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Abstract 

This paper presents an in-depth study on the critical local buckling behavior of thin-walled rectangular 

hollow section (RHS) members subjected to combined axial load and biaxial bending, which 

accounts for the influence of web-flange interaction and small-to-large corner radii. The calculation of 

the half-wavelength leading to the minimum critical bifurcation load is performed by means of a 

Generalized Beam Theory specialization, developed taking advantage of the assumption that the stress 

resultants are uniform along the member length. This assumption makes it possible to obtain semi-

analytical solutions, adopting half-wave sinusoidal amplitude functions for the GBT cross-section 

deformation modes, and leads to an implementation that (i) is able to quickly solve a large number of 

cases and (ii) provides physical insight into the critical buckling mode mechanics, through a shell-like 

stress resultant-based energy criterion, as well as the modal decomposition features of the GBT semi-

analytical solution. The critical buckling coefficients obtained in this work are compared with those 

provided by available analytical expressions and/or currently included in steel design codes, namely 

Eurocode 3 and the North American Specification for Cold-Formed Steel Members. 

 

1. Introduction 

A study concerning the local (plate-like) buckling behavior of rectangular hollow sections (RHS) 

members was carried out by the authors in the framework of the Research Fund for Coal and Steel 

project RFCS-2015-709892 – “Overall-Slenderness Based Direct Design for Strength and Stability of 

Innovative Hollow Sections – HOLLOSSTAB”. This study is motivated by the fact that Part 1-5 of the 

current Eurocode 3 (EC3-1-5 − CEN 2006a) adopts a design approach against local buckling based on 

the effective width concept and employing expressions developed under the assumption that all cross-

section walls are hinged along their internal longitudinal edges − i.e., that each wall may buckle 

independently from the remaining ones. Although this assumption is on the safe side, since the beneficial 

effects of the rotational restraints provided by the adjacent walls is discarded, it may constitute a very 

conservative approach in some cases. Previous work by the authors (Vieira et al. 2018) addressed this 

effect in the context of “straight-edge RHS members”, i.e., RHS members without rounded corners. 

Charts and closed-form formulae were developed for a wide range of loading cases (covering 
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combinations of axial force and biaxial bending), making it possible to calculate web (kw) and flange (kf) 

critical local buckling coefficients, related to the corresponding critical stresses by means of 
 

 σcr=kw
π2E

12(1-ν2)
(

t

hw
)

2

=kf
π2E

12(1-ν2)
(

t

bf
)

2

 ,   (1)  

  
where cr is the local critical stress, E is Young’s Modulus,  is Poisson’s ratio, hw and bf are the web 

height and flange width, respectively, and t is the wall thickness. As expected, these coefficients were 

found to be highly dependent on the (i) cross-section height-to-width ratio (hw / bf) and (ii) member 

loading (or cross-section stress distribution). 
 
Besides the adjacent wall rotation restraint effect, it is also necessary to take into account the influence 

of the rounded corners, which can lead to significant critical local buckling stress increases. Regarding 

this influence, it is worth noting that Marsh (1997) investigated the effect of rounded corners on the 

torsional buckling of angle members and local buckling of square hollow section (SHS) members. In the 

latter case, an analytical solution was derived under the assumption that the buckling mode consists of 

single half-waves along the longitudinal and transverse directions. More recently, Zeinoddini & 

Schafer (2010) investigated the influence of the corner radii on the local strength of cold-formed steel 

members, by means of shell finite element analyses. They showed that using the Effective Width Method, 

based on the flat wall widths (as prescribed in the North American Specification for the Design of Cold-

Formed Steel Structural Members − AISI 2016)), may lead to unsafe designs. This finding led to the 

inclusion, in the Commentary to AISI (2016), of a “reduced k method”, proposed by Robert Glauz4 and 

shown to be more accurate, even for r/t values as high as 20 (r is the corner radius). According to this 

method, the reduced buckling coefficient, termed kR, is given by 
 

 kR= (1.08-0.02
r1

t
) (1.08-0.02

r2

t
) k ≤ k ,   (2) 

 

where r1 and r2 are the corner radii and k is calculated on the basis of the wall flat width. However, as 

noted by Zeinoddini & Schafer (2010), this method does not account for the influence of the b/t ratio 

and, therefore, may also lead to unsafe designs. 
 
This work is intended (i) to provide an overview of the main findings reported by Vieira et al. (2018), 

namely the easy-to-use charts and closed-form analytical expressions to calculate local buckling 

coefficients of straight-edge RHS members subjected to a wide range of loadings, and (ii) to extend 

the previous investigation by accounting for the influence of the rounded corners on the RHS member 

local buckling behavior. Significant attention is paid to fairly small corner radii, which are those more 

commonly found in commercial cross-sections − nevertheless, some new findings concerning RHS 

cross-section members with medium-to-large corner radii are also reported. 
 
