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Abstract 
This paper presents an innovative approach for design of planar steel frames composed of 
prismatic and/or nonprismatic members. The method uses an inelastic eigenvalue buckling 
analysis configured with column, beam and beam-column inelastic stiffness reduction factors 
derived from the ANSI/AISC 360-16 Specification provisions to evaluate the member overall 
buckling resistances. The resulting procedure provides a relatively rigorous evaluation of all 
member strength limit states accounting for moment and axial force variations along the member 
lengths, nonprismatic geometry effects, general out-of-plane bracing conditions, and beneficial 
end restraint from less critical adjacent unbraced lengths and/or from end boundary conditions. 
The approach uses a pre-buckling analysis based on the AISC Direct Analysis Method to estimate 
the in-plane internal forces, including second-order effects. Given these forces, a buckling solution 
is conducted to evaluate the overall member stability. Other limit states are addressed by cross-
section strength checks given the computed internal second-order analysis forces. Calculations 
from this approach are compared with results from recent experimental tests.  
 
1. Introduction 
In recent years, much progress has been achieved in the application of AISC and AASHTO design 
criteria toward the efficient design of steel frames using nonprismatic members. The current state 
of the art is captured in the second edition of AISC Design Guide 25 (DG25) (White & Jeong 
2019). In addition to discussing more traditional elastic design methods and their associated 
“manual” calculations, DG25 provides guidance for application of inelastic nonlinear buckling 
analysis (INBA) procedures to isolated member unbraced lengths. However, further advantages 
can be realized by applying INBA tools to the assessment of entire planar frame structural systems. 
This paper provides an overview of the INBA calculations and illustrates the benefits of this “high 
end” application of the INBA procedures. Recommended INBA calculations are applied to isolated 
critical unbraced lengths as well as to the full test members from recent experimental tests 
conducted by Smith et al. (2013). 
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Specifically, the recommended INBA approach accounts for the effects of: 
 Double- and single-symmetry of member cross-sections,  
 Single and multiple linear web taper, as well as general continuous variations in the cross-

section dimensions along the member lengths,  
 Steps in the cross-section geometry, associated with changes in plate dimensions, 
 Any combination of compact, noncompact and slender flanges and/or webs, pertaining to 

member flexural resistance,  
 Any combination of slender and/or nonslender cross-section plate elements, pertaining to 

member axial resistance,  
 Any combination of equal or unequal spacing of out-of-plane lateral bracing on one or both 

flanges, as well as torsional bracing such as from diagonal members framed between the inside 
flanges of frame members and outset girts or purlins of wall or roof systems, 

 End restraint in critical unbraced lengths due to continuity with adjacent less critical unbraced 
lengths and/or due to physical boundary conditions,  

 The combined influence of flexure and axial loading, and 
 Load height of transverse loads applied along the member lengths.  
 
These INBA capabilities are implemented within the software system SABRE2 V2 (White et al. 
2019). Tools such as SABRE2 eliminate the need for tedious and relatively approximate manual 
calculations of Cb factors, accounting for moment gradient and load height effects, and effective 
length factors, K, accounting for column and beam end restraint effects. 
 
2. INBA methodology 
The following sections explain the net stiffness reduction factors (SRF) employed within the 
recommended INBA approach. These factors, derived from the AISC member resistance 
equations, are summarized for the cases of axial compression only, flexure only, and combined 
flexure and axial compression. The corresponding equations are presented in the following 
sections in the context of the AISC Load and Resistance Factor Design (LRFD). These SRFs are 
applied cross section by cross section within a general-purpose frame finite element based on thin-
walled open-section beam theory. The frame element has seven dofs per node – three translations, 
three rotations and one warping dof – and is formulated to address the influence of nonprismatic 
geometry (Jeong & White 2015). The reader is referred to White et al. (2016), Toğay & White 
(2019) and White & Jeong (2019) for further calculation details. 
 
2.1. Stiffness reduction factor for axial compression only 
The stiffness reduction factor implicit within the AISC Specification (AISC 2016) Chapter E axial 
compression strength curve may be written as 

 0.877 /c a e gSRF A A    (1) 

where c is the resistance factor for axial compression, taken as 0.9 in AISC LRFD,  
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 1.0 otherwisea   (3) 

In these equations, Pu is a multiple of the member required LRFD axial resistance Pu, cPye is the 
factored yield strength of the effective cross-section under axial compression, Ae is the effective 
cross-section area based on the internal axial force Pu, and Ag is the cross-section gross area.  
 
As shown by White et al. (2016) and White & Jeong (2019), when the SRF given by Eq. 1 is 
applied to the section rigidities and a buckling solution is obtained at a multiple of the applied load 
, Pu for a member subjected to pure axial compression is in effect a rigorous calculation of the 
AISC factored design capacity cPn. These solutions include basic prismatic simply-supported 
columns, where Pu = cPn reproduces the exact result from the column resistance equations with 
K = 1. In addition, they include more sophisticated solutions involving general end restraint 
conditions, continuity with less critical adjacent unbraced lengths, variations in internal axial force 
along the member length, and any type of lateral and/or torsional bracing such as lateral bracing 
offset from the centroidal or shear center axis.  
 
2.2  Stiffness reduction factor for flexure only 
The stiffness reduction factor implicit within the AISC Specification Chapter F I-section flexural 
resistance equations may be written as 

 b pg ltbSRF R    (4) 

where b is the resistance factor for flexure (0.9 in AISC LRFD), Rpg is the bend buckling factor 
for slender-web members, equal to 1.0 if the web is compact or noncompact, and ltb is the base 
lateral-torsional buckling (LTB) stiffness reduction factor. The factor ltb may be expressed as  
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for compact- and noncompact-web I-sections, where m = Mu/Myc, and where  
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 (6) 

and 

 2 /xc oX S h J  (7) 

In the above equations, FL is the stress limit beyond which the inelastic LTB limit state applies 
under uniform bending, and Fyc is the yield strength of the flange in flexural compression. In 
addition, Mu is a given multiple of the required LRFD moment Mu, and Myc is the yield moment 
to the compression flange. The following terms are as defined in the AISC Specification: J  = the 
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cross-section St. Venant torsion constant; Lr = the limiting unbraced length for inelastic LTB under 
uniform bending; Lp = the limiting unbraced length corresponding to the LTB “plateau” strength 
(i.e., compression flange yield (CFY) strength) under uniform bending; Rpc = the web plastification 
factor; Sxc = the elastic section modulus to the compression flange; ho = the distance between the 
centroids of the I-section flanges; and rt = the effective radius of gyration for LTB. 
 
