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Abstract 

The present paper focuses on the rotational capacity of H.S.S. steel sections; in particular, the 
influence of local buckling is accounted for by means of a new generalized cross-sectional 
slenderness parameter, which is used to characterize the cross-sectional rotational capacity, and, 
by extension, the available deformation capacity. 

Careful shell modelling of hollow section beams in bending was used, the numerical models 
being previously carefully validated against more than 50 bending tests. Extensive F.E. studies 
were consecutively performed, including many parameters such as various material grades, 
load and support arrangements, length-to-height ratios, etc. Specific attention was paid to the 
introduction of initial geometrical (local) imperfections, as they were shown quite influential 
on the rotation capacity. 

The paper then analyses the numerical results and points out the various influences of height-
to-width ratio, shear, moment gradient, yield stress and length-to-height ratio on the available 
rotational capacity. In a second step, the rotational capacity demand vs. stability criterion is 
detailed, and related to the proposed generalized cross-sectional slenderness, which is shown 
to be more appropriate than the b / t ratios usually proposed in design codes. Finally, code-
ready recommendations for new ways of allowing for plastic analysis in practical design 
following the proposed approach are given. 

1 Introduction 

This paper examines the relationships between local buckling and rotational capacity, in the 
particular case of H.S.S. profiles. For sections under bending moment actions, rotational 
capacity can be seen as a measure of ductility, since both can be defined as the ability for a 
section to undergo large deformations beyond the elastic range while maintaining 
their – plastic – resistance (see definitions of the rotational capacity Rcap in Eq. (1) and Fig. 1). 
Classically characterized though an infinite horizontal plateau on the - diagram of carbon 
steel, both shall be associated to resistance (reaching a limited, definite Fy) without stiffness 
(tangent modulus Et = 0). 
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Figure 1: Definition of the rotational capacity of a section 
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In contrast, elastic buckling – local buckling in the present context –, can be described as the 
moment where the section, possessing a certain stiffness associated to the Young’s modulus E, 
suddenly loses rigidity and undergoes an infinite number of possible equilibrium states. All 
along this way, stresses are not limited in magnitude and can in particular reach levels way 
beyond the material’s yield stress, as elastic stability theory assumes a perfect material, i.e. the 
stress-strain relationship is elastic linear and stresses can even reach infinity. 

Albeit seemingly disconnected, these two concepts are both influencing the behaviour and 
response of practical steel sections and members, which makes them crucial to understand and 
master for a sound design. Usually, they are associated in the definition of a so-called relative 
slenderness rel (cf. Eq. (2)) that aims at taking the balance between the influence of 
ductility/resistance on one side, and the effects of buckling on the other side. 
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Accordingly, small values of rel can be associated to ductile behaviour (compact sections), 
while large values of rel characterize a predominant buckling response, i.e. the occurrence of 
premature local buckling. 

This resistance-stability relationship has been used for decades (Merchant, 1954), and stands 
as the corner stone of the recently-developed Overall Interaction Concept (O.I.C., see 
Boissonnade 2017, Hayeck 2018, Boissonnade 2014), as Fig. 2 illustrates. 

 
Figure 2: Basic principles and application steps of the O.I.C. 
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The O.I.C. further extends the concept of relative slenderness to combined loading situations 
through the use of so-called load ratios, and makes use of buckling curves to provide a direct 
resistance prediction – steps 4 and 5. Note that in the particular case of section resistance, 
reference shall be made to local buckling, i.e. rel ≡ L where L is the local cross-section 
relative slenderness as defined in Fig. 2. As L characterizes section sensitivity to local 
buckling, the usual preliminary classification step is no more necessary; in addition, relying on 
continuous buckling curves allows for smooth resistance transitions from plastic to slender 
capacities. These two features allow to fix a series of issues associated to the concept of discrete 
behavioural classes (Boissonnade 2017, Hayeck 2018, Boissonnade 2014, Chen 2013) that is 
still of application in major design standards (Eurocode 3 2005, AISC 2010, AS 4100 1998). 

Disregarding the classification concept and its b / t limit ratios consequently also removes the 
criterion that allows – or not – designers to resort to a plastic analysis of their structure. The 
key point being to assert that a sufficient level of ductility is met to allow for the development 
of a plastic collapse mechanism, suggestion is made here to rely on L values to characterize 
the ductility reserves in H.S.S. sections: as recalled previously, although L is often used solely 
to provide information relative to buckling, it may also effectively be used as a measure of 
ductility, and, by association, of the rotational capacity. Accordingly, the present paper 
establishes how L can be related to the rotational capacity Rcap of H.S.S. sections, and 
eventually uses these relationships to provide code-ready recommendations allowing for plastic 
analysis. 

This approach however cannot fully replace the real, natural criterion that should prevail when 
the question comes to whether or not a plastic mechanism may develop. This criterion is 
recalled in Fig. 3, and clearly shows that identifying the demand in rotation capacity Rdem is as 
important as evaluating Rcap, i.e. that relying solely on Rcap is insufficient. 