The local buckling analyses are performed using a numerical model based on a specialization of 

Generalized Beam Theory (GBT) for RHS members with or without rounded corners. Originally 

due to Schardt (1989), GBT is a thin-walled bar theory that handles cross-section in-plane and out-of-

plane deformation and is based on expressing the cross-section displacements into a linear combination 

of “cross-section deformation modes”, whose longitudinal amplitude functions constitute the unknowns of 

the structural problem under consideration (buckling analysis, in this case). GBT is both an 

efficient and an elegant approach to the structural analysis of prismatic thin-walled members and 
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structural systems, due to its ability (i) to provide accurate and structurally enlightening solutions with just 

a few deformation modes and also (ii) to include or exclude specific effects in a very straightforward 

manner. A detailed account of the fundamentals, capabilities and applications of GBT can be found in 

the list of publications on GBT by the “Lisbon GBT research group”, available at www.civil.ist.utl.pt/gbt 

− moreover, a user-friendly computer program to perform GBT-based buckling and vibration analyses 

of thin-walled members (Bebiano et al. 2018) can be downloaded in this website. 

 

The outline of the paper is as follows. Section 2 describes the GBT-based numerical model developed to 

calculate the critical local bifurcation stresses. In Section 3, parametric studies are conducted for straight-

edge RHS members subjected to both simple and complex loadings, including combinations of axial 

force and biaxial bending. They aim at investigating the influence of the height-to-width and height-to-

thickness ratios on the RHS member local buckling behavior, and also at assessing the importance of 

including “non-Vlasov local deformation modes” in the GBT analyses. The results obtained are 

compared with values currently available in the literature, and also used to plot charts and develop 

approximate analytical formulae to calculate local buckling coefficients. Section 4 addresses the 

influence of the rounded corners for RHS members subjected to several combinations of axial force 

and biaxial bending. In particular, equivalent local buckling coefficients are proposed for members with 

rounded corners, which are subsequently used to develop expressions providing correction 

coefficients that accurately take into account the rounded corner influence. Moreover, a preliminary 

study, concerning SHS (square hollow section) members with increasing corner radii, up to the circular 

tube case, is presented and discussed. Finally, Section 5 summarizes the main conclusions of the work. 
 
 

2. GBT-Based Numerical Model 

The numerical model adopted in this work is based on a GBT specialization specifically developed to 

calculate critical local bifurcation stresses of RHS members subjected to longitudinally uniform stress 

combinations. After identifying the relevant cross-section deformation modes, the computation of 

the critical local bifurcation loadings is addressed − GBT-based semi-analytical analyses are employed 

to perform this task. 

 

2.1 Cross-Section Deformation Modes 

The RHS rounded-edge and straight-edge configurations considered in this work have geometries 

defined by the parameters shown in Figure 1(a). The cross-section global axes are denoted Y and Z, 

and coincide with the major and minor bending axes, respectively. The cross-section is discretized by 

subdividing each cross-section element (web, flange or corner) into equal-length straight walls, as 

illustrated in Figure 1(b): two intermediate nodes per web, one intermediate node per flange, and one 

intermediate node per corner (rounded-edge RHS only). Since the procedures leading to the deformation 

modes are identical for rounded-edge and straight-edge RHS, and for the sake of simplicity, the illustration 

presented next concerns exclusively the straight-edge case. Mid-surface local axes (x, y, z) are defined in 

each wall, which are associated with the displacement components pertaining to each deformation 

mode k: u̅k, v̅k and w̅k, along the longitudinal axis, the cross-section mid-line and the wall thickness, 

respectively − see Figure 1(c). These modal displacement components are expressed as  
 

 uk= u̅k(y)ϕk,x
(x),  

 vk= v̅k(y)ϕk
(x), ,   (3) 

 wk= w̅k(y)ϕk
(x),  

http://www.civil.ist.utl.pt/gbt


 4 

 
Figure 1: (a) Geometry and (b) discretization of a rounded RHS and its straight-edge equivalent, (c) local axes, (d) 

imposed unit displacements and rotations, and (e) deformation mode shapes in the equivalent straight-edge RHS 
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where subscript commas indicate differentiation,  u̅k(y), v̅k(y), w̅k(y)  are the deformation mode 

shape functions and ϕ
k
(𝑥) are the corresponding modal amplitude functions.  

 
An initial deformation mode basis is generated by imposing, at each node, three unit displacements 

along the local axes and one in-plane unit rotation, as shown in Figure 1(d). This leads to a 

deformation mode space with 4N modes, where N is the total number of nodes. Note that this procedure 

differs from the classic GBT one, in which the in-plane rotations are statically condensed. The 

displacement functions u̅k  and v̅k  are approximated by means of Lagrange linear polynomials, 

whereas Hermite cubic functions are employed to approximate  w̅k. The final deformation modes 

are calculated as explained by Gonçalves et al. (2010), through a procedure that only differs from 

the standard one in the fact that the in-plane nodal rotations are also included. This procedure 

comprises the solution of a sequence of eigenvalue problems, involving pairs of GBT modal linear 

and geometric stiffness matrices (see Eqs. (4) and (6) below) − the deformation modes correspond to 

the eigenvectors yielded by the above successive eigenvalue problems. 
 
The deformation mode shapes, displayed in Figure 1(e), can be subdivided into three distinct groups: 

(i) Vlasov Modes, associated with null membrane shear strains (Vlasov’s assumption) and transverse 

extensions: four global modes (axial extension, two bending modes and one distortional mode) 

and several local modes, depending on the cross-section discretization. In the presence of rounded 

corners the local modes no longer exhibit null in-plane displacements at the wall junctions and, 

furthermore, they involve warping displacements, as found by Gonçalves & Camotim (2016). 

