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Abstract 
The stiffness reduction of compact W-Shapes with an ECCS residual stress pattern was studied in 
detail using a fiber element model with over 2,000 elements. For a given moment, axial load and 
residual stress ratio, the distribution of stresses throughout the cross-section and associated reduced 
stiffness were evaluated and used to develop an inelastic material model for use as normalized 
tangent modulus expressions in MASTAN2. The material model’s ability to develop realistic 
column strength curves over a range of W-Shape dimensions was studied. Ultimate load analyses 
were conducted on five benchmark frames using the new material model and were compared with 
the results obtained using advanced nonlinear finite element models. Discussion and 
recommendations are provided regarding the material model and its ability to determine the 
ultimate load capacity of different types of frames and loading conditions. 
 
1. Introduction 
Appendix 1 of the Specification for Structural Steel Buildings (2017) provides the designer with 
the option to use advanced methods of structural analysis to directly model localized yielding and 
its effects on system behavior. The analysis requirements stipulate that: a second-order inelastic 
analysis is necessary; the material properties and yield criteria are to be reduced by a factor of 0.9; 
the geometric imperfections shall be directly modeled such that it develops the greatest 
destabilizing effect; and the influence of residual stress and partial yielding effects are to be 
considered. Recent research has focused on developing improved empirical relationships to 
account for the reduction in stiffness that occurs due to yielding of the beam-column’s cross-
section (Zubydan 2011; Kucukler et al. 2014, 2016; Rosson 2017, 2018). The purpose of this study 
is to investigate the effectiveness of a new inelastic material model to correctly account for the 
loss of stiffness in W-Shape columns with uniaxial bending and to accurately predict the ultimate 
load capacity of steel frames. 
 
2. Stiffness Reduction m-p-τ Surface Plot Perimeter Conditions 
The stiffness reduction (τ ) that results from yielding of the cross-section due to major- or minor-
axis bending and axial load was studied in detail using a fiber element model for W-Shapes with 
an ECCS (1984) residual stress pattern (Rosson 2017). The model used 2,046 fiber elements over 
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the cross-section (400 fiber elements in each flange and 1,246 fiber elements in the web). For a 
given normalized moment m (M /Mp), axial load p (P /Py), and residual stress ratio cr (σr /σy), the 
stiffness reduction was carefully assessed for a W8x31 with cr = 0.3. Throughout the paper p is 
understood to be positive such that the sign on Py matches that of the applied axial load P. Bending 
about the minor-axis is understood to have a normalized moment m = M /Mpy, and bending about 
the major-axis is understood to have a normalized moment m = M /Mpx. 
 
Using the m and p results with increments of 0.01, over 7,000 data points were used to produce 
the m-p-τ surface plot in Fig. 1 for minor-axis bending and axial compression, and in Fig. 2 for 
major-axis bending and axial compression. 
 

Figure 1: W8x31 minor-axis bending and axial compression m-p-τ surface plot perimeter conditions for cr = 0.30 
 
 

 
Figure 2: W8x31 major-axis bending and axial compression m-p-τ surface plot perimeter conditions for cr = 0.30 
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2.1 m and p conditions at the limit of τ = 1 (yellow line in Figs. 1 and 2) 
The equation to determine the extent of τ  = 1 is found in the literature (Attalla et al. 1994; Zubydan 
2011; Rosson 2016). For a given residual stress ratio cr and axial compression load condition p, 
the maximum moment at which τ  = 1 is maintained is given as  
 

𝑚𝑚1 =
𝑆𝑆𝑦𝑦
𝑍𝑍𝑦𝑦

(1 − 𝑐𝑐𝑟𝑟 − 𝑝𝑝)                                                             (1) 

 
where Sy is the minor-axis elastic section modulus and Zy is the minor-axis plastic section modulus. 
The maximum moment at which τ  = 1 is maintained for the major-axis bending and axial 
compression condition is determined in a similar manner and is found to be 
 

𝑚𝑚1 =
𝑆𝑆𝑥𝑥
𝑍𝑍𝑥𝑥

(1 − 𝑐𝑐𝑟𝑟 − 𝑝𝑝)                                                             (2) 

 
where Sx is the major-axis elastic section modulus and Zx is the major-axis plastic section modulus.  
 