 
Figure 3: Criterion to allow for plastic analysis 

The need to characterize Rdem as well was evidenced by many papers and reports (see for 
example Kuhlmann 1989, Stranghoner 1004, Lay 1967, Kemp 1984, Kato 1989, Ziemian 1992, 
Ricles 1998, Wilkinson 1999). However, since the required rotation – or rotation demand 
Rdem – differs with the loading and geometry of the considered structure and because the 
calculation of Rdem for complex structures can sometimes be complicated, time consuming and 
unreliable (Galambos 1968, Yura 1978), a fixed value of Rdem is usually prescribed as a 
minimum plastic rotation requirement in practical design. 

Several such Rdem values can be traced back in the relevant literature. In a non-exhaustive 
manner, one can refer to the Eurocode 3 Editorial Group (1989) who suggested that a value 
Rdem = 3 was suitable for plastic design, while Korol and Hudoba (1972) recommended a value 
of Rdem = 4. Hasan and Hancock (1989) and Zhao and Hancock (1991) used a limitation of 
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Rdem = 4 to determine suitable plastic slenderness for the Australian Standard AS 4100 (1998). 
Kuhlmann (1989) and Neal (1977) suggested that a value of Rdem = 2 was sufficient for 
continuous beams. Stranghöner, Sedlacek and Boeraeve (1994) investigated the behavior of 
hollow sections and outlined that different rotation requirements are necessary than for I-
sections, and they found that Rdem = 3 was adequate for continuous beams. 

In accordance with the underlying concepts of current Eurocode 3 (1989), a value Rdem = 3 was 
kept as a reference in the following – this value can indeed be shown to be usually conservative. 
Emphasis shall therefore be kept on Rcap only to provide an alternative criterion for plastic 
analysis that consists in ensuring that Rcap > 3. 

Typical Rcap = f°(L) relationships are then finally needed, and this shall consist in a rather 
complex task, as Fig. 4 shows: the latter summarizes a large number of experimental bending 
tests and plots the recorded Rcap values as a function of the dominant plate slenderness in the 
section p – these data have served as the background to current b / t limits ratios in Eurocode 3. 
As can be seen, a very large scatter is reported, pointing out various parameters to be of 
significant influence, such as the fabrication process (hot-rolled HR vs. cold-formed CF) or the 
test configuration (3-point bending 3pt vs. 4-point 4-pt arrangements). Also, the dispersion of 
the results also questions the need to identify additional parameters, since, for a given p, Rcap 
may take extremely different values, sometimes varying more than in a factor 10. 

 
Figure 4: Rcap as a function of plate slenderness p, experimental data 

This further emphasizes the need for large databases, covering a wide range of key parameters. 
This nowadays is usually achieved through extensive F.E. simulations that are capable of 
providing large databases of reliable results, while also allowing isolating the single influence 
of a given parameter. Accordingly, the following typical methodology was followed through 
the present research: 

 Performance and collection of well-documented test data; 
 Development and validation of shell F.E. models against experimental results; 
 Extensive numerical parametric studies; 
 Development and assessment of new design criteria in the form Rcap = f°(L) > 3.0. 

In this respect, a series of 23 bending tests on hot-formed and cold-formed H.S.S. was 
performed; detailed results and analysis can be found in Saloumi (2016) and Saloumi (2017). 
Also, a series of 32 tests performed in Sydney by Wilkinson (1999) with all the necessary 
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detailed data could be made available, and both have served in the validation of dedicated shell 
F.E. models that are described in Section 2. In particular, specific investigations related to the 
sensitivity of Rcap to geometrical imperfections are reported in § 2.2. Section 3 presents the 
results of extensive numerical parametric studies, where the various influences of height-to-
width h / b aspect ratio, load application and moment gradient, length-to-height L / h ratio, steel 
grade and fabrication process are analysed. Eventually, paragraph 4 summarizes the various 
observations into code-ready Rcap = f°(L) relationships that shall be used to allow – or 
not – resorting to a plastic analysis. 

2 Shell F.E. models 

2.1 Basic modelling considerations, material, loading and support conditions 

All numerical simulations relied on software FINELg (1999), continuously developed at the 
University of Liège and Greisch Design Office since 1970. Use of quadrangular 4-nodes plate-
shell finite elements with typical features (Corotational Total Lagrangian formulation, 
Kirchhoff’s theory for bending) has been made; mesh sensitivity analyses have been performed 
and adequate numbers of integration points in-plane and across the thickness have also been 
adopted (Saloumi 2016). 

Material response of carbon steel was modelled through various - relationships, depending 
on the fabrication process and on the location of the considered fibre in the section. Hot-rolled 
sections typically accounted for steel behaviour through 4-segments approximations (Fig. 5), 
as recommended by Yun et al. (2017), who relied on thousands of tensile test results to provide 
best-fitted positions and slopes of the various segments, as a function of the steel grade. 

This allowed to account for strain hardening reserves and large strains, which are crucial aspects 
with respect to the characterisation of the rotational capacity. Fig. 5 plots the typical stress-
strain relationships adopted in the numerical studies (cf. § 3) for the steel grades considered 
herein. 