(ii) Shear Modes, associated with non-null membrane shear strains: four global modes (torsion and 

warping displacements corresponding to the Vlasov bending and distortional modes) and several 

local warping modes, depending on the cross-section discretization. 

(iii) Transverse Extension Modes, associated with non-null membrane shear strains and transverse 

extensions: four global modes and several local modes, depending on the cross-section discretization. 
 
In general, the local buckling behavior of RHS members can be accurately assessed by performing 

GBT analyses including only the Vlasov local modes, even if other deformation have small 

participations in the solution. Therefore, two GBT buckling analysis variants were employed in this work: 

“Variant 1”, which includes only the Vlasov local modes, and “Variant 2”, including all the 4N modes. 

Naturally, Variant 2 is the most accurate and computationally expensive (more so for very fine 

cross-section discretizations) − moreover, it enables the quantification of the errors involved in the 

use of Variant 1 (including only the Vlasov local modes). 
 
For Variant 1, a rather fast procedure can be devised to calculate the Vlasov local modes, by using the 

GBT modal linear stiffness matrices, which read (e.g., Gonçalves et al. 2010) 
 

 Bij = Bij
M+Bij

B =∫
Et

1−ν2
v̅i,yv̅j,y dy

S
+∫

Et3

12(1−ν2)
w̅i,yyw̅j,yy dy

S
,  

 Cij = Cij
M+Cij

B = ∫
αEt

1−ν2
u̅iu̅j dy

S
+ ∫

Et3

12(1−ν2)
w̅iw̅j dy

S
, ,   (4) 

 D1ij
= D1ij

M +D1ij
B  =∫ Gt(u̅i,y+v̅i)(u̅j,y+v̅j)dy

S
+∫

Gt3

3
w̅i,yw̅j,ydy

S
,  

 
where ()M and ()B denote the membrane and bending terms, respectively, G is the shear modulus and 

one has either =1, if transverse extensions deformation modes are included, or  =  (1−ν2), otherwise. 

This procedure involves the following two steps: 
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(i) The shear and transverse extension modes are removed by calculating the 2N dimension basis of the 

nullspace of (D1
M + BM), which corresponds to the Vlasov modes (null membrane shear strains and 

transverse extensions). 

(ii) The local modes are the eigenvectors associated with the non-null eigenvalues of BBv = λCv, with 

the exception of the lowest one, always corresponding to the RHS single distortional mode. 
 
Sinusoidal amplitude functions of the form 𝜙

k
(x) = 𝜙̅

k sin(πx L⁄ ), where L is the half-wave length and 

𝜙̅k is the mode amplitude, constitute exact solutions for simply supported members and lead to the 

bifurcation equation (Gonçalves et al. 2010) 
 

 (
π2

L2  C + D +
L2

π2
B + λ (X1+

π2

L2 X2)) 𝛟̅ = 0 ,   (5) 

 
where  is the load parameter and 
 

 D = D1 − D2 −D2
T,  

 D2ij
=D2ij

M +D2ij
B  = ∫

νEt

1−ν2
v̅i,yu̅j dy

S
+∫

νEt3

12(1−ν2)
w̅i,yyw̅j dy

S
, ,   (6) 

 X1ij
= ∫ σ(v̅iv̅j+w̅iw̅j) dy

S
,  

 X2ij
= ∫ σ(u̅iu̅j) dy

S
,  

 
where X1 and X2 are geometric stiffness matrices,  = (y) is the pre-buckling membrane longitudinal 

normal stress function, defined along the cross-section mid-line y. The buckling eigenvalue problem 

defined by Eq. (6) is computationally very efficient, since the DOF number equals the number of 

deformation modes included in the analysis. However, the calculation of the half-wave length associated 

with the minimum critical bifurcation load parameter requires an iterative strategy − the golden-

section search algorithm was employed (Kiefer 1953). The critical buckling mode shape is obtained from 

the eigenvector corresponding to the lowest eigenvalue , which constitutes the critical load parameter. 

The linear strain energy 𝑈 associated with that buckling mode, by means of through 
 

 𝑈 = 
1

2
∫ (𝛟,xx

T 𝐂𝛟,xx +𝛟,x
T𝐃1𝛟,x +𝛟,xx

T 𝐃2𝛟+𝛟T𝐁𝛟+𝛟T𝐃2
T𝛟,xx)𝑑𝑥,𝐿

 ,   (7) 
 
where  is a column vector containing the modal amplitude functions. The mechanics involved may be 

better grasped if the six shell-like components of the above strain energy are inspected separately. They 