2.2 m = 0 and p > 1− cr (purple line in Figs. 1 and 2) 
To determine the stiffness reduction τ  for a given p and cr condition, the minor-axis moment of 
inertia of the remaining cross-section that has not yielded is divided by the original minor-axis 
moment of inertia Iy. The relationship for τ  is found to be  
  

𝜏𝜏𝑝𝑝 =
2 ��1 − 𝑝𝑝

𝑐𝑐𝑟𝑟
�
3

+ 𝜆𝜆𝜆𝜆𝑜𝑜2�
1 − 𝑝𝑝
𝑐𝑐𝑟𝑟

2 + 𝜆𝜆𝜆𝜆𝑜𝑜2
                                                  (3) 

 
where λ = Aw /Af  and λo = tw /bf  (Rosson 2016). For W-Shapes in which λλo

2 is very small 
compared to 2, a very close approximation to Eq. 3 excludes the effect of the web and is given as  
 

𝜏𝜏𝑝𝑝 = ��
1 − 𝑝𝑝
𝑐𝑐𝑟𝑟

�

3

                                                                  (4) 

 
The stiffness reduction τ  for the major-axis condition is determined in a similar manner and is 
found to be 
 

𝜏𝜏𝑝𝑝 =
𝜆𝜆𝜆𝜆12 �1 − �1 −�1 − 𝑝𝑝

𝑐𝑐𝑟𝑟
�
3

� + �1− 𝑝𝑝
𝑐𝑐𝑟𝑟

[2 + 6(1 + 𝜆𝜆1)2]

𝜆𝜆𝜆𝜆12 + 2 + 6(1 + 𝜆𝜆1)2                               (5) 

 
where λ1 = dw /tf  (Rosson 2017). Eqs. 3 through 5 are based on the assumed shape of the residual 
pattern; therefore, the shape of the purple lines in Figs. 1 and 2 are unique to the ECCS residual 
stress pattern. 
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2.3 m and p conditions for τ = 0 (red line in Figs. 1 and 2) 
Two equations are needed to determine the m and p conditions when τ  = 0 for both minor- and 
major-axis bending. For the minor-axis bending with axial compression condition, one equation is 
needed when the plastic neutral axis is inside the web thickness, and the other equation is needed 
when it is outside the web thickness. Closed-form equations are given in the book by Chen and 
Sohal (1995); however, the same results can be obtained with fewer computations using the 
constants λ, λo and λ1 (Rosson 2016). 
  

         𝑚𝑚0  = 1 −
𝑝𝑝2(2 + 𝜆𝜆)2

(2 + 𝜆𝜆𝜆𝜆𝑜𝑜)(2 + 𝜆𝜆1)                                                   (6) 

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑝𝑝 ≥
2𝜆𝜆𝑜𝑜 + 𝜆𝜆

2 + 𝜆𝜆                     𝑚𝑚0  =
4 − [𝑝𝑝(2 + 𝜆𝜆) − 𝜆𝜆]2

2(2 + 𝜆𝜆𝜆𝜆𝑜𝑜)                                                     (7) 

 
For the major-axis bending with axial compression condition, one equation is needed when the 
plastic neutral axis is outside the flange thickness, and the other equation is needed when it is 
inside the flange thickness. 
 