 
Figure 5: Hot-formed material model considered for different steel grades 

Distinctions between flat faces and corner fibres were made in the case of cold-formed H.S.S. 
Flat faces were characterised by a typical Ramberg-Osgood equation (Hayeck 2015), while the 
corner areas relied on a different material response that accounted for (i) a higher apparent yield 
stress and (ii) a reduced ductility reserve – Fig. 6a. In order to avoid numerical issues in the 
non-linear F.E. analyses, a fictitious softening behaviour was accounted for, so that these fibres 
could allow for larger strains while carrying virtually no stress. Fig. 6b illustrates the cold-
formed material behaviour that was taken into account in the present studies – Note the decrease 
in fracture strain as the yield stress increases. 
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Figure 6: a) Typical stress-strain curves for cold-formed carbon steels; simple Ramberg-Osgood law for flat 

regions and a multi-linear material model for corner regions – b) Cold-formed material model considered in the 
flat and corner region for each nominal yield strength 

Boundary conditions were modelled so that end sections fulfilled pin-pin assumptions. For 
hollow sections, this implied the use of a fictitious node at the centre of the end sections (see 
Fig. 7a), where vertical supports were effectively acting – both in the direction or major and 
minor axes. This was made possible through the use of kinematic linear constraint conditions 
that ensured the end sections fulfilled the Bernoulli “plane sections remain plane” assumption 
and that flexural rotations were effective about the centroid. In addition, torsional twist was 
prevented, and end section nodes of each plate were transversally fixed in order to avoid any 
local buckling or bearing potential failure modes at the extremities of the beams (Fig. 7a). 

     
Figure 7: a) Boundary conditions at end sections – b) Application of constant bending moment 
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The load cases considered mainly consisted in either constant bending moment, a transverse 
load at mid-span (3-point bending cases) or in two symmetrically-applied point loads (4-point 
bending cases). Constant bending moment distributions were made effective through suitable 
4 equal point loads at top flange nodes (Fig. 7b), which, thanks to the kinematic linear 
constraints, were distributed along each end section node so as to meet linear distributions. 
Point load cases were modelled as Fig. 8 illustrates: in order to avoid any local concentration 
of stresses in the vicinity of the point load application, the transverse load was evenly 
distributed along the webs of the section by means of series of nodal forces whose sum equalled 
the applied point load. 

Due residual stresses were also obviously considered. For hot-formed sections, auto-
equilibrated membrane residual stresses patterns were implemented in the numerical models 
with a reference yield stress Fy = 235 N/mm2 along with constant residual stresses patterns 
(Fig. 9). Flexural residual stresses were adopted for cold-formed sections with a linear 
distribution across the thickness. Their magnitude was assumed equal to 1.2 . 235 N/mm2 in the 
flat regions and equal to Fy in the corner regions (see Nseir 2015 and Hayeck 2016 for more 
details). 

 
Figure 9: Auto-equilibrated residual stress pattern for hot-formed tubular profiles 

2.2 Sensitivity to geometrical imperfections 

Geometrical imperfections deserved a particular attention since, as other authors noted 
(Kuhlmann, 1989), they ought to be associated to the scattering of the results presented in 
Fig. 4. Accordingly, defining a systematic distribution of geometrical imperfections for 
parametric studies is a delicate question, as it remains a challenge to define safe yet accurate 
and realistic patterns when (i) real distributions can be highly variable and potentially any, and 
(ii) these local defaults are known to cause large changes in Rcap (Saloumi 2016, Saloumi 2017). 
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consequences of such choices on the distribution of imperfections along the member – Note in 
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Figure 10: Considered local geometrical imperfections 
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In Eq. (3), Fy is the yield stress, t the thickness and cr the plate critical stress. Accordingly, 
slightly higher imperfections were assumed for cold-formed sections. No global initial 
imperfections were introduced as only cross section capacities were examined. 

Figs. 12a and 12b provide examples of the obtained results, where the rotational capacity Rcap 
is plotted as a function of the sections’ slenderness L, for the 6 various imperfection patterns 
considered. The figures also report the Rcap = 3 reference value as well as a L = 0.5 vertical 
line which stands the slenderness-based limit underlying the b / t limits ratios in Eurocode 3 
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(1989) to separate class 1 from class 2 sections. Although the figures only show results obtained 
for hot-rolled tubes, identical conclusions and trends were observed for cold-formed sections, 
see Saloumi (2016). Figs. 12a and 12b provide the following information: 

 Quite large difference in rotational capacities are reported, owing to pronounced 
steepness of the various curves. These high slopes can be shown to be associated with 
the plastic plateau in the material curves (Saloumi 2016): yield extend in these fibres is 
indeed such that strains spread very quickly, and so does Rcap, thus the large differences. 
Lesser steepness was observed for cold-formed H.S.S., albeit still important. This 
further emphasizes the need for a unique imperfection pattern, for sake of consistency; 
this also partly explains the large scatters observed in experimental results – see for 
example Fig. 4; 

 Generally, the sensitivity of Rcap to imperfections increased as the section slenderness 
decreased, no matter the section’s aspect ratio; 