stem for the longitudinal membrane𝑈𝑥
𝑀, transverse membrane 𝑈𝑦

𝑀, shear membrane 𝑈𝑥𝑦
𝑀 , longitudinal 

bending 𝑈𝑥
𝐵, transverse bending 𝑈𝑦

𝐵 and shear bending (torsion) 𝑈𝑥𝑦
𝐵  strains, and read  

 
 𝑈 = 𝑈𝑥

𝑀 + 𝑈𝑦
𝑀 + 𝑈𝑥𝑦

𝑀 + 𝑈𝑥
𝐵 + 𝑈𝑦

𝐵 + 𝑈𝑥𝑦
𝐵 , 

 𝑈𝑥
𝑀 =

1

2
∫ 𝜎xx

𝑀𝜀xx
𝑀  𝑑𝑥

𝐿
=

𝐿

4
((

𝜋

𝐿
)
4
𝛟̅T𝐂𝑀𝛟̅ − (

𝜋

𝐿
)
2
𝛟̅T𝐃2

𝑀𝛟̅),  

 𝑈𝑦
𝑀 =

1

2
∫ 𝜎𝑦𝑦

𝑀 𝜀𝑦𝑦
𝑀  𝑑𝑥

𝐿
=

𝐿

4
(𝛟̅T𝐁𝑀𝛟̅ − (

𝜋

𝐿
)
2
𝛟̅T𝐃2

𝑀T𝛟̅),  

 𝑈𝑥𝑦
𝑀 =

1

2
∫ 𝜎xy

𝑀𝜀xy
𝑀  𝑑𝑥

𝐿
=

𝐿

4
(
𝜋

𝐿
)
2
𝛟̅T𝐃1

𝑀𝛟̅, .   (8) 

 𝑈𝑥
𝐵 =

1

2
∫ 𝜎xx

𝐵 𝜀xx
𝐵  𝑑𝑥

𝐿
=

𝐿

4
((

𝜋

𝐿
)
4
𝛟̅T𝐂𝐵𝛟̅ − (

𝜋

𝐿
)
2
𝛟̅T𝐃2

𝐵𝛟̅),  
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 𝑈𝑦
𝐵 =

1

2
∫ 𝜎𝑦𝑦

𝐵 𝜀𝑦𝑦
𝐵  𝑑𝑥

𝐿
=

𝐿

4
(𝛟̅T𝐁𝐵𝛟̅ − (

𝜋

𝐿
)
2
𝛟̅T𝐃2

𝐵T𝛟̅),  

 𝑈𝑥𝑦
𝐵 =

1

2
∫ 𝜎xy

𝐵 𝜀xy
𝐵  𝑑𝑥

𝐿
=

𝐿

4
(
𝜋

𝐿
)
2
𝛟̅T𝐃1

𝐵𝛟̅.  

 
The relative importance of each component may be easily quantified by calculating its ratio with 

respect to the total strain energy 𝑈 . Therefore, from the analysis of these ratios for equivalent 

rounded-edge and straight-edge RHS members, it is possible to unveil the changes in the local buckling 

mechanics occurring when the rounded corners are taken into account. Finally, one last word to mention 

that the code was implemented in MATLAB (the MathWorks Inc. 2017) and the numerical integrations 

along y are performed using 4 Gauss points (exact for the approximation functions used). 
 
 
3. Straight-Edge RHS Members – Overview 

A total of 124 RHS members were analysed by Vieira et al. (2018), exhibiting hw/t values comprised 

between 1 and 4 (with a step of 0.1), and bf/t values ranging from 10 to 40 (with a step of 10), 

which covers most standard commercial cross-sections (CEN 2006b). The RHS members were 

modelled as straight-edge and simplified to their mid-surface, adopting a cross-section discretization 

involving five segments per wall − previous mesh convergence studies (Vieira et al. 2018) showed that 

this discretization ensures accurate results. 
 
The two numerical model variants addressed in Section 2 (analyses with the Vlasov local modes only or 

with all the deformation modes) are initially considered − the results obtained were thoroughly validated 

through the comparison with values provided by GBTUL (Bebiano et al. 2018) and CUFSM (Li & 

Schafer 2010). Table 1 shows the statistical indicators (average, standard deviation, maximum and 

minimum values) of the differences between the critical local bifurcation coefficients obtained with 

the two variants for several combinations of axial force and biaxial bending − the indicators concern 

members sharing the same bf/t value. Naturally, a critical local buckling stress reduction is observed when 

all modes are included in the analysis (Variant 2). Moreover, there is a clear correlation between this 

reduction and the bf/t ratio − noteworthy differences are obtained for bf/t=10 only, i.e., for members 

with rather stocky cross-sections. For bf/t values higher than 10, the results provided by Variant 1 

are very accurate, as reflected by difference averages below 1% and very small standard deviations. 

Therefore, it is perfectly acceptable to use Variant 1 to analyze the RHS member local buckling behavior. 

Moreover, the local buckling coefficients become independent of the bf/t ratio, a very relevant feature − 

then, these coefficients depend only on the (i) stress distribution and (ii) hw/bf ratio. 
 

Table 1: Statistical indicators of the differences between the critical local buckling coefficients obtained with Variants 2 and 1 

 𝒃𝒇

𝒕
= 𝟏𝟎 

𝒃𝒇

𝒕
= 𝟐𝟎 

𝒃𝒇

𝒕
= 𝟑𝟎 

𝒃𝒇

𝒕
= 𝟒𝟎 

Average -2.9% -0.7% -0.3% -0.2% 

Standard Deviation 1.4% 0.3% 0.2% 0.1% 

Minimum -11.1% -2.5% -1.1% -0.6% 

Maximum -0.1% -0.0% -0.1% -0.0% 
 

The influence of the hw/bf ratio on the local buckling coefficient is investigated in Section 3.1 for simple 

loadings (axial compression, major and minor-axis bending), in which case the results obtained can be 

compared with values available in the literature. The loading cases combining axial force and biaxial 
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bending are addressed in Section 3.2 − due to space limitations, the results presented concern only 

members with hw/bf=1, 2, 3, 4 (the full set of results can be found in Vieira et al. 2018). Finally, 

Section 3.3 presents charts and analytical expressions to determine local buckling coefficients. 
 