For slender-web I-sections, the following simpler form applies for the base LTB factor: 
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 (8) 

where c is the coefficient in the equation for Lp, equal 1.1 for general welded I-section members 
in the current AISC Specification.  
 
For all I-section members, when m < RpgFL/Fyc, the base LTB stiffness reduction factor is 

 1.0ltb   (9) 

As demonstrated by White et al. (2016) and White & Jeong (2019), when the SRF given by Eq. 4 
is applied to the section rigidities EIy, ECw and GJ and a buckling solution is obtained at a multiple 
of the applied load , Mu for a member subjected only to bending is in effect a rigorous 
calculation of the AISC cMn for LTB. This includes basic prismatic simply-supported beams 
subjected to uniform bending, where the buckling solution reproduces the exact result from the 
AISC LTB resistance equations for Cb = 1. In addition, it includes more advanced solutions 
involving general nonprismatic geometry, complex end restraint conditions, continuity with less 
critical adjacent unbraced lengths, general variations in internal moment along the member length, 
transversely applied loads at a specified height within the cross-section, and any type or 
combination of lateral and/or torsional bracing. 
 
In Eqs. 5, 6 and 8, the term m may be expressed as 

 max
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 (10) 

where 

  min , ,max nCFY nFLB nTFYM M M M   (11) 

is the maximum possible cross-section resistance based on the separate limit states of compression 
flange yielding (CFY), flange local buckling (FLB), or tension flange yielding (TFY). 
 
The SABRE2 software (White et al. 2019) implements the cross section based CFY, FLB and TFY 
yielding checks from the Specification, in addition to the fundamental LTB resistance checks, 
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which are captured by inelastic buckling analysis. If the maximum cross-section resistance bMmax 
is reached at any location prior to the onset of LTB, the available member resistance is limited by 
this cross-section resistance. With the exception of checking bMmax, the INBA procedure for 
beams is essentially the same as the calculation of the column buckling load in Section 2.1. 
 
2.3 Stiffness reduction factors for combined axial tension or compression and bending 
As discussed in the introduction, INBA methods can be applied to assess the strength of any type 
of I-section member subjected to in-plane bending and axial load, accounting for member overall 
stability limit states and their potential interaction with cross-section based limit states. The INBA 
procedures accomplish this in a more rigorous manner than can be achieved by routine application 
of Specification resistance equations. For members subjected to combined axial loading and 
flexure, this is achieved by a straightforward interpolation between the SRFs for axial loading 
discussed in Section 2.1 and the SRFs associated the AISC flexural resistance equations in Section 
2.2. The equation for the interpolated beam-column inelastic stiffness reduction factor is 
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Furthermore, in the equations for a and ltb, the unity check (UC) value from the following cross-
sectional strength interaction equations is substituted for Pu / cPye and Mu / bMmax: 
 For cross sections in which all the plates are nonslender under axial compression and compact 

under flexural compression:  
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 For cross sections with slender plates under axial compression, and/or with noncompact or 
slender plates under flexural compression: 
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The net stiffness reduction factors from Eqs. 12 and 13 are applied to the rigidities EIy, ECw and 
GJ on a cross-section by cross-section basis. Toğay & White (2019) demonstrate the accuracy of 
the above interpolation for a comprehensive suite of prismatic I-section members. Further details 
regarding the corresponding INBA calculations are discussed in (White et al. 2016). 
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2.4 Rationale for the specific recommended INBA approach 
There are numerous ways to characterize the stiffness of steel structures for inelastic nonlinear 
buckling analysis (INBA). These range from refined plastic zone analysis, in which the detailed 
spread of plasticity is tracked through the member cross sections and along their lengths as the 
loads are increased, including consideration of residual stress and geometric imperfection effects, 
to other phenomenological approximations comparable to the SRFs discussed above. 
 
The INBA calculations using the above SRFs provide results that are fully consistent with the 
application of the AISC Direct Analysis Method and the Specification member resistance 
equations for basic prismatic members, and they extend the application of the AISC provisions to 
general member geometries, loadings, end restraints, and bracing conditions. Solutions employing 
refined plastic zone analysis arguably have the greatest level of rigor due to their ability to directly 
capture the influence of any specified member cross-section geometry, residual stresses and 
geometric imperfections. However, appropriate nominal residual stresses and geometric 
imperfections must be specified, and the results from plastic zone analysis never match precisely 
with predictions from the Specification equations in cases where a close or exact match might be 
expected or desired. The AISC Specification equations are a “codified” fit to member strengths 
considering these effects for a general range of steel structures. The above SRF values capture this 
fit for basic cases, and allow extension of the Specification rules to more general structures.  
 
3. Potential improvements in AISC Specification resistance equations 
The AISC Specification resistance equations (AISC 2016) have many excellent qualities in terms 
of their ability to represent the strength limit states of steel I-section members and frames. 
However, there are a number of potential improvements to these provisions that may further 
enhance their ability to capture these strength limit states. These improvements are summarized 
below. Additional details are explained in Subramanian et al. (2018) and Toğay & White (2019). 
Since the SRFs within the INBA approach depend on the underlying Specification resistance 
equations, these potential improvements are important in demonstrating the merits of the approach. 
 
3.1 Lateral-torsional buckling strength improvements 
For major-axis bending of welded I-section members, Subramanian et al. (2018) have 
demonstrated that the reliability index, estimated based on existing experimental data, is somewhat 
lower than the target value of  = 2.6. They recommend that the term FL, defined as the stress limit 
beyond which the inelastic LTB limit state applies under uniform bending, should be taken as 

 0.5L ycF F   (17) 

for these member types. In addition, they recommend that the limiting unbraced length 
corresponding to the “plateau” strength under uniform bending should be taken as 

 0.8 /p t ycL r E F  (18) 

for welded I-sections, when end restraint effects are not considered in the LTB evaluation, and that 

 0.63 /p t ycL r E F  (19) 
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when end restraint is considered explicitly. Equations 17 and 18 are effectively the same as the 
original recommendations for slender-web plate girders by Cooper et al. (1978). It should be noted 
that in the recommended FLB calculations discussed below, the corresponding FL should still be 
taken as 0.7Fyc as in the current AISC Specification. 
 