         𝑚𝑚0  = 1 −
𝑝𝑝2(2 + 𝜆𝜆)2

4𝜆𝜆𝑜𝑜 + 𝜆𝜆(4 + 𝜆𝜆)                                                  (8) 

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑝𝑝 ≥
𝜆𝜆

2 + 𝜆𝜆                  𝑚𝑚0 =
(2 + 𝜆𝜆1)2 − [𝑝𝑝(2 + 𝜆𝜆) − 𝜆𝜆 + 𝜆𝜆1]2

4 + 𝜆𝜆1(4 + 𝜆𝜆)                                (9) 

 
Eqs. 6 through 9 do not depend upon the assumed shape of the residual pattern; therefore, the shape 
of the red lines in Figs. 1 and 2 are unaffected by the ECCS residual stress pattern. 
 
3. Material Models Based on m-p-τ Surface Plots 
The equations presented for the yellow, purple and red lines in Figs. 1 and 2 are used as a basis to 
develop an inelastic material model for W-Shape sections. The extent of the triangular-shaped 
plateau region at which τ = 1 for a given p and cr condition is defined by m1 from Eqs. 1 and 2. 
The stiffness when m = 0 for a given p > 1 – cr condition is defined by 𝜏𝜏𝑝𝑝 from Eqs. 3 and 5, and 
the conditions at which τ = 0 for a given p condition are defined by m0 from Eqs. 6 through 9. The 
shape of the gray shaded regions in Figs. 1 and 2 are dependent upon the cross-section dimensions 
and the maximum stress σr of the ECCS residual stress pattern. Similar equations to determine τ 
in the gray shaded regions cannot be written in closed-form and thus require an iterative solution 
technique. The following inelastic material models are given in closed-form are bound by m1, 𝜏𝜏𝑝𝑝 
and m0, but they approximate the gray shaded regions in Figs. 1 and 2. 
 
3.1 New inelastic material model 
The new inelastic material model takes advantage of the closed-form equations for the perimeter 
conditions given by m1, 𝜏𝜏𝑝𝑝 and m0. The 3D surfaces in Figs. 1 and 2 for both the minor-axis bending 
and major-axis bending conditions are closely approximated using Eqs. 10 and 11. An appropriate 
value for the exponent n is selected based on fiber element m-p-τ results for a given W-Shape and 
the axis about which bending occurs. 
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𝜏𝜏 = 1 − �
𝑚𝑚 −𝑚𝑚1

𝑚𝑚0 − 𝑚𝑚1
�
𝑛𝑛

                                                        (10) 

 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑝𝑝 ≥ 1− 𝑐𝑐𝑟𝑟                   𝜏𝜏 = 𝜏𝜏𝑝𝑝 �1 − �
𝑚𝑚
𝑚𝑚0

�
𝑛𝑛
�                                                          (11) 

 
For a given axial compression p condition, and a W-Shape with its λ, λo, λ1 and cr constants, the 
m1, 𝜏𝜏𝑝𝑝 and m0 values are evaluated from Eqs. 1, 3, 6 and 7 for minor-axis bending, and Eqs. 2, 5, 
8 and 9 for major-axis bending. In the absence of any other effort to determine an appropriate n 
value for a given W-Shape, it is recommended that n = 2 be used for minor-axis bending and             
n = 4 for major-axis bending. As illustrated in Fig. 3, for a given p and its corresponding m1, 𝜏𝜏𝑝𝑝 
and m0 values, 𝜏𝜏 is evaluated based on the magnitude of the bending moment m. If p < 1 – cr and 
m ≤ m1, there is no stiffness reduction and 𝜏𝜏 = 1. If p < 1 – cr and m > m1, there is stiffness reduction 
between 1 and 0 along the light yellow line depending on the magnitude of m (using Eq. 10).           
If p ≥ 1 – cr, then stiffness reduction is between 𝜏𝜏𝑝𝑝 and 0 along the light blue line depending on 
the magnitude of m (using Eq. 11). If m ≥ m0 for any given p condition, then 𝜏𝜏 = 0. 
 