3.2 Local Buckling under Simple Loadings 

Figures 2 to 4 show plots that provide the variation of the web and flange buckling coefficients with the 

hw/bf ratio, for RHS members subjected to axial compression, minor-axis bending and major-axis 

bending − the figures also display various buckling modes, scaled to exhibit the same web maximum 

displacement. The results concerning axial compression (Fig. 2) coincide with those reported by 

Stowell & Lundquist (1939) and differ slightly from those yielded by the analytical expressions 

developed by Seif & Schafer (2010). As for the local buckling coefficients concerning major-axis and 

minor-axis bending (Figs. 3 and 4, respectively), the values provided by the GBT-based numerical 

model are very similar to those obtained by Seif & Schafer (2010). 
 
The influence of hw/bf on kw and kf visibly depends on the stress distribution. For an axially compressed 

square tube, all walls are identical and uniformly compressed and, therefore, one has necessarily 

kw=kf=4.0 (value concerning simply supported square plates). As hw/bf increases beyond 1.0 (i.e., web-

driven local buckling), the web end rotations become increasingly restrained by the flanges, leading to a 

kw increase and, necessarily (see Eq. (1)), a kf decrease. For minor-axis bending, one web is uniformly 

compressed and the flanges are under an anti-symmetric linear stress diagram. Since buckling is 

practically always driven by the compressed web, the hw/bf ratio has a minute influence on kw. For 

major-axis bending, the compressed flange governs the local buckling behaviour if hw/bf1.0 (i.e., 

sections close to SHS) and, therefore, the variation of kf is very weak. However, if hw/bf considerably 

exceeds 1.0, local buckling is driven by the web (under linear compression) and a kf reduction takes place. 

 

 
 

Figure 2: Local buckling coefficients and buckling mode shapes for RHS members under axial compression 
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Figure 3: Local buckling coefficients and buckling mode shapes for RHS members under minor-axis bending 

 

 
Figure 4: Local buckling coefficients and buckling mode shapes for RHS members under major-axis bending 

 

As expected, it is concluded that buckling tends to be governed by the webs as hw/bf increases. 

Moreover, for a given loading (stress distribution), an hw/bf increase causes an increase in the relation 

between the web and flange compressed widths, which automatically implies that the flanges provide 

more restraint to the web end rotations. 
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3.2 Local Buckling under Combined Axial Force and Biaxial Bending 

For combined loading, an arbitrary loading (stress distribution − see Fig. 5(a)) may be parameterized 

through parameters defined by 

 

 𝛹w=
σB

σA
,       𝛹𝑓=

σC

σA
, ,   (9) 

 
 where w and f are comprised between −1.0 and 1.0 (in this work) and point A stands for the most 

compressed web-flange mid-line corner (in this work, the wider RHS cross-section walls are always termed 

“webs”) − points B and C are the far web and flange ends, respectively. Figure 5(b) identifies, 

in the w-f 2D space, the simple and combined loading cases − while the former have already been 

addressed in Section 3.1, the latter are omitted from this work due to space limitations (the results can be 

found in Vieira et al. 2018). Finally, note that w < −f means that the cross-section is under axial tension. 

Figure 5: (a) Arbitrary normal stress distribution in a RHS under combined axial force and biaxial bending, and (b) 

identification of the load combinations considered in the w-f 2D space 

 

In order to enable a better understanding on how the stress distribution profile is related to the critical 

local buckling, and given the fact that the RHS member instability is almost always driven by the 

webs, only kw is referred from her onwards − of course, kf may be easily retrieved from Eq. (1). 
 
Figure 6 shows the web buckling coefficients obtained for different hw/bf ratios, displayed as w-f 

surface plots and corresponding isolines. Both the surface plots and isolines have been obtained, 

by means of curve-fitting techniques, from the web buckling coefficients obtained for (w, f) pairs 

defining a mesh with 0.1 intervals along both axes − the MATLAB griddata method with bi-harmonic 

spline interpolation was employed. It is readily observed that, in agreement with the previous findings, the 

buckling coefficient increases as w and/or f decreases. For SHS, the surfaces are naturally 

symmetric with respect to the w=f axis and, for increasingly narrower RHS, they become mostly 

dependent on w. This transition agrees with the gradual shift of the maximum biaxial bending kw 

value towards lower w ratios (see also Fig. 10). Finally, note also that, even for the highest hw/bf value 

considered, kw decreases as f approaches 1. 

 

3.3 Approximate Formulae 

On the basis of the results obtained previously it is possible to develop approximate analytical 

formulae to calculate local buckling coefficients of RHS members under combined axial force and 

biaxial bending. The weighted linear least squares method was used, employing increasingly higher-order 

polynomials until correlation was deemed satisfactory. Instead of using w and f directly as input 
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Figure 6: Buckling coefficient (kw) surface plots and contour lines of RHS members under axial force and biaxial bending 

 

parameters, shifted coordinates Ψw
' =Ψw − 1 and Ψ𝑓

' =Ψf − 1 are adopted − this choice considerably 

simplifies the polynomials obtained. Table 2 displays the formulae proposed to calculate kw and Table 3 

provides their coefficients as functions of the hw/bf ratio. Note that the main and cross-order coefficients are 

of the 4th and 5th degree, respectively, and that p00=kw for uniformly compressed RHS members. 
 
