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Abstract 
Web tapered members are vastly used for steel structures. However, calculating their critical 
buckling loads involves applying numerical integration or charts or complicated equations. In an 
attempt to develop a simple, yet an accurate, solution for this problem, a closed form stiffness 
matrix for buckling analysis of web tapered steel member is proposed, which could be applied to 
a wide range of tapered steel structures. Moreover, with the advance in steel member design 
using “Direct Analysis Method”, the critical buckling load of a column is considered with an 
effective buckling length equal to its unbraced length. Applying the closed form stiffness matrix, 
developed in this research, yields the critical buckling load for a column with any boundary 
conditions. Verification examples are provided to illustrate the accuracy of the procedures.  
 
1. Introduction 
There are four widely applied approaches to calculate the elastic critical buckling load of tapered 
steel members: (1) accurate analytical formulation of the stiffness matrix, (2) charts and tables, 
(3) numerical calculation of stiffness matrix, and (4) dividing the tapered member into adequate 
numbers of members with prismatic sections.  
 
Bai et al. (2018) developed an analytical equation for calculating the stiffness matrix for different 
tapered sections using the tapered-variability indexes to represent the variations in the stiffness 
along the member. Liu et al. (2016) derived an analytical equation to represent the stiffness 
matrix of tapered members using series of stiffness factors. Simple and fast approximate 
procedures were proposed by Bazeos and Karabalis (2006), Williams and Aston (1989) and were 
presented in chart format. Numerical evaluation of stiffness matrix for tapered member was 
adopted by SAP 2000 (2009). Kaehler et al. (2011) applied the method of successive 
approximations (developed by Timoshenko and Gere (1961)) to calculate the critical buckling 
load of tapered member. Dividing the tapered member into segments of prismatic members was 
implemented by Funk and Wang (1988). Most of the previous approaches are either cumbersome 
to be implemented by steel designers or incorporated in a computer design program. 
 
In this research, a simple, yet an accurate, method for formulating the stiffness matrix for 
buckling analysis of tapered steel members is presented. This method could be applied to a wide 
variety of web tapered columns, even if the column has two different tapered segments with 
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different flange and web thicknesses. As well as, it could be applied to a column with one 
tapered segment and the other segment is prismatic. The critical buckling load of stepped column 
with different axial load in each segment could be determined using the proposed procedures. 
For prismatic columns, the stiffness matrix of web tapered member will automatically yield that 
of a prismatic member and hence the procedures are equally applied to prismatic sections. 
Another benefit of developing a closed form stiffness matrix for buckling analysis of web 
tapered members is its application in a computerized program to determine the elastic critical 
buckling load. 

 
2. Flexural Flexibility and Stiffness Matrices for Web Tapered Member 
In this formulation, only the flexural deformation is considered: the axial and shear deformations 
are not considered. In order to formulate the flexural flexibility and stiffness matrices of web 
tapered member, the moment of inertia variation along the member is assumed as: 
 
 ( ) [ ]2cxbxI −=  (1) 
 

where,     ,   , 
L

abcIbIa se
−

=== ; sI  and eI  are the moments of inertia at start and end of the 

tapered member (Fig. 1), respectively; L is the member length; and I(x) is the moment of inertia 
at distance x from the member start as shown in Fig. 1. Eq. 1 represents with sufficient accuracy 
the variation of moment of inertia along a tapered member with constant flange width and 
linearly varying web depth. This equation is a simplified form of that developed by SAP 2000 
(2009) as shown in the verification manual.  