 
 

(a)                                                                                           (b) 
 

Figure 3: m-p-τ surface plots from Eqs. 10 and 11 for a) minor-axis bending and b) major-axis bending  
 
3.2 Fiber element polynomial 
The fiber element data used to create Fig. 1 were used to generate a nonlinear regression model 
for τ in terms of both m and p for the minor-axis bending condition and cr = 0.3 (Rosson 2016). 
Only the data in the gray shaded region of Fig. 1 were used to determine the nonlinear regression 
coefficients. Based on the results from several trial models, the polynomial provided in Eq. 12 was 
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found to provide the best r2 values. With the coefficients as given in Table 1, r2 = 0.99 (n = 4,832) 
for 0 ≤ p < 0.7 and r2 = 0.98 (n = 1,042) for 0.7 ≤  p  ≤ 1.0. 
 

𝜏𝜏 = 𝑎𝑎0 + 𝑎𝑎1𝑚𝑚 + 𝑎𝑎2𝑚𝑚2 + 𝑎𝑎3𝑚𝑚4 + 𝑎𝑎4𝑚𝑚6 + 𝑎𝑎5𝑚𝑚8 + 𝑎𝑎6𝑝𝑝 + 𝑎𝑎7𝑝𝑝2 
+𝑎𝑎8𝑝𝑝4 + 𝑎𝑎9𝑝𝑝6 + 𝑎𝑎10𝑝𝑝8 + 𝑎𝑎11𝑚𝑚𝑚𝑚 + 𝑎𝑎12𝑚𝑚2𝑝𝑝2 + 𝑎𝑎13𝑚𝑚4𝑝𝑝4                           (12) 

 
 

Table 1: Nonlinear regression model coefficients for W8x31 with minor-axis bending 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 Stiffness matrix used for modeling the distributed plasticity  
Since the bending moments usually vary along the length of the beam-column, the stiffness 
reduction over the member length must also be accounted for when yielding occurs. An easy and 
effective way of accomplishing this is to assume the tangent modulus varies linearly over the 
length of the element. In practice, the error introduced by this assumption is reduced by using 
multiple elements along the length of the member, and especially in locations of high moment 
gradient. The closed-form stiffness matrix developed by Ziemian and McGuire (2002) was used 
for this study because the τ values from Eqs. 10 through 12 can be used directly as the a and b 
terms in Eq. 13. The a term is the τ condition based on the m and p conditions at the start of the 
element, and the b term is based on the m and p conditions at the end of the element. 
 

[𝑘𝑘] =
𝐸𝐸𝐸𝐸
𝐿𝐿

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
12
𝐿𝐿2 �

𝑎𝑎 + 𝑏𝑏
2 �   −

6
𝐿𝐿 �

2𝑎𝑎 + 𝑏𝑏
3 �  − 

12
𝐿𝐿2 �

𝑎𝑎 + 𝑏𝑏
2 �   −

6
𝐿𝐿 �
𝑎𝑎 + 2𝑏𝑏

3 �

                            4 �
3𝑎𝑎 + 𝑏𝑏

4 �        
6
𝐿𝐿 �

2𝑎𝑎 + 𝑏𝑏
3 �          2 �

𝑎𝑎 + 𝑏𝑏
2 �

                                                         
12
𝐿𝐿2 �

𝑎𝑎 + 𝑏𝑏
2 �       

6
𝐿𝐿 �
𝑎𝑎 + 2𝑏𝑏

3 �

            𝑆𝑆𝑆𝑆𝑆𝑆.                                                                 4 �
𝑎𝑎 + 3𝑏𝑏

4 �⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                    (13) 

 
The stiffness matrix in Eq. 13 is already a part of the nonlinear material capabilities of MASTAN2 
(2015). The computer program also contains incremental analysis routines for modeling the 
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nonlinear geometric behavior. Eqs. 10 through 12 were implemented in a nonlinear material 
subroutine of MASTAN2. For a given W-Shape section, the constants λ, λo, λ1 and cr were input, 
and for a given p condition Eqs. 1 and 2 were used to evaluate m1 (limit on the extent of τ = 1), 
Eqs. 3 and 5 were used to evaluate 𝜏𝜏𝑝𝑝, and Eqs. 6 through 9 were used to evaluate m0 (boundary 
of τ = 0). With m1, 𝜏𝜏𝑝𝑝 and m0 defined for a given p condition of an element, the m condition at 
each end of the element was used in Eqs. 10 through 12 to generate the a and b terms in Eq. 13. 
 