 
4. Rounded-Edge RHS Members – Influence of the Corner Radii 

This section aims at investigating the influence of the explicit consideration of the rounded corners on 

the local buckling behavior of RHS members subjected to combinations of axial force and biaxial 
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Table 2: Analytical formulae to calculate kw in RHS members subjected to various loading cases 

N-My-Mz p
00

+∑(p
i0
(𝜓w − 1)i+p

0i
(𝜓f − 1)

i
)

4

i=1

+∑∑ p
ij
(𝜓w − 1)i(𝜓f − 1)

j

5-i

j=1

4

i=1

 

N p
00

 

N-My p
00

+∑ p
i0
(𝜓w − 1)i

4

i=1

 

N-Mz p
00

+∑ p
0i(𝜓f − 1)

i
4

i=1

 

 
Table 3: Coefficients of the polynomial developed to calculate the local buckling coefficients kw 

hw/bf  p00 p01 p02 p03 p04 p10 p20 p30 p40 

1 4.000 -2.230 -1.585 -0.543 -0.070 -2.230 -1.585 -0.543 -0.070 

2 5.158 -1.571 -2.396 -1.497 -0.322 -4.488 -6.436 -9.368 -2.727 

3 5.384 -1.554 -2.432 -1.528 -0.329 -3.895 -3.141 -5.076 -0.822 

4 5.541 -1.549 -2.445 -1.540 -0.333 -3.853 -2.577 -4.414 -0.518 

hw⁄bf p11 p21 p12 p31 p22 p13 p41 p32 p23 p14 

1 -1.373 -2.837 -2.837 0.018 -3.005 0.018 0.561 -0.945 -0.945 0.561 

2 0.101 -2.660 1.592 -2.906 0.681 0.607 -1.489 0.473 0.141 0.021 

3 1.574 -0.847 3.887 -0.081 -1.112 3.343 -0.285 0.323 -0.553 0.928 

4 1.575 -0.665 3.816 0.219 -1.127 3.261 -0.081 0.183 -0.463 0.884 

 

bending, namely the changes in (i) the critical buckling stress/coefficients and (ii) the buckling 

mechanics. These changes are assessed by comparing the GBT-based results obtained for 

straight-edge and rounded-edge RHS member configurations. In order to facilitate handling the most 

complex loading cases, for which the maximum stress occurs at the rounded corners, new local buckling 

coefficients kw
̅̅ ̅ and kf̅ are introduced, concerning the (fictitious) critical local buckling stress (𝜎𝑐𝑟̅̅ ̅̅ ) 

acting at the most compressed web-flange mid-line intersection (point A in Figure 7a)). Then, this critical 

local buckling stress is given by 

Figure 7: (a) Stress parameter definition for RHS with rounded corners and (b) identification of the load 
combinations considered in the w-f 2D space 
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 σcr̅̅̅̅ =kw
̅̅ ̅ π2E

12(1-ν2)
 (

t

hw
)

2

=kf̅
π2E

12(1-ν2)
 (

t

bf
)

2

 .   (10) 

 
Naturally, the kw and kf values obtained for the straight-edge RHS members are just a particular case of 

the new buckling coefficients kw
̅̅ ̅ and kf̅, obtained when the radii are null. Therefore, the influence of the 

rounded corners on the RHS member local buckling behaviour may be easily assessed by means of a 

reduction coefficient Ck,r, given by 
 

 Ck,r=
kw
̅̅ ̅

kw,str-edge
=

kf̅

kw,str-edge
 ,   (11) 

 
where subscript “str-edge” indicates the same RHS cross-section, but with straight edges. 

 

The first part of this study (Sections 4.1 to 4.5) focuses on the influence of (small) rounded corners on 

members with RHS geometries commonly used in practice, namely the comprehensive cross-section set 

specified in the EN10219-Part 2 (CEN 2006b) database. Preliminary mesh sensitivity studies indicated 

that good accuracy is obtained using 5 wall segments per web, flange and corner, a mesh that was 

subsequently adopted in all the analyses. For the rounded-edge RHS configurations, the mean radius values 

were computed in accordance with the above code provisions, which are reproduced in Table 4. However, 

according to these provisions, some cross-sections have very narrow flat widths and can hardly be 

considered “thin-walled”. Thus, out of the whole set of RHS identified above, those exhibiting walls with 

flat widths lower than 10 times the thickness are left out − a total of 186 cross-sections (100 SHS 

and 86 RHS) are considered in this work. 

 
Table 4: EN10219-Part 2 provisions to determine the mean corner radii to be considered 

Thickness (t) 
External corner radius 

(ro) 

Internal corner radius 

(ri) 

Mean corner radius 

(r=(ro + ri)/2)  

t ≤ 6 mm 2.0 t 1.0 t 1.5 t 

6 mm < t ≤ 10 mm 2.5 t 1.5 t 2.0 t 

10 mm < t 3.0 t 2.0 t 2.5 t 

 

Nine loadings were considered: three simple ones (axial compression N, major-axis bending My 

and minor-axis bending Mz) and six complex ones (combinations of the previous three). Their 

stress parameters are identified by red circles in the w-f bi-dimensional space shown in Figure 7(b). 