3.2 Web bend buckling strength improvements 
Subramanian et al. (2018) have also recommended that the noncompact-web limit in the AISC 
Specification, rw, which establishes the transition between noncompact and slender web behavior, 
and influences the calculated values for the web plastification factor, Rpc, and the web bend 
buckling factor, Rpg, should be modified to 

 /rw rw ycc E F  (20) 

where crw = 3.1 + 5/aw, but not less than 4.6 nor larger than 5.7, aw = 2Dcy tw /bfc tfc, bfc and tfc are 
the width and thickness of compression flange respectively, Dcy is the depth of the web in 
compression at the nominal onset of compression flange yielding, and tw is the thickness of the 
web. Equation 20 recognizes that I-section members with relatively small compression flanges 
tend to exhibit a reduction in the effective noncompact web limit. 
 
3.3 Improved characterization of compression flange local buckling resistance 
The AISC FLB provisions tend to underestimate I-section member flexural resistances when the 
compression flange becomes increasingly slender. This is because the AISC equations do not 
account for the reserve local post-buckling capacity. The following calculations consider an 
effective width of the compression flange to account for its local post-buckling strength.  
 
For sections with a slender compression flange in flexure: 
1) The flange effective width is calculated directly given the flange elastic buckling stress  

 2
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  (21) 

and taking the compression flange stress within the effective width as Fyc at the flexural 
strength limit, where kc is the flange local buckling coefficient defined by AISC (2016). The 
terms Fe and Fyc are substituted into Winter’s unified effective width equation 
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2) The location of the effective cross section’s neutral axis at nominal initial yielding of the 
compression flange, relative to the inside of the compression flange, Dcye, and the 
corresponding yield moment, Myce, are determined.  

3) The FLB resistance, considering the flange local post-buckling strength, is calculated as 
RpgMyce, where Rpg is less than 1.0 for slender-web sections but is equal to 1.0 for compact- 
and noncompact-web sections. 
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For sections having a noncompact flange in flexure: 
1) The effective width reduction based on the noncompact flange slenderness limit, rf, is applied 

to the compression flange, regardless of the actual flange slenderness, and the corresponding 
resistance Myce(r) = RpgMyce(r) is determined using the procedure explained above. This 
establishes an “anchor point” corresponding to f = rf.  

2) A linear interpolation is then employed between (pf, Mmax.FLB) and (rf, Myce(r)), where 
Mmax.FLB is the plateau resistance for FLB, equal to Mp for a compact-web section, RpcMyc for a 
noncompact-web section, and RpgMyc for a slender-web section, where Myc is the yield moment 
to the compression flange for the gross cross-section.  

 
3.4 Improved handling of tension flange yielding 
When a singly-symmetric section with the larger flange in compression is subjected to flexure, the 
current AISC flexural resistance may be governed by TFY. If the section has a slender web, the 
TFY resistance is equal to the moment at the first nominal yielding of the tension flange. This 
estimate can be quite conservative. Sections with Myt < Myc, where Myt is the moment at first 
nominal yielding of the tension flange, can have substantial inelastic reserve strength associated 
with distributed yielding in flexural tension. The conservative TFY calculation can be eliminated, 
and the Specification can be substantially shortened, by calculating Myc and Myce as the “true” yield 
moments to the compression flange, considering the early yielding in tension for these section 
types. It is recommended that these true yield moments to the compression flange should be used 
in the limit state calculations of the Specification, with the exception that the “useable” value of 
Mp should be limited to 1.6 min(Myc, Myt) where Myc and Myt are the true nominal yield moments. 
In addition, it is recommended that the depth of web in compression at the first nominal yielding 
of the compression flange, based on the gross cross section, Dcy, be used in calculating the 
slenderness of the web. That is, w is defined as 2Dcy /tw. Figure 1 shows an example stress 
distribution at Myc for a homogeneous I-section of this type. For homogeneous cross-sections, 
relatively simple closed form equations are available for Dcy and the “true” Myc. 

Fy

Fy

bfc x tfc

bft x tft

h x tw

dcy

dcy

h – 2dcy + tfc

Dcy

 

Figure 1: Stress distribution associated with the “true” yield moment Myc and the corresponding depth of the web in 
compression, Dcy, for a homogeneous cross-section with Myt < Myc. 

 
3.5 Calculation of flexural resistance for members with unequal flange and web yield strengths 
Measured yield strengths generally can be different for both flanges and for the web in 
experimental tests. Measured yield strengths on thinner web material are often larger than the 
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flange yield strengths. The measured yield strengths should be employed when comparing strength 
predictions to experimental test results. In addition, in bridge construction, it is common to use 
“hybrid” I-girders, having a lower grade steel for the top flange and web combined with a higher 
grade steel for the bottom flange. To accommodate all of these considerations, it is important to 
define the calculation of the flexural resistance for any combination of plate yield strengths. The 
recommended extensions to the AISC I-section member provisions are as follows: 
 The compression flange yield strength, Fyc, should be employed for Fy in the AISC provisions 

everywhere Fy appears either within the context of the compression flange, or within the 
context of assessing any aspects related to structural stability. This is an established precedent 
in (AASHTO 2017) and elsewhere. It should be noted that the flange in flexural compression 
depends on the sign of the bending moment.  

 The actual or specified yield strengths of the compression and tension flanges, Fyc and Fyt, and 
of the web, Fyw, should be employed in calculating the plastic moment, Mp, regardless of the 
relative magnitude of the different strengths, except Fyw should not be taken larger than 1.2 
min(Fyc, Fyt). This is based on AASHTO (2017) Article 6.10.1.3 and is intended to avoid 
counting on web yield strengths beyond the limits that have been evaluated experimentally. 