4. Column Strength Study 
Column limit load analyses were conducted on pinned-pinned columns using the new material 
model (Eqs. 10 and 11) and were compared with various other column strength analysis results. 
All of the member cross-sections were assumed to be fully-compact and their out-of-plane 
behavior fully restrained. All column analyses were conducted using a second-order inelastic 
analysis with the full modulus of elasticity and yield stress. The initial geometric imperfections 
were directly modeled using the first eigen-mode normalized to L/1000 at mid-height. The 
columns were modeled with MASTAN2, and in all cases 10 line elements were used with n = 2 for 
minor-axis bending and n = 4 for major-axis bending. 
 
The limit load analysis results of a W8x31 with minor-axis bending are given in Fig. 4. The new 
material model results are compared with Eqs. (E3-2) and (E3-3) of the Specification for Structural 
Steel Buildings (2017) and the results from a similar MASTAN2 model with 10 line elements but 
with 𝜏𝜏 defined by the fiber element polynomial as given in Eq. 12 and the coefficients in Table 1. 
A comparison of the curves indicates that the fiber element polynomial more closely follows the 
Specification curve, and that due to the error introduced by approximating the gray surface in       
Fig. 1 with the 3D surface in Fig. 3a, the new model with n = 2 gives slightly lower results for     
L/r < 50 and slightly higher results for 50 < L/r < 100. All three curves are very similar for               
L/r > 100 where the response is primarily elastic along the length of the column. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Column strength comparison of W8x31 with minor-axis bending 
 
The effect of the assumed maximum residual stress on the column strength is illustrated in Fig. 5. 
As discussed in Shayan et al. (2014) and Rosson (2018), the range of cr values between 0.18 and 
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0.42 is based on scale factors that vary by a maximum of two standard deviations of the mean 
residual stress of 0.3σy. It is noticed in Fig. 5 that the magnitude of maximum residual stress affects 
the column strength results only in the range of approximately 50 < L/r < 100. The results are 
given only for the W10x45 column with major-axis bending, but these results are consistent with 
those given by Shayan et al. (2014).  

 

 

 

 

 

 

 

 

 

Figure 5: Column strength comparison of W8x31 with major-axis bending and three different cr values 
 
Figs. 6 and 7 are used to illustrate the stiffness reduction along the length of the column over a 
range of L/r values up to the limit load. As illustrated in Fig. 6, due to symmetry of the m conditions 
of a pinned-pinned column, the 𝜏𝜏 values are evaluated at five equally spaced locations from the 
mid-height to the bottom of the column over a range of L/r values from 40 to 200. Based on the p 
at the limit load and the m at each of the five locations on the column, the 𝜏𝜏 values were evaluated 
using the new material model for a W8x31 with minor-axis bending. In Fig. 6, the relative amount 
of flexural bending at the limit load is depicted for each L/r condition, and the gray shaded region 
in each column indicates the extent and location of relative stiffness reduction. It is noticed that 
significant stiffness reduction occurs over the full height of the column for L/r = 40 and 60, and 
for L/r > 120 where a purely elastic response is usually expected, there are small regions of inelastic 
response at the mid-section of the column. 