 
 

Figure 1: Tapered member geometry 
 
The concept of equivalent moment of inertia will be used in deriving both the flexibility and 
stiffness matrices for a web tapered member. This concept is based on having the same 
deformation for both nonprismatic and its equivalent prismatic member under the same set of 
loads. The first column of the flexibility matrix (Eq. 2) is determined by applying a unit load as 
shown in Fig. 2a, where fvij = deformation at DOF i due to a unit load at DOF j with all other 
deformations unrestrained and all other forces equal to zero. 
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From Fig. 2b, the bending moment variation due to a unit load can be expressed as: 
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 xxM =)(  (3) 
To calculate fv22 for nonprismatic member shown in Fig. 1, use Eq. 4. For its equivalent 
prismatic member,  fv22 is calculated using Eq. 5 (in all calculations the bending moments shown 
in Fig. 2b are used). 
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where E is the modulus of elasticity, L is the member length, M(x) is the bending moment at 
distance x from the member start, and I1 is the moment of inertia of the equivalent prismatic 
member (for calculating fv22).  
 
By imposing the condition that the deformations fv22 for both nonprismatic (Eq. 4) and its 
equivalent prismatic member (Eq. 5) are equal, yields: 
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The integration and simplification of Eq. 6 result in: 
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where Ln is the natural logarithm. Eq. 7 maps a web tapered member (with constant flange width 
and varying web depth) to a prismatic one with an equivalent moment of inertia, I1. Note that in 
Eq. 7 as constant a approaches b (for a prismatic member), I1 becomes infinite. However, by 
applying the limit to Eq. 7, it can be shown that I1 approaches b2. Therefore:  
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To calculate fv32 for nonprismatic member shown in Fig. 1, use Eq. 9. For its equivalent 
prismatic member, fv32 is calculated using Eq. 10 (in all calculations the bending moments shown 
in Fig. 2c are used). 
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where I2 is the moment of inertia of the equivalent prismatic member (for calculating fv32).  
 
By imposing the condition that the deformations fv32 for both nonprismatic (Eq. 9) and its 
equivalent prismatic member (Eq. 10) are equal, yields: 
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The integration and simplification of Eq. 11 result in: 
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Note that in Eq. 12 as constant a approaches b (for a prismatic member), I2 becomes zero. 
However, by applying the limit to Eq. 12, it can be shown that I2 approaches b2. Therefore: 
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Now the first column of flexibility matrix has been formed. 
 
To calculate fv33 for nonprismatic member shown in Fig. 1, use Eq. 14. For its equivalent 
prismatic member, fv33 is calculated using Eq. 15 (in all calculations the bending moments shown 
in Fig. 2-d are used). 
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where I3 is the moment of inertia of the equivalent prismatic member (for calculating fv33).  
 
By imposing the condition that the deformations fv33 for both nonprismatic (Eq. 14) and its 
equivalent prismatic member (Eq. 15) are equal, yields: 
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The integration and simplification of Eq. 16 result in: 
 abI =3  (17) 
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Figure 2: Flexibility coefficients 

 
The flexibility matrix of nonprismatic cantilever member in terms of its equivalent prismatic 
member can be expressed as: 
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For a prismatic member, where a = b, the limit of Eqs. 7 and 12; and Eq. 17 yields: 
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The inverse of flexibility matrix, Eq. 19, yields the flexural stiffness matrix for nonprismatic 
cantilever member, icnonprismatk , as: 
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For a prismatic cantilever member, where I1= I2 = I3= I, the flexural stiffness matrix in Eq. 21 
yields: 
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The nonprismatic flexural stiffness matrix (Eq. 21) of a cantilever member (Fig. 3-a) can be 
transformed to local member coordinates (Fig. 3-c) as follows: 
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where,    and     are the vertical displacement and rotation of the cantilever member (Fig 3-b), 
respectively. In local member coordinates,  ,    ,    , and   are the vertical displacement and 
rotation at the end and start of the member, respectively, as shown in Fig. 3-c.  
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Figure 3: Stiffness matrix transformation: (a) tapered cantilever member, (b) cantilever DOF, (c) DOF in local 
coordinates 