 Both shapes and amplitudes of geometrical imperfections are seen to have a substantial 
effect on the rotational capacity. As an example, Fig. 12a abrupt curves when L < 0.4 
lead to, at L = 0.4, rotational capacities varying from 2 to 13; 

 Imperfection patterns 4 and 5 lead to noticeably higher rotational capacities, owing to 
quite small amplitudes. The latter have been calibrated from test data but may not be 
suitable for systematic patterns used in parametric studies; 

 Imp 2 pattern amplitude of a / 100 where a is the plate’s leading dimensions leads to 
the lowest Rcap values. Although motivation for this study is to choose a safe-sided 
distribution, an amplitude of a / 100 leads to quite severe results and was deemed 
unreasonable, in addition to lie too far from imperfections’ measurements (Nseir 2015). 
Consequently, this pattern was disregarded; 

 Albeit the eigenmode-conform Imp 6 pattern remains widely used, it was not kept any 
further, since it was considered less appropriate and possibly not guaranteeing safer, 
conservative results (Nseir 2015). 

Accordingly, Imp 1 imperfection pattern was finally chosen: the a / 200 amplitude seemed 
reasonable and an average period between flange and web with an identical number of half-
waves in flanges and webs adequate. 

  
Figure 12: Rotation capacity of hot-rolled hollow sections for different geometrical imperfection 

patterns – a) Square sections – b) Rectangular sections with h / b = 2.5 
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square or rectangular. Typical preliminary measurements such as material response or stub 
column testing as well as detailed description and analysis of these tests are provided in Saloumi 
(2017) and shall no longer be detailed here. These data were used to assess the developed shell 
F.E. models, and the numerical models were shown to quite satisfactorily reproduce the 
experimental behaviour, in terms of initial stiffness, peak loads, rotational capacity and failure 
modes. Fig. 13a and 13b recall two examples of moment-rotation curves for a rectangular 
section RHS 220x120x603 in 3-point bending, and for a square SHS 180x8 in 4-point bending, 
respectively. 

  
Figure 13: Examples of test vs. F.E. results (Saloumi 2017) – a) Specimen 

RHS_220×120x6.3_SS_3P – b) Specimen SHS_180x8_SS_4P 

As a summary of the test vs. F.E. comparison for this test series, Fig. 14a and14b histograms 
report on the overall performance of the numerical models vs. test data, in reporting the 
Mexp / MFEM ratio of each test performed. As can be seen, very good agreement is observed, as 
the predicted failure loads (i) lie in average within 5% of the measured ones, (ii) are generally 
safe-sided and (iii) never exceed 11%. 

    
Figure 14: Summary of test vs. F.E. results (Saloumi 2017) – a) Simply-supported configurations – b) Propped-

cantilever configurations 
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In an effort to assess the F.E. models predictions towards additional test data, the results of 
Wilkinson’s experimental series were used as well (Wilkinson 1999). Measured geometric 
dimensions were implemented, and simple Ramberg-Osgood material law was used for the flat 
regions of the rectangular hollow sections with material parameter n = 22. As Wilkinson 
reported that the yield stress in flanges was on average 10% higher than that of the webs and 
20% higher in the corner regions due to the cold forming process, 1.1 times the measured Fy 
was considered in the flange regions and a multi-linear law was used for corner regions – the 
corresponding yield and tensile stresses were equal to 1.2 Fy and 1.2 Fu, respectively. Flexural 
residual stresses were also implemented and geometrical imperfection pattern Type 1 was 
introduced in a preliminary-tested sufficiently dense mesh. 

Replicating support and loading conditions were achieved through modelling loading plates at 
loading positions and in the support zones – elastic material behaviour was considered for these 
plates. Loading was applied at the mid-section location and on all nodes of both webs (Fig. 15). 
As for support conditions, pinned conditions were attributed to end supports using kinematic 
linear constraints. 

 
Figure 15: Numerical model of Wilkinson 4-pt bending test through “parallel plates” (1999) 

 
Figure 16: Examples of test vs. F.E. results for specimen BS08B 



 12

Besides, Wilkinson’s data have been also used to assess a simplified numerical model. This 
model consisted in a short beam of length equal to the three times the average of the clear width 
of both webs and flanges, where loading was introduced through equal bending moments 
applied at both ends (Fig. 7b), so as to get a constant bending moment distribution. Intention 
was to validate situations of constant bending moment loading without resorting to the 
modelling of full 4-pt bending arrangements. 

Fig. 16 proposes an example of experimental-numerical comparison results, where both the full 
model – Fig. 15 – or a simplified one are considered. As can be observed, both numerical 
curves nicely match the experimental one in the elastic range as well as along the plastic 
response and for peak loads. In this case, experimental Rcap values presented 6% deviation 
values from both numerical values, an upper one for the simplified model and an under-
prediction for the full model. 

Fig. 17 finally summarizes the results of the comparison between Wilkinson’s 32 experimental 
and numerical sources – the results of “full” models are reported here. The numerical models 
are seen to provide fully satisfactory results, with an average deviation of 3% and very few 
differences exceeding 10%. Accordingly, the numerical models are again shown to possess the 
ability to provide accurate and reliable results and they shall further be considered as a 
consistent source of reference results. 