 The “true” yield moments to the compression flange, Myc and Myce as applicable, should be 
calculated from a strain-compatibility analysis considering any early yielding in the web or 
tension flange due to different yield strengths, and/or the neutral axis being closer to the 
compression flange for sections with a larger compression flange. The above 1.2 min(Fyc, Fyt) 
limit on the useable Fyw also should be applied in this calculation. These moments should be 
employed where the corresponding “true” yield moments appear within the calculations 
discussed above. Evaluation of the true Myc and Myce values is straightforward to program, and 
SABRE2 (White et al. 2019) implements this calculation. The algorithm sets the strain at the 
extreme fiber of the compression flange to Fyc /E and the section curvature is varied until a 
stress distribution is obtained for which the total cross-section axial force is zero. 

 
4. Comparison of INBA predictions to experimental results 
Smith et al. (2013) have conducted 10 experimental tests evaluating the LTB behavior of a range 
of web-tapered I-section members. The primary aim of these tests was to gain a better 
understanding of the cyclic LTB behavior of these types of members.  However, all of the members 
were loaded past their flexural capacity within an initial monotonic half-cycle of the loading; 
therefore, these tests are also valuable for gaging the ability of static monotonic strength 
predictions. Smith et al. provide an overall positive assessment of the ability of the first edition of 
DG25 (Kaehler et al. 2011) to predict the LTB resistance under static monotonic loading, 
contingent upon the consideration of end restraint effects from support conditions and less critical 
adjacent unbraced lengths using elastic eigenvalue buckling calculations. The following 
discussions complement the assessments by Smith et al. by comparing INBA calculations based 
on the current AISC Specification, as well as the AISC Specification with the improvements 
discussed in Section 3, to the experimental results. 
 
The overall configuration of the experimental tests conducted by Smith et al. (2013) is illustrated 
in Fig. 2. The specimens were tested in a horizontal orientation, simulating the rafter of a metal 
building frame, with moment applied at the north end of the specimen via an end-plate connection 
to a vertical loading column. The south end of the specimens was flexurally and torsionally simply 
supported, i.e. major- and minor-axis bending rotations, warping of the flanges, and longitudinal 
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displacements were unrestrained, but torsional rotation and vertical and out-of-plane lateral 
displacements were prevented. Minor-axis bending and torsional rotations, warping of the flanges, 
and out-of-plane lateral displacements were effectively prevented at the north end of the specimens 
at the end plate connection to the loading column, and longitudinal and vertical displacements 
were restrained by a pin support below the knee at the bottom of the column. Flange-level out-of-
plane lateral bracing was provided at different locations along the top and bottom flanges of the 
specimens. A typical conceptual arrangement of these lateral braces is indicated by the x symbols 
on the drawing. Two of the 10 tests included a constant axial load applied to the specimens. This 
was accomplished by tensioning of rods between the north side of the column at the knee of the 
frame and the south end of the specimen. 

 
Figure 2: Test configuration, adapted from Smith et al. (2013).  

 
Table 1 summarizes all the pertinent geometry and material attributes of the test specimens. Three 
groups of tests were conducted as denoted by the test names: 
1) The CF tests had constant taper throughout the test length and the critical unbraced length for 

LTB was the first unbraced length adjacent to the column. 
2) The CS tests had constant taper throughout the test length, but the critical unbraced length was 

the second unbraced length from the column.  
3) The PF tests had a pinch point within the critical unbraced length, which was adjacent to the 

column. Test PF1 had a pinch point at the south end of its critical unbraced length while test 
PF2 had a pinch point at an intermediate location within its critical unbraced length.  

Clearly there is substantial complexity in the combined overall configuration of the member 
geometry and plate yield strengths, and the bracing and end restraint conditions in these tests. 
 
Table 2 summarizes the test to predicted strength ratios and the flexural failure modes identified 
from INBA solutions conducted using SABRE2. This table shows the analysis results using the 
current AISC Specification provisions as well as the AISC provisions with the potential 
improvements defined in Section 3.  (The different plate yield strengths are included in the current 
AISC calculations as specified in Section 3.5, except that the AASHTO (2017) hybrid cross-
section factor, Rh, is employed along with the current calculations as a commonly employed 
approximation, rather than calculate the “true” yield moments; the reader is referred to (AASHTO, 
2017) for the specific equations.) In addition, the INBA calculations are performed in two ways: 

x x x

xx
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Table 1.  Summary of specimens tested by Smith et al. (2013).  
Test^ bf 

(in.) 
tf 

(in.) 
h1

# 
(in.) 

tw 
(in.) 

 
(o) 

Flg. Web Lb
  * 

(in.) 
 Fyf 
(ksi) 

 Fyw 
(ksi) 

CF1 6 0.369 
0.498 

12 0.185 4.58 C S 84 (42, 42), 48, 92.5 62.5 
60.0* 

61.9 

CF2 & CF2-A 6 0.370 12 0.186 4.58 C S 84 (42, 42), 48, 92.5 57.6 71.9 
CS1 & CS1-A 6 0.254 8 0.245 5.60 N N 24, 120 (60, 60), 80.5 61.6 62.1 
CS2 5 0.257 12 0.185 4.58 N S 16, 120 (60, 60), 88.5 69.8 61.9 
CS3 6 0.369 

0.318 
0.318** 

12 0.185 4.58 C/ 
N 

S 36, 108 (54, 54), 80.5 62.5 
69.8 
67.0** 

61.9 

CS4 6 0.307 12 0.186 
0.166^^ 

4.58 N S 24, 120 (60, 60), 80.5 54.5 
 

71.9 
66.7^^ 

PF1## 6 0.369 14 0.185 9.46 C S 96.5 (48.25, 48.25), 
41.5, 86.5 

62.5 61.9 

PF2 5 0.310 
0.244 

18 0.184 
0.150 

14.0 C/ 
N 

S 96 (48.5, 47.5), 48, 
80.5 

55.6 
67.9 

57.4 
58.1 

^ The nominal web depth at the end plate is the same, h2 = 30 in., for all of the tests.  
# Web depth at the simple support, at the right-hand end of the test.  
The unbraced lengths for the top flange (in flexural compression) are the values other than the ones listed in 
parentheses. 