 
3. Geometric Stiffness Matrix for Web Tapered Member 
The geometric stiffness of a member includes both P-δ and P-D effects. The P-δ effect arises 
from member flexure while P-D arises from chord rotation as shown in Fig. 4. As a result, the 
effect of P-D will be the same for both prismatic and nonprismatic members. However, the 
effect of P-δ will not be the same for both prismatic and nonprismatic members. Since the effect 
of P-D dominates the behavior of the member (Teh 2001), the geometric stiffness matrix for 
nonprismatic member, for simplicity, is taken equal to that of a prismatic one. The geometric 
stiffness for a prismatic member is given by Cook et al. (1989) (Eq. 26). To reduce the error 
resulting from this simplification, the member is divided into two elements as shown in Fig. 5. 
The geometric stiffness matrix, kG, for a web tapered member subjected to axial compression can 
be expressed in local member coordinates as: 
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Figure 4: P-δ and P-D effects 
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Figure 5: Effect of P-δ and P-D : (a) one element per member , (b) two elements per member 

 
4. Elastic Critical Buckling Load 
The elastic critical buckling load of web tapered column is calculated using eigenvalue 
technique. For each member, the flexural and geometric stiffness matrices are formed using Eqs. 
27 and 28, where the subscript i refers to the member number. 
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Each element in the stiffness matrices of Eqs. 27 and 28 is calculated using Eqs. 25 and 26, 
respectively. For example: 
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The flexural stiffness matrix,     , for the entire structure will be obtained by transforming the 
individual element stiffness matrices from element to structure coordinate and then combining 
the resulting matrices. For example;     for a column consists of two elements (as shown in Fig. 
6) is given by Eq. 30. Similarly, the geometric stiffness for the entire structure,       , is formed. 
The flexural stiffness matrix, given by Eq. 30, is valid for any boundary conditions. For a simply 
supported column shown in Fig. 6-b, the displacement at the start and end of the column is zero 
( 051 =∆=∆ ). Eliminating the columns and rows corresponding to 51   ∆∆ and  yields the flexural 
stiffness matrix for a simply supported column (Eq. 31). Similarly, the geometric stiffness matrix 
for a simply supported column is given by Eq. 32. 
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For calculating the elastic critical buckling load, the global stiffness equation is expressed in the 
form of eigenvalue problem (McGuire et al. (2000)) in which the equilibrium equation at the 
buckling is: 
 
 [ ] [ ][ ]{ } { }0=∆+ GKK λ  (33) 
 
where    (an eigenvalue) is the load vector with respect to a reference load   , and    (an 
eigenvector) is the buckled shape. The lowest value of         that satisfies Eq. 33 for          yields 
the elastic critical buckling load       , and the corresponding     defines the buckled shape. 
  
5. Verification Examples 
To demonstrate the efficiency and accuracy of the proposed method, several examples are 
analyzed and compared with analytical and numerical solutions available in the literature. Only 
bending stiffness was considered in the proposed method: the axial and shear stiffnesses were not 
considered. 
 
5.1 Example 1 
A cantilever linearly tapered steel column I-section, shown in Fig. 6-a, with modulus of elasticity 
E = 206.85 GPa and height L = 254 mm is analyzed using the proposed method. This example 
was analyzed by Karabalis & Beskos (1983), Li & Li (2002), and Rahai & Kazemi (2008). The 

1∆ 2∆ 3∆ 4∆ 5∆ 6∆

2∆ 3∆ 4∆ 6∆

2∆ 3∆ 4∆ 6∆

λ { }P { }∆
{ }Pλ { } 0≠∆

{ }∆{ }Pλ



 10

column is divided into two members with boundary conditions 021 =∆=∆  as shown in Fig. 6-a. 
Cross section dimensions of each member are shown in Table 1. The equivalent moments of 
inertia required to formulate the flexural stiffness matrix (Eq. 25) for each member are 
summarized in Table 2. The critical buckling load (Pcr) calculated using the proposed method is 
compared with those obtained by Karabalis & Beskos (1983), Li & Li (2002), Rahai & Kazemi 
(2008), and SAP 2000 (2009) as shown in Table 3. The results show the accuracy and efficiency 
of the proposed method. 