 
Figure 17: Summary of test vs. F.E. results – Wilkinson’s experimental data (1999, 32 tests) 

3 Numerical parametric studies – Assessment of L-based criterion 

3.1 Parametric studies 

The validated F.E. models have been used extensively in numerical parametric studies so as to 
characterize the dependency of the rotational capacity to various parameters. In this respect, the 
following variable characteristics were considered in the numerical investigations: 

 Material: 3 steel grades were accounted for – S235, S355 and S460 –, simulating the 
characteristics of hot-finished (Fig. 5) or cold-formed tubes (Figs. 6a and 6b). 
Depending on the steel grade and on the manufacturing process, differences in plastic 
plateau length and adequate strain limits were considered; 

 Load cases consisted in: 
o Constant bending moment situations (i.e. no moment gradient and no shear 

action), for which a preliminary length influence study was performed to assess 
the most suitable length to give the models in order to record little influence of 
the edge conditions while providing accurate results. Accordingly, beam lengths 
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of 3 times the averages of the webs and flanges clear widths were assumed here, 
and use of the simplified model was preferred for saving computation time; 

o 3-point bending arrangements, where the influence of shear and moment 
gradient could be accounted for. Lengths of 10, 15 and 20 times the height of 
the cross-section were included in the study, so as to test the influence of 
moment gradient – use of “full” models was made; 

 Section shapes and dimensions were selected to be of class 1 (plastic) or class 2 
(compact), according to Eurocode 3 (2005). Many different sections were considered: 

o Geometries from the European database satisfying the condition p < 0.6 were 
first selected; 

o Invented sections were then generated, on the basis of an h = 200 mm section 
for which h / b ratios were set equal to 1, 1.5, 2, and 2.5, i.e. sections ranged 
from square to narrow rectangular sections. For each h / b value, b / t quotients 
ranging from 10 to 20 with a step of 1 and from 20 to 34 with a step of 2 were 
considered. 

Residual stresses – as detailed in § 2.1 – as well as local geometrical imperfection pattern #1 
were included in the models; no global geometrical imperfection was accounted for. In total, 
several hundreds of non-linear F.E. calculations were performed, the results of which are 
analysed and detailed in the following paragraphs. 

3.2 Influence of aspect ratio h / b 

As a first parameter suspected to be of influence on the rotational capacity, the height-to-width 
ratio h / b was investigated – the latter was indeed shown important in the resistance response 
of both H.S.S. sections (Nseir 2015) and members (Hayeck 2016). Figs. 18a and 18b provide 
examples of the obtained results, for both hot-finished and cold-formed sections in S235 steel 
under constant bending moment. Results are plotted in Rcap vs. L axes, and Rcap = 3 horizontal 
lines are reported to serve as a convenient reference. It shall also be mentioned here that 
Rcap > 20 results are not displayed because they could be shown to involve strains higher than 
15% at failure, which does not comply with Eurocode 3’s material requirements. 

  
Figure 18: Effect of h / b aspect ratio on Rcap (S235, constant bending moment) – a) Hot-finished 

sections – b) Cold-formed sections 

As can be seen, for both hot and cold manufacturing processes, sections possess higher rotation 
capacities when their shape is closer to square sections. Relative little variations in Rcap are 
however reported, and, given the sensitivity of Rcap to many other parameters, including some 
impossible to master (e.g. geometrical imperfections, see § 2.2), it is suggested that 
Rcap = f°(L, …) sought expressions shall be made free of any h / b coefficient. 
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3.3 Influence of loading – Moment gradient 

Fig. 20 compares the flexural behaviour of beams under constant bending moment and in 3-
point bending configurations. As the figure shows, the constant moment cases systematically 
provide larger rotational capacities than the point load cases, for a given slenderness L. This 
was expected since a moment gradient triggers a more confined region of maximum moment, 
so that the still elastic adjacent segments provide a certain level of restraint. Accordingly, 
yielding and local buckling of the yielded fibres that have lost stiffness cannot spread freely 
along the beam length, contrary to constant moment cases where local buckling may develop 
with no such restrictions. For this reason, lower rotation capacities (i.e. less ductile behaviour) 
shall be reached for 3-point bending arrangements; similar observations and conclusions have 
been drawn by Lay (1965), Lay et al. (1967), Wang et al. (2016) or Kuhlmann (1989). 

 
Figure 20: Rotation capacities for beams under: a) Constant moment – b) 3-point bending (hot-finished sections) 

Of interest is also the correlation between the rotational capacity reference limit Rcap = 3 and 
the slenderness-based limit L = 0.5 (Eurocode 3, 1989) that is assumed 
to – approximately – separate class 1 sections (plastic analysis allowed) from class 2 sections 
(plastic analysis not allowed). Sections characterised by both Rcap ≥ 3 and L ≤ 0.5 (data points 
in the upper left quadrant) are de facto allowing plastic analysis; similarly, sections of the 
bottom right quadrant (Rcap ≤ 3 and L ≥ 0.5) are judged not to possess the sufficient ductility 
to allow for plastic redistribution. 