Fig. 7 is used illustrate the stiffness reduction at the five locations along the height of the column 
as the axial load is increased to the limit load P for each L/r condition. All the points inside the 
triangular region bound by m1 indicate an elastic (𝜏𝜏 = 1) response. It is noticed that the five points 
for all L/r conditions remain in this triangular region up to 2/3P. Using Fig. 3a as a guide to 
understanding the stiffness reduction, the L/r = 40 and 60 conditions show all five points with 
significant stiffness reduction at high values of p and low values of m at the limit load. For the     
L/r > 120 conditions, several points near the mid-section of the column have inelastic response 
and thus slight stiffness reduction due to the relatively high values of m when the limit load is 
reached. As illustrated in Fig. 3a, these points correspond with 𝜏𝜏 values that are not as drastically 
reduced as those for L/r < 60 where at the limit load there is significant stiffness reduction over 
the full height of the column. 
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Figure 6: Extent and location of stiffness reduction of W8x31 over range of L/r 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Stiffness reduction conditions of W8x31 with minor-axis bending over range of L/r values 
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Limit load analyses were conducted on a pinned-pinned W14x145 column using the new material 
model (Eqs. 10 and 11) and were compared with Eqs. (E3-2) and (E3-3) of the Specification for 
Structural Steel Buildings (2017) and the results obtained from an advanced nonlinear finite 
element model with an assumed residual stress pattern given by Galambos and Ketter (1959). The 
results for the major-axis bending condition are given in Fig. 8. The finite element model more 
closely follows the Specification curve, and that due to the error introduced by approximating the 
gray surface in Fig. 2 with the 3D surface in Fig. 3b, the new model with n = 4 gives slightly higher 
results up to approximately L/r = 100. All three curves are very similar for L/r > 100 where the 
response is primarily elastic along the length of the column. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Column strength comparison of W14x145 with major-axis bending  

The results for the minor-axis bending condition are given in Fig. 9. The finite element model 
gives results that are consistently below the Specification curve, and that due to the error introduced 
by approximating the gray surface in Fig. 1 with the 3D surface in Fig. 3a, the new model with      
n = 2 gives slightly lower results for L/r < 50 and slightly higher results for 50 < L/r < 100.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9: Column strength comparison of W14x145 with minor-axis bending 
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5. Test Frame Validation Study 
System limit load analyses were conducted on five benchmark frames using the new material 
model (Eqs. 10 and 11) and were compared with the results obtained using advanced nonlinear 
finite element models. All of the member cross-sections were assumed to be fully-compact and 
their out-of-plane behavior fully restrained. All analyses were conducted using an advanced 
second-order inelastic analysis in accordance with Appendix 1 of the Specification for Structural 
Steel Buildings (2017). The modulus of elasticity and yield stress were reduced by a factor of 0.9, 
and the initial geometric imperfections were directly modeled using L/500 in the compounding 
direction. The test frames were modeled with MASTAN2 using the new material model, and in all 
cases 10 line elements per member were used with n = 2 for minor-axis bending conditions and    
n = 4 for major-axis bending. The finite element models used an assumed residual stress pattern 
given by Galambos and Ketter (1959). All given factored loads were defined to result in a system 
limit load condition of the finite element models at an Applied Load Ratio (ALR) = 1.0. 
 
The W-Shape member sizes, lengths and distributed loads of test frame 1a are given in Fig. 10. 
The beams and columns are oriented such that major-axis bending occurs in all members. 
Comparing the results in Fig. 11 between the nonlinear finite element model and the MASTAN2 
model, the lateral displacements at the top of frame 1a vary somewhat differently as the distributed 
loads are being fully applied, but the displacements are approximately the same when the system 
limit load is reached. The MASTAN2 model reaches its limit load at ALR = 0.996.  
 

Figure 10: Test frame 1a   
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Figure 11: Applied load ratio vs. lateral displacement comparison for test frame 1a 

 
The W-Shape member sizes, lengths and distributed loads of test frame 1b are given in Fig. 12. 
The beams are oriented such that major-axis bending occurs, and the columns are oriented such 
that minor-axis bending occurs. The results in Fig. 13 indicate that the lateral displacements at the 
top of frame 1b are similar between the two models and produce similar maximum displacements 
when the system limit load is reached. The MASTAN2 model reaches its limit load at ALR = 1.04.  
 