 
 

Figure 6: Verification examples: (a) example 1, (b) example 2 & 3 
 

Table 1: Cross section dimensions (Example 1) 

Member Location bf 
(mm) 

tf 
(mm) 

hw 
(mm) 

tw 
(mm) 

1 Start 25.4 2.032 26.416 2.54 
End 25.4 2.032 46.736 2.54 

2 Start 25.4 2.032 6.096 2.54 
End 25.4 2.032 26.416 2.54 

 
Table 2: Equivalent moments of inertia (Example 1) 

Member Li 
(mm) 

Is x 102 
(mm4) 

Ie x 102 
(mm4) 

a x 102 
(mm2) 

b x 102 
(mm2) 

I1 x 102 
(mm4) 

I2 x 102 
(mm4) 

I3 x 102 
(mm4) 

1 127 248.2 830.2 2.881 1.576 630.8 453.9 566.6 
2 127 17.9 248.2 1.576 0.423 146 66.6 113.8 

 
Table 3: Critical buckling load (Pcr)  (Example 1)  

Method Pcr
1 

(kN) 
Karabalis & Beskos (1983) 241.08 

Li & Li (2002) 238.04 
Rahai & Kazemi (2008) 240.675 

SAP 2000 (2009) 248.398 
Present method 248.398 

  1. E = 206.85 GPa 
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5.2 Example 2 
A simply supported linearly tapered steel column I-section , shown in Fig. 6-b, with modulus of 
elasticity E = 200 GPa and height L = 3657.6 mm is analyzed using the proposed method. This 
example was analyzed by Kaehler et al. (2011) using method of successive approximations. The 
column is divided into two members with boundary conditions 051 =∆=∆  as shown in Fig. 6-b. 
Cross section dimensions of each member are shown in Table 4. The equivalent moments of 
inertia required to formulate the flexural stiffness matrix (Eq. 25) for each member are 
summarized in Table 5. The critical buckling load (Pcr) calculated using the proposed method is 
compared with those obtained by Kaehler et al. (2011) and SAP 2000 (2009) as shown in Table 
6. The results show the accuracy and efficiency of the proposed method. 
  

Table 4: Cross section dimensions (Example 2) 

Member Location bf 
(mm) 

tf 
(mm) 

hw 
(mm) 

tw 
(mm) 

1 Start 152.4 6.35 457.2 3.175 
End 152.4 6.35 609.6 3.175 

2 Start 152.4 6.35 304.8 3.175 
End 152.4 6.35 457.2 3.175 

 
Table 5: Equivalent moments of inertia (Examples 2) 

Member Li 
(mm) 

Is x 105 
(mm4) 

Ie x 105 
(mm4) 

a x 102 
(mm2) 

b x 102 
(mm2) 

I1 x 105 
(mm4) 

I2 x 105 
(mm4) 

I3 x 105 
(mm4) 

1 1828.8 1293 2435 156.05 113.70 2094 1774 1983 
2 1828.8 543.4 1293 113.70 73.72 1056 838.1 978.6 

 
Table 6: Critical buckling load (Pcr) (Example 2)  

Method Pcr
1 

(kN) 
Kaehler et al. (2011) 17704 

SAP 2000 (2009) 18093 
Present method 18093 

       1. E = 200 GPa 
5.3 Example 3 
A simply supported linearly tapered steel column I-section, shown in Fig. 6-b, with modulus of 
elasticity E = 200 GPa and height L = 10 m is analyzed using the proposed method. This 
example was analyzed by Bazeos & Karabalis (2006). The column is divided into two members 
with boundary conditions 051 =∆=∆  as shown in Fig. 6-b. Cross section dimensions of each 
member are shown in Table 7. The equivalent moments of inertia required to formulate the 
flexural stiffness matrix (Eq. 25) for each member are summarized in Table 8. The critical 
buckling load (Pcr) calculated using the proposed method is compared with those obtained by 
Bazeos & Karabalis (2006) and SAP 2000 (2009) as shown in Table 9. The results show the 
accuracy and efficiency of the proposed method. 