*The unbraced lengths for the bottom flange (in flexural tension), are the same as those for the top flange except for 
one segment where an additional intermediate brace is placed on the bottom flange. The brace spacing for the 
segment containing the additional bottom flange brace are listed in parentheses just after the corresponding top 
flange unbraced length. The corresponding top (compression) flange unbraced length is the critical one for lateral-
torsional buckling of the members.  

CF1 is the only linearly-tapered member test that has nominally different top and bottom flange dimensions; the 
first and second values listed correspond to the top and bottom flanges respectively (the top flange is in flexural 
compression). The resulting singly-symmetric section has Myt > Myc, and therefore the nominal onset of yielding 
occurs first at the top (compression) flange.  

C indicates that the flange is compact within the critical unbraced length, N indicates that the corresponding flange 
or web plate is noncompact within the critical unbraced length, and S indicates that the web is slender within the 
critical unbraced length.  

**CS3 has a flange splice in both flanges at 90.2 in. from the end plate; the second and third reported values 
correspond to the top and bottom flange plates to the right of the flange splice. 

^^CS4 has a web splice at 24 in from the end plate; the second reported value corresponds to the web to the right of 
the web splice.  

##PF1 has a linear taper from the end plate down to a pinch point at the brace location at 96 in. from the end plate, 
then a constant web depth of 14 in. to the right of that location; the flange and web plates are the same on each side 
of this pinch point. 

PF2 has a linear taper from the end plate down to a pinch point at the brace location at 48 in. from the end plate, 
then a constant web depth of 18 in. to the right of that location. The top flange plate is thicker within the tapered 
length of the member, resulting in Myt being (slightly) less than Myc and corresponding minor early yielding in 
flexural tension. Also, the web plate thickness is reduced to the right of the pinch point. The second value listed for 
the flange plate thickness corresponds to the flange plates other than the thicker top flange plate within the critical 
unbraced length, and the second value for the web plate thickness corresponds to the web plate to the right of the 
pinch point.   

 
1) The entire test specimen is modeled. This captures the influence of end restraint on the critical 

unbraced length from the less critical adjacent lengths due to continuity across the braced 
points. In addition, the specified end conditions at the end-plate connection to the column 
(minor-axis bending and flange warping fixed) are modeled in these solutions.  
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2) Only the critical unbraced length is modeled. In this case, the common design assumption of 
torsionally simply-supported end conditions (minor-axis bending and flange warping free at 
both ends of the unbraced length) is employed in the SABRE2 solutions. This is the inherent 
assumption associated with the common implicit use of a LTB effective length factor K = 1, 
and the use of just the unbraced length Lb rather than a KLb < Lb for the critical unbraced length 
in design practice.  

 
Table 2.  Test to predicted strength ratios, flexural failure modes identified by SABRE2, and moment capacities for 
the tests conducted by Smith et al. (2013).   

Test/ 
Sum. 
Stats. 

Entire member modeled Only critical unbraced length modeled 
Moment 
Capacity 

Mtest
 

(kip-in) 

Current AISC AISC w/ recom. Current AISC AISC w/ recom. 
Test/ 
Pred. 
Strength 

Failure 
Mode 

Test/ 
Pred. 
Strength 

Failure 
Mode 

Test/ 
Pred. 
Strength 

Failure 
Mode 

Test/ 
Pred. 
Strength 

Failure 
Mode 

CF1 0.99 CFY 1.05 LTB 1.10 LTB 1.26 LTB 5606 
CF2 1.09 CFY 1.15 LTB 1.21 LTB 1.36 LTB 5658 
CF2-A* 1.10 CFY 1.11 CFY 1.15 LTB 1.30 LTB 5416 
CS1 0.99 FLB 1.02 LTB 1.25 LTB 1.39 LTB 3755 
CS1-A# 1.05 FLB 1.04 LTB 1.50 LTB 1.53 LTB 3805 
CS2 0.86 LTB 0.96 LTB 1.61 LTB 1.67 LTB 2949 
CS3 1.02 CFY 1.08 LTB 1.12 LTB 1.29 LTB 4750 
CS4 1.01 FLB 1.06 LTB 1.14 LTB 1.32 LTB 3655 
PF1 0.95 CFY 0.98 LTB 1.05 LTB 1.18 LTB 4222 
PF2 0.82 FLB 0.80 FLB 0.82 FLB 0.80 FLB 1663 
Avg. 1.01  1.05  1.24  1.37   
COV 0.07  0.06  0.15  0.11   
Max. 1.10  1.15  1.61  1.67   
Min. 0.86  0.96  1.05  1.18   

* CF2-A had a constant axial compression of 28.3 kips applied throughout the experimental testing. This load was 
applied at 12.5 in. above the bottom of the web at the left face of the column, and at 5.5 in. above the bottom of the 
web at the simply supported end of the specimen. This corresponds approximately to the centroidal depth of the cross-
section along the test length.    
# CS1-A had a constant axial compression of 41.6 kip applied throughout the experimental testing. The stated intent 
was to apply this load at the centroidal depth of the cross-section along the test length.  However, the information 
provided by Smith et al. (2013) indicates that the resultant of the axial load was only at 2 in. above the bottom of the 
web at the simply-supported end of the test in CS1-A.  The load was applied at 12.5 in. above the bottom of the web 
at the left face of the column.  
 The moment capacities from the experimental tests reported here are the values at the deepest end of the critical 
unbraced length as identified by Smith et al. (2013) and by the SABRE2 full member solutions based on the AISC 
provisions with recommended improvements. The corresponding locations in the test specimens are at the deepest end 
of the top flange unbraced length adjacent to the column for the CF tests, and at the deepest end of the second top 
flange unbraced length from the column in the CS tests. In the PF tests, the “controlling cross-section” was identified 
by Smith et al. (2013) as the cross-section at the small end of the critical unbraced length for test PF1, and the cross-
section on the thin-web side of the pinch point splice at the middle of the critical unbraced length for test PF2. In the 
SABRE2 solutions, these are the cross sections that have the largest internal moment relative to the cross-section 
flexural strength, and the corresponding smallest values of the SRF.  
The results for test PF2 are not included in the summary statistics since the strength in this test was governed by a 
local failure at the pinch point.  
 