More “problematic” are the many data points of the bottom left quadrant: such cases do not 
possess a rotational capacity above the Rcap = 3 threshold but satisfy the other L < 0.5 criterion: 
a first contradiction is here evidenced, and the two possibilities for allowing plastic analysis are 
seen not equivalent, especially for point load cases – the Rcap = 3 criterion is seen more 
conservative. A suitable alternative criterion should therefore not only account for the effect of 
moment gradient but also provide adequate solutions for these situations. 

3.4 Influence of L / h ratio 

For 3-point bending cases, provided the beam member is long enough (this was always the case 
in the present study), the influence of shear on the formation of plastic mechanisms is known 
of little influence – particularly in the case of H.S.S. sections characterized by two webs and a 
uniform thickness for all constituent plates. Varying the length-to-height ratio L / h however 
influences the moment gradient, so that elastic restraints from zones adjacent to the plastic hinge 
under consideration may affect the rotational capacity. 

Fig. 21 again plots Rcap = f°(L) results, sorted by length-to-height ratios. It shows that higher 
rotation capacities are reached for smaller L / h ratios, owing to higher moment gradient that 
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enable a greater participation of strain hardening, so that sections may sustain their plastic 
capacity along larger rotations. 

 
Figure 21: Rotation capacity as influenced by L / h ratio for square, hot-finished sections in 3-point bending 

(S235) 

Also, it is well-known that buckled regions – at mid-span for 3-point configurations – are of 
nearly constant length but shall be associated to relatively smaller yielded areas thanks to the 
moment gradient and the restraints from elastic adjacent segments. Therefore, specimens with 
a steep moment buckle at later stages and provide a greater amount of deformation capacity, 
which is precisely what the numerical results show. This observation was also evidenced bot 
experimentally and theoretically by Ricles et al. (1998), Lay et al. (1967), Kuhlmann (1989) or 
Wang et al. (2016). Since both influences shall be involved in the definition of Rcap, dependency 
of the rotational capacity on length is obvious, and deformations caused by local buckling shall 
have more importance for short span beams. 

3.5 Effect of yield stress and material strain hardening 

Fig. 22a reports on the results obtained for hot-finished tubes under constant bending moment, 
sorted by steel grade. As can be observed, differences remain negligible, and the influence of 
Fy as included in the calculation of L is seen sufficient. 

  
Figure 22: Influence of steel grade on Rcap (constant moment) – a) Hot-finished sections – Cold-formed sections 

Detailed analysis of these results showed that sections for which 0.35 ≤ L ≤ 0.6 did not reach 
significant levels of strain hardening, and failed slightly before reaching their plastic capacity 
Mpl. This explains the very steep increase of Rcap noted for L < 0.4 sections: for the latter, as 
L decreases, an increasing quantity of fibres gets concerned with yielding, and, given the 
plastic plateau characteristics, rather suddenly reaches high strains, i.e. the amount of ductility 
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rises abruptly, and so does Rcap. It may be mentioned here that Rcap values as high as 50 were 
recorded but are purposely not displayed, for reasons detailed previously. Finally, one may 
notice the higher Rcap values for S355 steel, which are explained by a relative smaller plastic 
plateau length (see Fig. 5) leading “faster” to higher strains. 

Cold-formed tubes exhibited lower levels of rotational capacity since such sections reach lower 
strain levels, owing to the rounded material response. Distinct trends can be observed for the 
various grades, in large extents due to different ultimate-to-yield stress ratio (tangent modulus 
in strain hardening regime). Scattering in the results at low slenderness for a given steel grade 
arises from different post-buckling responses. When L gets higher, local buckling becomes 
prominent and nearly no differences between steel grades are visible, as all materials share the 
same Young’s modulus values. Lower Rcap values observed for higher steel grades and very 
stocky sections (L < 0.25) shall be associated to the corners possessing relative lower ultimate 
strains when the yield stress increases, as a result of limiting strains to 2.5% in the corners 
whatever the steel grade (Fig. 6a): u,corner = 22.3 y for S235, u,corner = 14.8 y for S355 and 
u,corner = 11.4 y for S235. Consequently, flat faces of S460 grade shall compensate the corners’ 
lack in carrying strains “faster” than for S235 steel in yielding comparatively more, resulting 
in lower rotational capacities. 

Also, a very different response is evidenced for hot-finished sections compared to cold-formed 
ones, and this is detailed further in the next paragraph. 

3.6 Hot-rolled vs. cold-formed H.S.S. response 

As already shown, cold-formed sections generally reach lower values of Rcap than their hot-
finished counterparts at low slenderness. As a result of different manufacturing processes, the 
material constitutive laws are quite different, namely in terms of (i) strain hardening reserves 
and (ii) the presence of a plastic plateau for hot-rolled sections. 