 
Table 7: Cross section dimensions (Example 3) 

Member Location bf 
(mm) 

tf 
(mm) 

hw 
(mm) 

tw 
(mm) 

1 Start 118 7.5 145 5.6 
End 118 7.5 225 5.6 

2 Start 118 7.5 65 5.6 
End 118 7.5 145 5.6 



 12

 
Table 8: Equivalent moments of inertia (Examples 3) 

Member Li 
(mm) 

Is x 104 
(mm4) 

Ie x 104 
(mm4) 

a x 102 
(mm2) 

b x 102 
(mm2) 

I1 x 104 
(mm4) 

I2 x 104 
(mm4) 

I3 x 104 
(mm4) 

1 5000 1172 2924 54.078 34.237 2364 1851 2182 
2 5000 246 1172 34.237 15.692 830 537 721 

 
Table 9: Critical buckling load (Pcr)  (Example 3)  

Method Pcr
1 

(kN) 
Bazeos & Karabalis (2006) 190 

SAP 2000 (2009) 197.59 
Present method 197.59 

  1. E = 200 GPa 
 

5.4 Example 4 
A simply supported double tapered steel column I-section, shown in Fig. 7-a, with modulus of 
elasticity E = 200 GPa and height L = 8 m is analyzed using the proposed method. The column is 
subjected to axial compression forces at the top and mid-height as shown in Fig. 7-a. The column 
is divided into two members with boundary conditions 051 =∆=∆  as shown in Fig. 7-a. Cross 
section dimensions of each member are shown in Table 10. The equivalent moments of inertia 
required to formulate the flexural stiffness matrix (Eq. 25) for each member are summarized in 
Table 11. The critical buckling load (Pcr) calculated using the proposed method is compared with 
that obtained by SAP 2000 (2009) as shown in Table 12. The results show the accuracy and 
efficiency of the proposed method. 
 
5.5 Example 5 
A simply supported double tapered steel column I-section, shown in Fig. 7-b, with modulus of 
elasticity E = 200 GPa and height L = 8 m is analyzed using the proposed method. The column is 
subjected to axial compression force at the top as shown in Fig. 7-b. Due to symmetry, one half 
of the column is analyzed with boundary conditions 032 =∆=∆  as shown in Fig. 7-b. Cross 
section dimensions of each member are shown in Table 10. The equivalent moments of inertia 
required to formulate the flexural stiffness matrix (Eq. 25) for each member are summarized in 
Table 11. The critical buckling load (Pcr) calculated using the proposed method is compared with 
that obtained by SAP 2000 (2009) as shown in Table 13. The results show the accuracy and 
efficiency of the proposed method. 
 
5.6 Example 6 
A simply supported double tapered, with intermediate prismatic part, steel column I-section, 
shown in Fig. 8, with modulus of elasticity E = 200 GPa and length L = 12 m is analyzed using 
the proposed method. Due to symmetry, one half of the column is analyzed with boundary 
conditions 052 =∆=∆  as shown in Fig. 8. Cross section dimensions of each member are shown 
in Table 14. The equivalent moments of inertia required to formulate the flexural stiffness matrix 
(Eq. 25) for each member are summarized in Table 15. The critical buckling load (Pcr) calculated 
using the proposed method is compared with that obtained by SAP 2000 (2009) as shown in 
Table 16. The results show the accuracy and efficiency of the proposed method. 
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Figure 7: Verification examples: (a) example 4, (b) example 5 
 

Table 10: Cross section dimensions (Examples 4, 5) 

Member Location bf 
(mm) 

tf 
(mm) 

hw 
(mm) 

tw 
(mm) 

1 Start 250 10 1000 8 
End 250 10 400 8 

2 Start 250 10 400 8 
End 250 10 1000 8 

 
Table 11: Equivalent moments of inertia (Examples 4, 5) 

Member Li 
(mm) 

Is x 105 
(mm4) 