The INBA solution considering the entire specimen and using the AISC Specification provisions 
with the recommended potential improvements provides the best predictions of the test results, 
giving an average strength ratio of 1.05 along with the smallest coefficient of variation (COV = 
0.06) and a minimum strength ratio of 0.96. In addition, this solution identifies the governing 
failure mode clearly as LTB in all of the tests except CF2-A and PF2. In CF2-A, the LTB failure 
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mode is only slightly more critical than CFY. In PF2, FLB governs for the thinner flange just to 
the south of the pinch point. PF2 exhibited a local failure at the pinch point within the experimental 
test, due to the lack of sufficient capacity of the web to resist the concentrated transverse force 
caused by the change in angle of the top flange plates. It is expected that if a partial-depth bearing 
stiffener had been provided at the pinch point, the predictions would be accurate for PF2. 
 
The INBA solutions using the current AISC provisions give the best prediction of the tests on 
average, with a mean test/predicted strength of 1.01; however, they have a larger COV of 0.07 and 
they give a relatively load test/predicted strength of only 0.86 for test CS2. In addition, the INBA 
solution using the current AISC provisions predicts LTB as the governing failure mode only for 
test PF1. Based on the experimental results, LTB was clearly the dominant failure mode for all the 
tests, with the exception of PF2, as discussed above.   
 
The solutions based on both the current AISC provisions as well as the AISC provisions with the 
recommended potential improvements exhibit significant conservatism when applied only to the 
critical unbraced lengths, assuming torsionally simply-supported boundary conditions at the ends 
of these lengths. The current AISC provisions actually give the more accurate predictions in these 
cases, due to their tendency to predict higher LTB strengths in general for these tests.  
 
Figure 3 shows the buckling modes obtained from SABRE2 for tests CS2 and PF1, using the AISC 
provisions with the potential improvements. The darker arrows in the figure indicate the 
constraints from the end conditions and the intermediate lateral bracing. The light shaded circular 
arrow at the left-hand (south) end of the models shows the applied moment from the loading 
column. One can observe the influence of the warping and minor-axis bending restraint at the left-
hand ends, as well as the effect of the close spacing of the first set of intermediate braces from the 
left-hand end in CS2 (preventing out-of-plane displacement and twist) on the buckled shape.  

 
Figure 3: Lateral-torsional buckling modes for tests CS2 and PF1 obtained from INBA solution based on the AISC 

Specification with the potential improvements discussed in Section 3. 
 
Figure 4 plots the SRF and cross-section unity check (UC) values along the normalized specimen 
lengths for tests CS2 and PF1. The nonlinear variation of the UC for CS2, corresponding to the 
noncritical FLB limit state in this test, is due to the linear taper of the web depth. The smallest SRF 
values for CS2 are at the left-hand end where the cross-section is deepest. However, these SRF 
values occur within the short 0.406 m unbraced length adjacent to the loading column. The CS2 
specimen is critical for LTB within the second unbraced length from the column. Due to sharper 
web taper between the left-hand support and the pinch point at the first brace from the column on 
the top flange, the SRF values for PF1 reduce to a minimum at the pinch point. The UC is equal to 
0.90 at the pinch point in PF1, indicating that the CFY limit state (i.e. the plateau strength for LTB) 

(a) CS2 (b) PF1 
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is close to being reached at this location. Both the CS2 and the PF1 designs could be further 
“tuned” for the given test loading such that the maximum cross-section unity checks would be 
equal to 1.0 at incipient LTB. The maximum UC and minimum SRF values tend to occur at the 
“governing cross-sections” in DG25 (White and Jeong 2019) strength checks based on more 
routine elastic LTB solutions (Slein and White 2019). However, the INBA solutions of the entire 
test members account for the “true” restraint from adjacent less critical unbraced lengths with 
better accuracy than can be achieved using elastic LTB solutions.  
 
The predicted capacities for the experimental tests discussed in this paper are affected only a minor 
extent by the improved handling of the FLB and TFY limit states discussed in Sections 3.3 and 
3.4. Toğay and White (2019) show test simulation solutions that highlight the benefit of these 
improvements. Furthermore, there is evidence from these and other experimental tests that the 
LTB resistance of I-section members fabricated with minimal single-side welding of the flanges 
to the webs may be somewhat larger than characterized by the more generally applicable 
recommendations by Subramanian et al. (2018) listed in Section 3.1. Additional research is needed 
to further evaluate rules for characterization of the LTB resistance of welded I-section members. 

 
Figure 4: Cross-section unity check (UC) and stiffness reduction factor (SRF) values versus the normalized position 
along the length at the LTB strength limit for tests CS2 and PF1, AISC Specification based INBA solution including 

potential improvements discussed in Section 3, c and b taken equal to 1.0.  
 
4. Comprehensive Metal Building Frame Example  
The following example is an extension of one of four comprehensive frame design examples 
presented in Design Guide 25 (White and Jeong 2019). This example demonstrates the ability of 
SABRE2 to address various attributes influencing the strength limit states, including complex 
combinations of bracing, member continuity across braced points, and the reserve strength 
associated with early tension flange yielding in sections having a larger flange in compression.  
 
4.1. Geometry 
Figure 5 shows the elevation view of a representative interior frame of a clear-span building with 
a large span-to-eave height. The frame is symmetric about its ridge. Only its left half of is shown 
in the figure. The frame has a 180 ft span outside-to-outside between outset girt lines, a 20 ft eave 
height and a roof slope of 0.5/12. Unless noted otherwise, the dimensions shown in the figure are 
to points along the outside edge of the column and roof girder webs, which are referred to as the 
design axes. The frame is assumed to have ideally simply-supported base conditions. The girt and 
purlin locations are taken as braced points in the out-of-plane direction on the outside flange. In 
addition, the frame members are assumed to be prevented from twisting (i.e., both flanges are 
braced in the out-of-plane direction) at the column bases and at the locations having diagonal 
braces between the girts/purlins and the inside flanges. The diagonal braces are indicated by the 
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bold dashed lines. Table 3 lists the cross-section geometries of the frame. All of the web depths 
are measured perpendicular to the design axes.  