 
Figure 23: Hot-rolled vs. cold-formed rotation capacity (constant moment) 

Fig. 23 indeed shows that for L > 0.4, preponderant strain hardening reserves in cold-formed 
sections allow for higher rotational capacities, while the plastic plateau underpins the very high 
Rcap values for L > 0.4 – Note in particular the amount of high Rcap values (Rcap > 20) for hot-
formed sections. Consequently, a proposal for an alternative, slenderness-based criterion to 
allow for plastic analysis shall make a difference between hot-finished and cold-formed H.S.S. 

3.7 Assessment of L-based criterion 

Several key parameters with respect to the Rcap = f°(L) relationship being identified, the present 
paragraph presents a series of such design equations, for various configurations and cases. 
Figs. 24a and 24b first show examples on how such design equations have been derived in the 
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case of hot-finished tubes. As a result of the high slopes observed, a log scale was found more 
adequate, see Fig. 24a. Then, linear regression analysis allowed to capture the average slope of 
the results, and adequate shifting permitted the proposal of a lower bound, safe-sided 
expression. Fig. 24b plots the comparison of the obtained equation with the F.E. results in usual 
Rcap-L axes. For sake of conciseness, all design equations developed are summarised in 
adequate tables in Section 4 – Table 1 for hot-finished H.S.S. 

  
Figure 24: Design equations for hot-finished H.S.S. under constant moment 

Two limits have usually been associated to these equations: in the present case, an Rcap = 15 
upper bound limit was fixed so as to restrain the allowable strains and fulfil Eurocode 3 material 
specifications (2005). Also, a L = 0.53 limit was established under the assumption that sections 
potentially considered in a plastic analysis shall show capable of reaching at least 95% of their 
plastic capacity, otherwise plastic redistributions are deemed impossible. Besides, in the 
particular example of Fig. 24b, a relative slenderness L ≤ 0.38 is seen to be necessary to fulfil 
an Rdem ≥ 3 requirement. 

A similar approach was followed for deriving design expressions for cold-formed sections. 
However, due account for (i) lower rotational capacities and (ii) different trends (and slopes) 
was taken, and two design sets were proposed. 

  
Figure 25: Design equations for cold-formed sections under constant moment – a) Fully detailed 

method – b) Semi-detailed method (single curve) 

A refined, accurate and realistic set of design equations was first proposed, and is summarized 
as “Method 3: fully detailed method” in Table 2. It accounts for both the ascending then 
descending trends observed (Saloumi 2016), and remains lower-bounded. Fig. 25a confronts 
the proposed equations to the numerical results and shows a general safe, good agreement. In 

ln(L) [-]
-1.4 -1.2 -1.0 -0.8 -0.6 -0.4

ln
(R

ca
p)

 [
-]

-1

0

1

2

3

4
S235 (Fy = 235 N/mm2)

S355 (Fy = 355 N/mm2)

S460 (Fy = 460 N/mm2)

Best fit
Proposal (lower bound)

ln( ) 5.2 ln( ) 3.9cap LR   

ln( ) 5.2 ln( ) 3.2cap LR   

L  [-]
0.0 0.2 0.4 0.6 0.8

R
ca

p 
[-

]

0

5

10

15

20
Rcap = 3

Proposed L limit for Rcap = 3

S235 (Fy = 235 N/mm2)

S355 (Fy = 355 N/mm2)

S460 (Fy = 460 N/mm2)

Proposed design curve

15capR 

(upper bound)

5.2

0.02
cap

L

R




0.38L 

0.53L 

L [-]
0.0 0.2 0.4 0.6 0.8

R
ca

p 
[-

]

0

5

10

15

20
Rcap = 3

Proposed L limit for Rcap = 3

S235 (Fy = 235 N/mm2)

S355 (Fy = 355 N/mm2)

S460 (Fy = 460 N/mm2)

Proposed curve (S235)
Proposed curve (S355)
Proposed curve (S460)

0.46L 

0.53L 

L [-]
0.0 0.2 0.4 0.6 0.8

R
ca

p 
[-

]

0

5

10

15

20
Rcap = 3

Proposed L limit for Rcap = 3

S235 (Fy = 235 N/mm2)

S355 (Fy = 355 N/mm2)

S460 (Fy = 460 N/mm2)

Proposed design curve
Data considered

12.5capR 

7.5capR 

5.5capR 

3.15

0.36
cap

L

R



0.46L 

0.53L 



 18

the particular case of cold-formed hollow sections, a less restrictive L ≤ 0.46 is shown to be 
required for satisfying an Rdem ≥ 3 condition. 

Alternatively, a more simplified approach consisting in a single equation complemented by 
adequate upper bounds was derived – see Fig. 25b and Table 2. The latter is comparable to the 
hot-finished H.S.S. case but is upper bounded by Rcap values that depend on the steel 
grade – Note that less data points were considered for calibrating the design curve, see Fig. 25b. 

As detailed in § 3.3, different expressions ought to be considered for beams under 3-point 
bending load cases, and lower Rcap = f°(L) relationships have been derived accordingly. Fig. 26 
shows an example for these situations, where different upper bound limits have been proposed 
depending on the steel grade, and a L = 0.53 limit is however maintained. 