Ie x 105 
(mm4) 

a x 102 
(mm2) 

b x 102 
(mm2) 

I1 x 105 
(mm4) 

I2 x 105 
(mm4) 

I3 x 105 
(mm4) 

1 4000 19420 2528 159.01 440.66 4545 7007 5275 
2 4000 2528 19420 440.66 159.01 12600 7007 10430 

 
Table 12: Critical buckling load (Pcr) (Example 4)  

Method Pcr
1 

(kN) 
SAP 2000 (2009) 23546 
Present method 23546 

          1. E = 200 GPa 
 

Table 13: Critical buckling load (Pcr) (Example 5)  

Method Pcr
1 

(kN) 
SAP 2000 (2009) 35890 
Present method 35890 

          1. E = 200 GPa 
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Figure 8: Verification example 6 
 

Table 14: Cross section dimensions (Example 6) 

Member Location bf 
(mm) 

tf 
(mm) 

hw 
(mm) 

tw 
(mm) 

1 Start 250 10 1000 8 
End 250 10 1000 8 

2 Start 250 10 400 8 
End 250 10 1000 8 

 
Table 15: Equivalent moments of inertia (Example 6) 

Member Li 
(mm) 

Is x 105 
(mm4) 

Ie x 105 
(mm4) 

a x 102 
(mm2) 

b x 102 
(mm2) 

I1 x 105 
(mm4) 

I2 x 105 
(mm4) 

I3 x 105 
(mm4) 

Comments 

1 2000 19420 19420 440.66 440.66 19420 19420 19420 Prismatic 
2 4000 2528 19420 440.66 159.01 12600 7007 10430  

 
 

Table 16: Critical buckling load (Pcr) (Example 6)  

Method Pcr
1 

(kN) 
SAP 2000 (2009) 21410 
Present method 21400 

          1. E = 200 GPa 
 

6. Inelastic Buckling Load of Tapered Column 
The inelastic buckling load of a tapered column in a braced frame can be calculated following 
the same concept developed by Kaehler et al. (2011) in the AISC design guide for frame design 
using web-tapered members. The ratio of the elastic critical buckling load, Pcr, (calculated using 
the present study) to the applied axial force on the column, Pr, defines the scalar ratio, eγ . 

 
r

cr
e P

P
=γ  (34) 

For a tapered column where the in-plane flexural buckling is the governing mode, the critical 
buckling strength of the column can be calculated using the equations developed by Kaehler et 
al. (2011): 
 

1∆

Member 1 

L1 = 2.0m 

P

3∆ 5∆

2∆ 4∆ 6∆
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L2 = 4.0m 4.0m 2.0m 
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 recr f.F γ8770=  (36) 
 
where Fcr is the nominal buckling strength, Q is the slenderness reduction factor, and fr is the 
required axial stress calculated at the location of the smallest area along the column, and Fy is the 
yield strength. 
 
7. Conclusions 
A closed form stiffness matrix for flexural buckling analysis of web tapered steel member is 
developed. Only the flexural stiffness is considered: the axial and shear stiffnesses are not 
considered. The concept of equivalent prismatic member is developed to map a web tapered 
member to a prismatic one. The mapping is achieved through only three main variables, 
equivalent moments of inertia, calculated using closed form equations. This procedure eliminates 
the need for numerical methods, widely used in finite element programs, to calculate the elastic 
stiffness matrix of web tapered members. The proposed method is applicable for both braced and 
unbraced steel frames to calculate the elastic critical buckling load. This method could be applied 
to a wide variety of web tapered steel structures. The elastic critical buckling load of stepped 
column with different axial load in each segment could be determined using the proposed 
procedures. Other benefit of developing a closed form stiffness matrix for buckling analysis of 
web tapered members is its application in a computerized program to determine the elastic 
critical buckling load. 
 
To demonstrate the efficiency and accuracy of the proposed method, several examples are 
analyzed and compared with analytical and numerical solutions available in the literature. The 
comparisons proved that with only two elements per member accurate result is achieved.    
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