Figure 12: Test frame 1b 
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Figure 13: Applied load ratio vs. lateral displacement comparison for test frame 1b 
 
The W-Shape member sizes, lengths and distributed loads of test frame 2 are given in Fig. 14. The 
beams and columns are oriented such that major-axis bending occurs in all members. The results 
in Fig. 15 indicate that the lateral displacements at the top of frame 2 are very similar between the 
two models as the loads are being applied and reach the similar maximum displacement values. 
The MASTAN2 model reaches its limit load at ALR = 1.012.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Test frame 2 
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Figure 15: Applied load ratio vs. lateral displacement comparison for test frame 2 

 
The W-Shape member sizes, lengths and distributed loads of test frame 3a are given in Fig. 16. 
The beams and columns are oriented such that major-axis bending occurs in all members. The 
results in Fig. 17 indicate that the lateral displacements at the top of frame 3a are very similar 
between the two models. The MASTAN2 model reaches its limit load at ALR = 1.004.  

 

Figure 16: Test frame 3a 
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Figure 17: Applied load ratio vs. lateral displacement comparison for test frame 3a 

 
The W-Shape member sizes, lengths and distributed loads of test frame 3b are given in Fig. 18. 
The beams and columns are oriented such that major-axis bending occurs in all members. The 
results in Fig. 19 indicate that the lateral displacements at the top of frame 3b between the two 
models are not as similar as the results obtained for frame 3a; however, they produce similar 
maximum displacement results when the system limit load is reached. The MASTAN2 model 
reaches its limit load at ALR = 1.022.  
 

 
Figure 18: Applied load ratio vs. lateral displacement comparison for test frame 3b 
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Figure 19: Applied load ratio vs. lateral displacement comparison for test frame 3b 
 
6. Conclusions 
This study investigated the effectiveness of a new inelastic material model to account for the loss 
of stiffness in W-Shape beam-columns with uniaxial bending and to use the model to determine 
the ultimate load capacity of steel frames. To approximate the stiffness reduction over the full 
range of m, p and cr conditions, the new material model was developed from closed-form equations 
of the m-p-τ perimeter conditions. The stiffness reduction conditions between m1 and 𝜏𝜏𝑝𝑝 to m0 are 
based on approximate nonlinear equations that vary based on a given exponent n to account for 
the axis of bending and W-Shape cross-section dimensions. Since m1 and 𝜏𝜏𝑝𝑝 are in the new material 
model, the 𝜏𝜏 results will always match the fiber element results up to the initial yield conditions, 
and since m0 is also used, the 𝜏𝜏 results will always vary to the correct fully plastic m and p 
conditions for a given W-Shape and axis of bending.  
 
The limit load column analyses indicate that the new material model provides results that are 
reasonable and consistent with known beam-column behavior. The limit load results at L/r values 
between 40 and 200 were used to gain insights into the extent and location of stiffness reduction 
that occurs over the height of the column. It was found that as the axial load approaches the limit 
load P, the response remains elastic up to 2/3P for all L/r conditions, and when performing a 
second-order inelastic analysis with initial geometric imperfections to determine the column limit 
load, there is no completely elastic response for L/r conditions up to 200. All five test frame results 
confirmed that the new material model provides close agreement with the limit load results 
obtained from using an advanced finite element model of the same frame conditions. Based on the 
results of the study, the new material model provides an effective means to account for the inelastic 
behavior of W-Shapes when using the provisions of Appendix 1 in the Specification for Structural 
Steel Buildings. Since the W-Shapes used in the study only considered n = 2 for minor-axis bending 
and n = 4 for major-axis bending, it is recommended that further research confirm that these values 
are adequate for the full range of W-Shapes used in construction.    
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