 
Figure 26: Design equations for hot-finished H.S.S. under 3-point bending 

Eventually, Figs. 27a and 27b plot the proposed equations for cold-formed sections in 3-point 
bending. Likewise, two different approaches have been proposed, and are summarized in 
Table 2. Again, a limit L = 0.53 was shown adequate and kept for full consistency within the 
various design equations recommended. As for the semi-detailed approach with a single curve, 
only sections characterised by L > 0.4 values have been accounted for in the derivation of the 
design equation. Again, individual upper bounds Rcap limits have been fixed as a function of 
the steel grade, albeit at lower values than for the case of constant bending moment. 

  
Figure 27: Design equations for cold-formed sections under 3-point bending – a) Fully detailed 

method – b) Semi-detailed method (single curve) 
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4 Summary of recommendations 

4.1 Hot-finished sections 

Table 1 gathers the various design equations developed for hot-finished H.S.S. So-called 
“Method 1” refers to the simplest L-based criterion ensuring that the section possesses a 
minimum Rcap = 3 reserve, capable of satisfying Eurocode 3’s underlying Rdem ≥ 3 requirement 
(1989). The – recommended – Method 2 provides more accurate and specific Rcap expressions, 
for different yield stresses and different load cases; upper bounds as well as “guaranteed” 
minimum Rcap values for sections possessing a local slenderness such that L ≤ 0.53 are also 
indicated. 

Table 1: Design recommendations for hot-finished sections 

Method 1 (simplest) 

Sections satisfying	L	< 0.38 allow for plastic analysis (ensures Rcap ≥ 3, regardless of Rdem)	

Method 2: detailed method (Rdem is known) 

Load case Yield stress Proposed equation Upper bound 
Min. Rcap 

if L	≤ 0.53 

Constant moment Fy ≤ 460 5.2

0.02
cap

L

R


  Rcap max. = 15 Rcap min. = 0.5 

Moment gradient 
Fy ≤ 355 

5.14

0.0035
cap

L

R


  
Rcap max. = 15 

Rcap min. = 0.09 
355< Fy ≤ 460 Rcap max. = 6 

 

4.2 Cold-formed sections 

In the same way, design proposals for cold-formed tubes are summarized in Table 2, which 
refers to the following distinct methods: 

 A basic, simple, L-based Method 1 criterion; 
 A semi-detailed Method 2 relying on a unique design equation coupled with suitable 

upper bounds (see § 3.7); 
 A more refined and detailed Method 3 that better accounts for the particular shapes of 

the Rcap = f°(L) relationships reported for cold-formed sections through specific Rcap 
expressions. 

5 Conclusions 

This paper focused on proposing alternative criteria to allow for plastic analysis in the particular 
case of steel H.S.S. profiles. These criteria consist in providing relationships between the 
section’s rotational capacity Rcap and its local relative slenderness L that include the influence 
of key parameters such as the steel grade, load distribution and fabrication process. They have 
been derived from hundreds of numerical results, based on non-linear shell F.E. models 
carefully validated against more than 50 bending tests. It was shown that several other 
parameters such as the height-to-width h / b aspect ratio or the steel grade were not of 
significant influence and could be avoided in the proposed design expressions. Hot-finished 
sections were shown to exhibit deeply increasing Rcap values when L decreases, as a result of 
the plastic plateau in the material law, whatever the steel grade. In contrast, cold-formed tubes 
displayed quite more limited rotational capacities at low slenderness that depend on the material 
grade, but higher ones for 0.4 ≤ L ≤ 0.6 which corresponds to the compact sections range, 
owing to strain hardening effects. Eventually, the proposed design equations are summarized 
in code-ready tables that suitably complement the recently-developed O.I.C. design approach. 
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Table 2: Design recommendations for cold-formed sections 

Method 1 (simplest) 

Sections satisfying	L	< 0.46 allow for plastic analysis (ensures Rcap ≥ 3, regardless of Rdem)	

Method 2: semi-detailed method (Rdem is known)	

Load case Steel grade Proposed equation Upper bound 
Min. Rcap 

if L	≤ 0.53 

Constant moment	
S235 

3.15

0.26
cap

L

R


 	
Rcap max. = 12.5 

Rcap min. =1.9	S355 Rcap max. = 7.5	
S460 Rcap max. = 5.5	

Moment gradient 

S235 

3

0.06
cap

L

R


  
Rcap max. = 4.5 

Rcap min. =0.4 S355 Rcap max. = 2.5	

S460 Rcap max. = 1	

Method 3: fully detailed method (Rdem is known) 

Load case Steel grade Proposed equation 
Upper bound: 

L	≤ 0.1 

Min. Rcap 

if L	≤ 0.53 

Constant moment 

S235 5.2

0.33

1

1

0.06525

cap
L
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R







 
Rcap max. =11.7 Rcap min. =1.6 
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Rcap max. =6.4	 Rcap min. =1.6	
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1
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Rcap max. =4.4	 Rcap min. =1.6	

Moment gradient 

S235 4
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Rcap max. =4.0 Rcap min.=0.4 
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