As was done for the straight-edge RHS members, results obtained with the two GBT-based numerical 

model variants were first compared for the members subjected to axial compression and uniaxial bending. 

These comparisons showed that excluding the non-Vlasov deformation modes from the analyses leads 

to a visible accuracy loss. Therefore, the results presented and discussed were obtained by means of the 

Variant 2 of the GBT-based numerical model (all deformation modes included in the analyses) − the 

inspection of the strain energy components, discussed ahead in the paper, sheds fresh light on the 

local buckling mechanics of the rounded-edge RHS members. 
 
The second part this study (Section 4.6) presents preliminary findings regarding the influence of 

medium-to-large rounded corners (larger than those commonly found in practice) on the local buckling 

behavior of uniformly compressed SHS members. The members analyzed exhibit corner radii varying 

between the minimum and maximum geometrically possible values, i.e., with ratios between the 

corner radius and the flange width varying between 0 and 0.5, which correspond to straight-edge SHS 

members and circular hollow section (CHS) members, respectively. 
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4.1 Comparison of the GBT-Based Numerical Model with other Methodologies 

This section presents the comparison between the equivalent buckling coefficients obtained in this work, 

by means of the developed GBT-based model (Variant 2), and those yielded by other formulations and/or 

methods, namely (i) analytical formulae and (ii) current code provisions. Due to the simplified nature 

of some of the latter approaches, a meaningful comparison can only be made for uniformly compressed 

SHS tubes. The results presented concern the set of 100 uniformly compressed SHS members selected 

from the EN10219-Part 2 (CEN 2006b)) database. 
 
Following the findings reported by Marsh (1997), equivalent local buckling coefficient concerning 

SHS tubes with small rounded corners may be obtained from 
 

 kw
̅̅ ̅Marsh

=kf̅

Marsh
=4+0.24π2(1-v2) (

r

t
)

4

(
bf

t
)

2

 ,   (12) 
 
where the influence of the rounded corners is quantified by the second term, dependent on the r/t and 

bf /t ratios, and always leads to a buckling coefficient increase. Figure 8 plots, against bf /t, the 

equivalent local buckling coefficients obtained in this work and yielded by Eq. (12), for three r/t 

ratios: 1.5, 2.0 and 2.5. The observation of this figure prompts the following remarks: 

(i) First of all, it is noted that Eq. (12) invariably overestimates the buckling coefficients obtained in this 

work, even if the differences are small − this overestimation appears to decrease as r/t grows. 

(ii) For r/t=2 and r/t=2.5, the two approaches yield buckling coefficients that grow as as bf /t decreases. 

This is not true for r/t=1.5, as the buckling coefficients obtained in this work slightly decrease with 

bf /r, unlike those yielded by Eq. (12).  

 

 
Figure 8: Comparison between the equivalent buckling coefficients obtained in this work and those due to Marsh (1997) 

 
According to the “reduced k method” proposed in the Commentary to AISI (2016) (see Eq. 2), the 

equivalent buckling coefficients are calculated by means of 
 

 kw
̅̅ ̅AISI-C

=kf̅

AISI-C
=4 (1.08-0.02

r

t
)

2

 (
bf

bf-2r
)

2

≤4 (
bf

bf-2r
)

2

 ,   (13) 

 
where [bf / (bf − 2 r)]2 is the factor that “transforms” the buckling coefficients associated with the web 

flat width into the equivalent ones, associated with the distance between the flange mid-lines. Since the 
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r/t considered in this are all below 4 (see Table 4), the equivalent buckling coefficients are always 

computed as 4  [bf / (bf − 2 r)]2, which leads to buckling coefficients much higher than those obtained 

in this work with the GBT-based model, as clearly depicted in Figure 9(a). 
 
The results obtained with the GBT-based model are also considerably different from those yielded 

by the Eurocode 3 provisions (CEN 2006a), as shown in Figure 9(b). The latter state that the local 

buckling is to be handled by considering a reduced plate flat width equal to b − 2 t (or B − 3 t, as specified 

in Eurocode 3 − B is the external width). Then, the expression providing the equivalent buckling 

coefficients becomes similar to the upper limit of Eq. (13) (with r replaced by t), 
 

 kw
̅̅ ̅EC

=kf̅

EC
=4 (

bf

bf-2t
)

2

 .   (14) 

 
As attested by the above comparisons, the North American and European specifications prescribe 

buckling coefficients that overestimate the (beneficial) influence of the rounded corners − they lead to 

local buckling loads much larger (up to 200%) than those obtained in this work. 

