 in that region. Note that the ratio of the yield moment to Mcr is typically in the range of 3-
5 for smaller unbraced lengths, so the conservatism has no impact on practical problems since the 
limit state of yielding will control over LTB. However, the approximate solution is slightly 
unconservative for ρtop,base values around 0.6, especially for nonprismatic girders, but is still within 
5% of the FEA solution. When an intermediate brace is added and the moment gradient case I-1 
is evaluated, the AISC equation is about 10-30% conservative for practical ρtop,base values of 0.2 to 
0.5 for nonprismatic sections. 
 

{15}
{20}

{25}

0 0.2 0.4 0.6 0.8 1

{15}
{20}

{25}

0.0

1.0

2.0

3.0

4.0

5.0

0 0.2 0.4 0.6 0.8 1

C
b,

F
E

A

ρtop,base

Label: {L/h}
Note: Prismatic only

Eq. 4, AISC
FEA Result

Key:

(I-0) (E-0)



10 

Results for moment gradient cases E-0 and E-1 are similar to the results of I-0 and I-1, given that 
the end moments are similar. For case E-1, the AISC equation provides a moment gradient factor 
that is 30-40% conservative for ρtop,base values of 0.2 to 0.5. 
 

 
Figure 7: FEA results compared to the AISC approximate solution (Eq. 2) for various flange transition schemes and 

moment gradient cases S-0, S-1, I-0, I-1, E-0, and E-1. 
 

From Fig. 8, it is apparent that the AISC equation provides an accurate estimate of Cb,FEA for 
moment gradient case S-2. The Cb,FEA values approach unity given that the moment gradient is 
close to the uniform moment conditions. For cases I-2 and E-2, the moment gradient is nearly 
linear and includes a small portion of reverse-curvature bending. The bottom flange is primarily 
in compression except for the right end of the unbraced length. The inflection point is within 0.33Lb 
and 0.25Lb of the nearest brace point for these two cases, respectively; or in other words, the ratio 
of the smaller end moment to the larger end moment (Msmall/Mlarge) is -0.33 and -0.22, respectively. 
In contrast, the respective inflection points in cases I-1 and E-1 are within 0.44Lb and 0.5Lb of the 
nearest brace point, and the Msmall/Mlarge ratios are -0.5 for both cases. 
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The Rm factor in Eq. 2 is limited in that it becomes an active term for any and all reverse-curvature 
bending, even for cases in which the inflection point is close to the brace point and moment is 
relatively small at the end closest to the inflection point. Because of this, Eq. 2 provides poor 
approximations for these special cases due to the inclusion of the Rm term. Instead, better estimates 
for Cb,FEA are provided when the Rm term is neglected. Note that similar observations are made 
when the moment diagrams are flipped, and the top flange is primarily in compression. For cases 
I-2 and E-2, Fig. 8 compares the analytical solution with two forms of Eq. 2: (1) with the Rm term 
and (2) without the Rm term. 
 
It is evident that, when the Rm term is included, Eq. 2 is relatively conservative for ρtop,base < 0.5 
and potentially unconservative for ρtop,base > 0.6 as the inflection point becomes closer to the nearest 
brace point. Conversely, when the Rm term is neglected, Eq. 2 provides more accurate estimates, 
ranging from 0-20% conservative for all practical values of ρtop,base. When comparing the results 
in Fig. 8 with the reverse-curvature cases in Fig. 7 (I-0, E-0, I-1, and E-1), it is shown that the Rm 
term produces significant errors for nearly linear moment gradients and Msmall/Mlarge ratios greater 
than -1/3 (or inflection points within Lb/3 of the nearest brace point). 
 

 
Figure 8: FEA results compared to the AISC approximate solution (Eq. 2) for moment gradient cases S-2, I-2, and 

E-2. 
 
5. Conclusions and Design Recommendations 
Based on the results presented in the preceding section, it is concluded that: (1) the AISC 
expression for Cb approximates the analytical solutions for nonprismatic girders with reasonable 
conservatism and (2) the Rm term should be neglected for single-curvature bending and reverse-
curvature bending when Msmall/Mlarge > -1/3. For girder sections within practical values of ρtop, 
these approximate solutions produce estimates on the order of 0-30% conservative. 
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For singly-symmetric, nonprismatic sections in single- or reverse-curvature, which are common 
cases in bridge engineering, the approach for Cb is generally unchanged from current AASHTO 
procedures. The proposed AISC expression (Eq. 2) is calculated in terms of moments instead of 
stresses and is easier to implement. The equation, which has been shown to provide reasonably 
estimates of the buckling solution, is to be applied equally to all different cross-sections within a 
nonprismatic segment. Those individual sections must then be checked against the respective yield 
moment to ensure the critical limit state is considered. 
 
This work can be further progressed by investigating different bracing schemes, multiple 
transitions along an unbraced length, and variable transition lengths instead of the fixed 0.3L and 
0.7L used here. In addition, considering increased flange widths within transition regions, load 
height effects, and variable-depth girders could potentially be explored. It is acknowledged that 
the AISC moment gradient equation can produce overly conservative estimates for some extreme 
cases. But given that it is very straightforward to use and has shown to produce reasonably 
conservative approximations for the most common girder and bracing conditions, the AISC Cb 
expression is promising for steel bridge applications. 
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