 
Footnotes: 
(1) The girt locations are measured from the bottom of the column base plate. 
(2) The outset girts and purlins are 8 in. deep. The corresponding distance to the outside edge of the column web is 8.5 in.  
(3) The first purlin location is measured from the top left corner of the column web.  
(4) The dimension shown is the length along the outside edge of the web, measured from the top left corner to a line perpendicular to the design axis and passing 

through the inside corner of the panel zone at the knee. 
(5) The purlin locations and fabrication segment lengths are measured on-slope along the top edge of the roof girder web.  

Figure 5:  Geometry of clear-span building frame with a large span-to-eave height 
 

Table 3: Cross-section geometry of clear-span building frame with a large span-to-eave height. 

Fabrication 
Segment 

Length 
(ft) 

Outside or Top  
Flg. bf x tf  (in.) 

tw 
(in.) 

Inside or Bottom 
Flg. bf x tf  (in.) 

Starting Web 
Depth h (in.) 

Ending Web 
Depth h (in.) 

A 19.231 10 x 0.50 0.50 10 x 0.50 16 60 
B 19.154 10 x 0.375 0.3125 10 x 0.75 60 49 
C 18.169 10 x 0.375 0.3125 10 x 0.50 49 33 
D 13.065 6 x 0.375 0.2188 6 x 0.625 33 31 
E 13.956 6 x 0.625 0.1875 6 x 0.375 31 33 
F 12.370 8 x 0.75 0.1875 8 x 0.25 33 37 
G 12.655 8 x 0.75 0.1875 8 x 0.25 37 37 

  
At the knees of the frame, the panel zone edges and the member ends are taken as the cross-sections 
perpendicular to the design axes at the inside corner of the panel zone. As a simplified model of 
the knee region, the web and flange plates of the column and roof girder are extended into the 
panel zone to the point of intersection of the member shear center axes. The webs are taken as 60 
in. deep within these short lengths. The finite size and deformation characteristics of the panel 
zones are not otherwise considered. Nodes are positioned at the above member end locations. This 
facilitates the calculation of the member internal forces at these locations.  
 
The frame element reference axes are taken as the shear center axes within the SABRE2 software. 
The shear center is a straightforward reference for modeling of three dimensional member 
responses involving torsion. The influence of the offset of the cross-section centroid from the shear 
center axis is fully accounted for within the SABRE2 frame element formulation.  
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The subject frame is symmetric about its ridge, making the above critical loading also symmetric 
about the ridge. The frame is modeled using an explicit initial out-of-plumbness of 1/500 to the 
right. That is, all the nodes of the analysis model are shifted by y/500 to the right, where y is the 
height above the base. The selected load combination is gravity only. For gravity only load 
combinations, the AISC Specification requires consideration of overall out-of-plumbness frame 
imperfections. The selection of out-of-plumbness to the right is arbitrary. Both the left and the 
right halves of the frame must be designed for the same maximum load effects.  
 
In addition, the most effective solution for this frame, based on an application of the AISC Direct 
Analysis Method, is to also include an out-of-straightness of the roof girder, corresponding to a 
downward movement of the ridge equal to the span divided by 1000. This allows for direct 
recognition that the predominant aspect of the stability behavior in this structure is the 
amplification of the bending within the roof girder.  
 
4.2. Loading 
The ASD load combination producing maximum positive and negative major axis bending in the 
roof girder is selected to demonstrate the calculations in this example. This is the Dead + Collateral 
+ Reduced Roof Live Load combination. The dead plus collateral load is taken as 7.5 psf along 
the slope of the roof plus the self-weight of the frame. The reduced roof live load is taken as 12 
psf along the slope of the roof. 
 
The self-weight of the purlins and the exterior roof panels, and other miscellaneous steel weight, 
is included within the dead load allowance applied to the roof.  The self-weight of the members is 
included in the structural analysis based on the frame element lengths and areas in the analysis 
model.  
 
The frame is evaluated under ultimate strength conditions using the general-purpose second order 
analysis capabilities within SABRE2. To represent the ultimate strength conditions, the second 
order analysis is conducted at 1.6x the above specified ASD loadings. The resulting internal forces 
are divided by  = 1.6 to determine the corresponding ASD required internal forces. 
 
In summary, the loadings applied to the frame are as follows: 
 As noted above, this frame is an interior frame. The spacing between the frames in the out-of-

plane direction is 25 ft. As such, the resulting purlin loads (ASD) are 2.175 kips downward 
with the exception of the purlins adjacent to the eave struts and the ridge.  

 At the purlins adjacent to the eave struts, the resulting load is 2.007 kips downward, and at the 
purlins adjacent to the ridge, the resulting load is 1.819 kips downward.  

 The corresponding load at the eave struts is 0.919 kips. The location of the eave struts is 
approximated as the outside of the building envelope for these calculations. A resultant 
moment of 0.919 kips x (8.5 in. + 29.922 in.) = 35.31 kip-in is applied at the intersection of 
the column and roof girder shear center axes, which is located 29.922 in. from the outside edge 
of the column web. This moment accounts for the position of the eave strut relative to the 
intersection of the frame element shear center axes.  

 The above loads, as well as the steel self-weight (0.0002836 kip/in3), are multiplied by  = 1.6 
for the analysis at ultimate strength. The resulting internal forces are subsequently divided by 
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1.6 to obtain the ASD required internal forces. The above ultimate strength loads are 3.482 
kips, 3.211 kips, 2.910 kips, 1.471 kips, 56.52 kip-in, and 0.0004537 kip/in3.  

 
The total self-weight of the steel included in the structural analysis is 14.1 kips (a total factored 
load of 1.6 x 14.1 = 22.6 kips) based on the frame element lengths and areas in the structural 
analysis model. The sum of the factored vertical reactions from the structural analysis is 162.9 
kips.  
 
4.3. Frame Analysis Discretization 
A minimum of four frame elements is employed within each of the frame unbraced lengths in the 
out-of-plane direction as shown in Fig. 6. This is necessary for accurate capture of out-of-plane 
buckling within any of the unbraced lengths. The nodal locations of the model are indicated by the 
dark circular symbols within the web depths. The nodes and the lines drawn between them, 
represent the variation of the shear center along the member lengths. Steps in the member cross-
section geometry are represented by short lengths that linearly taper the change in plate dimension. 
The taper is applied within the plate with the larger dimension and is typically taken as a 30 degree 
angular transition on each side of the plate width or thickness. These locations are evident in Fig. 
6 by the abrupt shifts in the shear center axes. There are four locations within each half-span of 
the roof girder that have a discrete change in the cross-section geometry. One can observe a 
significant shift in the shear center associated with these cross-section transitions in fabrication 
segments B and C, C and D, D and E and E and F in the roof girder (see Fig. 5 for the segment 
designations). 

 
Figure 6: Frame analysis discretization of clear-span building frame. 

 
4.4. Summary of Results 
The above frame is evaluated using an Inelastic Nonlinear Buckling Analysis based on the current 
AISC Specification (2016), denoted by INBAc as well as an Inelastic Nonlinear Buckling Analysis 
using the improvements recommended in Section 2 of this paper denoted by INBAr.  
For INBAc, the Applied Load Ratio at the ultimate strength condition is 0.877, meaning that the 
predicted maximum strength of the frame is only 87.7% of the required strength. The strength of 
the frame is governed by the Tension Flange Yielding (TFY) limit state. For INBAr, the governing 
limit state is cross-section yielding under flexure, which is tied to the moment capacity Myc 
associated with Fig. 1 via Eqs. 14 and 15. The LPF value for INBAr is equal to 0.969. This is a 
10.4% increase in the strength of the overall frame relative to INBAc.  
 
The governing buckling mode obtained from the INBAc solution is in-plane sidesway buckling as 
shown in Fig. 7. However, prior to reaching this in-plane sidesway buckling mode, the governing 
TFY limit is reached in the rafter.   
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Figure 7: INBAc buckling mode shape (3D rendered geometry) 

 
A line representation of the buckling mode shape is helpful to convey the behavior (see Fig. 8).  

 
Figure 8: Line representation of the shear center in the INBAc solution buckling mode.  

 
The critical cross-section of the frame, and the overall criticality of the cross-section checks 
throughout the frame, can be evaluated by plotting the Unity Check (UC) values from Eqs. 14 to 
16 throughout the length of the frame members. Fig. 9 shows that the critical section, where UC = 
1.0 and the TFY limit state governs, is located just to the left of the ridge.  

 
Figure 9: Cross-section unity checks (UC) throughout the frame for INBAc 

 
The moment and axial force diagrams at the maximum strength condition in the INBAc solution 
are shown in Figs. 10 and 11. The bending component of the UC equations (Eqs. 14 to 16) is 
dominated by the ratio of the internal moment and the cross-section maximum bending resistance, 
Mmax, at each location along the frame members. Although the largest Mmax (Fig. 12) and the largest 
applied moment occur near the right-hand knee joint, this does not mean that the ratio at this knee 
joint is maximum. The critical cross-section, which is limited by the Tension Flange Yielding 
(TFY) limit state, is in Fabrication Segment G in Table . According to the cross-section properties, 
the section is singly symmetric with Sxt/Sxc < 1.0.  
 
One can observe from the axial force diagram in Fig. 10 that the axial force in the roof girder is 
actually larger than that in the columns. This is due to the relatively large thrust at the foundation 
level caused by the short column height relative to the span length. This results in significant 
second-order amplification of the vertical displacements and moments within the roof girder.  

 
Figure 10: Axial force diagram 

Max UC = 1.0 
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Figure 11: Moment diagram 

 
Figure 12: Mmax diagram 

In the INBAr solution, the maximum resistance is governed by compression flange yielding under 
flexure, which is dominated by the Myc moment capacity associated with Fig. 1. The UC plot for 
this solution is presented in Fig. 13. This figure indicates that the most critical cross-section is now 
located near the right knee of the frame. This cross-section is in Segment C of Table 3, and again 
has Sxt/Sxc < 1.0. The top flange is in tension at this critical location. The INBAr solution recognizes 
that this critical cross-section is able to develop substantial reserve capacity associated with 
yielding within its tension zone.  
 

 
Figure 13: Cross-section unity checks (UC) throughout the frame for INBAr solution 

 
While the INBAc solution indicates a critical sidesway buckling mode, INBAr indicates a critical 
out-of-plane buckling mode as shown in Fig. 14. A top view of the frame is shown in this figure 
using a line representation of the buckled shape. However, similar to the INBAc result, the INBAr 
solution indicates that the strength of the frame is governed by a cross-section limit state. In this 
case, compression flange yielding under flexure governs, combined with axial compression at the 
location marked by UC = 1.0 in Fig. 13. The conservative TFY strength check in the INBAc 
solution is replaced by the more accurate representation shown in Fig. 1.  
   

 
Figure 14: Top view line representation of the shear center at incipient buckling with INBAr 

Max UC = 1.0 

SYM. 
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The in-plane deflected shape from the INBAr load-deflection analysis at the strength condition is 
shown in Fig. 15. The INBAc deflected shape at its strength condition is similar. Both of these 
deflected shapes are dominated by the second-order bending displacements of the roof girder. The 
roof girder vertical displacements are judged to be acceptable under service loads.  

 
Figure 15: INBAr deflected shape at the strength condition (3D rendering) (scale factor = 5) 

 
5. Conclusions 
An Inelastic Nonlinear Buckling Analysis (INBA) approach is recommended that provides a 
fundamental advancement in the design of steel I-section column, beam and beam-column 
members and frames. INBA addresses physical attributes such as moment gradient, load height, 
end restraint, complex bracing conditions, member continuity effects across brace points and 
beam-column strength interactions in general nonprismatic members via a rigorous computational 
framework. This removes the need for tedious and relatively inaccurate manual Cb, K and beam-
column strength interaction calculations. Accurate calculation of these design parameters is 
particularly difficult for frames employing nonprismatic members. The recommended approach 
also incorporates improvements in the characterization of Tension Flange Yielding (TFY) and 
Flange Local Buckling (FLB) limit states, as well as Lateral Torsional Buckling (LTB) strength 
curve improvements that have been proposed in prior research. 
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