 

 
Figure 9: Comparison between the equivalent buckling coefficients obtained in this work and those provided by the 

provisions of (a) AISI (2016) and (b) Eurocode 3 (CEN 2006a) 

 
4.2 Illustrative Example 

Before providing the whole set of results concerning the members exhibiting all the RHS selected from 

the EN10219-Part 2 (CEN 2006b) database, an in-depth study of members with a particular RHS and 

subjected to axial compression (loading case A), minor-axis bending (loading case C) or minor-axis 

bending (loading case G) is presented for illustrative purposes. An overall view of the illustrative RHS 

is given in Figure 10(a) and its dimensions are (in mm): external web height H=400, external flange 

width H=300, thickness t=12, mean corner radius r=30, mid-line web height hw=H − t=388, mid-line flange 

width bf=B − t=288, radial parameter (hw + bf)/r=22.5 and thickness parameter r/t=2.5. The main purpose of 

presenting these illustrative numerical results is to enable a better grasp of the changes in local buckling 

mechanics arising from the consideration of the rounded corners. 
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Figure 10: (a) Illustrative RHS geometry and discretization (5 elements per web, flange and corner) and (b) variations of the 

web buckling coefficient with the half-wave length for the rounded-edge and equivalent straight-edge configurations 
 

Figure 10(b) shows the variations of the web buckling coefficient with the buckling mode longitudinal 

half-wave length for both the round-edge and equivalent straight-edge member configurations and 

the three loadings under consideration (the flange buckling coefficients exhibit identical variations). For 

the three loadings, both configurations lead to only one minimum within the small half-wave 

length range. This feature is well-known for the straight-edge configuration but not so for its rounded-

edge counterpart − recall that, for instance, circular hollow sections, which constitute the SHS limit 

as the corner radii increase, exhibit a curve with several minima for axial compression (see Section 4.6). 

The above results show that the rounded corners lead to an increase in the minimum web buckling 

coefficient (between 3 and 8 percent in this particular case). 
 
The buckling mode shapes and strain energy component percentages (with respect to the total strain 

energy 𝑈 − recall Eqs. (7) and (8)) are provided in Figure 11. Concerning the straight-edge member, it is 

noted that the membrane energy percentages are practically null, which means that only Vlasov local 

deformation modes participate in the member buckling mode. It is also observed that there is very small 

cross-section warping in the straight-edge member under the three loadings − the warping displacements 

increase significantly in the presence of rounded corners (the highest values occur in their close vicinity). 

Moreover, the presence of rounded corners also leads to visible variations of some strain energy 

component percentages: the longitudinal and shear membrane ones (𝑈𝑥
𝑀 and 𝑈𝑥𝑦

𝑀 ) increase, while 

the longitudinal and shear bending ones (𝑈𝑥
𝐵 and 𝑈𝑥𝑦

𝐵 ) decrease. Overall, the membrane strain energy 

relevance increases by a few percent, at the expense of its bending counterpart. 
 
It is also important to note that the highest Ck,r value is not necessarily associated with the highest 

membrane strain energy percentage increase 𝑈𝑀/𝑈 ( indicates the difference between the rounded-

edge and straight-edge cases and 𝑈𝑀 = 𝑈𝑥
𝑀 + 𝑈𝑥𝑦

𝑀 + 𝑈𝑦
𝑀), which can be confirmed by comparing the 

axial compression and minor-axis bending cases. However, it will be shown later that, within each 

loading case, there is some correlation between 𝑈𝑀/𝑈 and Ck,r.  
 

4.3 Local Buckling under Simple Loadings 

This section presents the whole set of results obtained for the axial compression (Figure 12(a)-(d)), minor-

axis bending (Figure 13(a)-(d)) and major-axis bending (Figure 14 (a)-(d)) cases, which show quite similar 

trends. The results concerning the rounded-edge member configurations are separated according to the 

r/t value. In each figure, the first plot includes (i) a curve providing the variation of the “exact” straight- 
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Figure 11: Buckling mode shapes, strain energy component percentages and Ck,r values for the straight-edge and 

round-edge member configurations 

 

edge member buckling coefficients with the hw/bf ratio and (ii) three sets of rounded-edge member 

equivalent buckling coefficients (each set concerns an r/t value considered: 1.5, 2.0 or 2.5). The above 

curve was obtained by means of a “curve fitting techniques” based on a very large number of local 

buckling results determined with the Variant 1 of the GBT-based model (small fractions of these results 
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Figure 12: Plots (a) 𝑘𝑤̅̅ ̅̅  vs. hw/bf, (b) and Ck,r vs. hw/bf, (c) Ck,r vs. (hw + bf)/r and (d) Ck,r vs. 𝑈𝑀/𝑈 concerning the 

straight-edge and rounded-edge members under axial compression 

 

were displayed in Figs. 2 to 4) and the rounded-edge member equivalent buckling coefficients were 

determined by means of Variant 2 of that same GBT-based model. As for the remaining three plots in 

the figures, they make it possible to visualize the Ck,r value distribution expressed as a function of the 

(i) hw/bf ratio, (ii) radial parameter (hw + bf)/r and (iii) membrane strain energy percentage increase 

UM/U. Both the straight-edge member buckling coefficients (corresponding to the 1.0 horizontal lines) 

and the rounded-edge member equivalent buckling coefficients (providing the Ck,r values) were obtained 

employing the Variant 2 of the GBT-based model. 
 
The observation of the results presented in Figures 12(a)-(d) to 14(a)-(d) prompt the following remarks:  

(i) Unlike in the straight-edge member case, it is no longer possible to express the equivalent buckling 

coefficients solely as a function of hw/bf for the rounded-edge members. Moreover, even if the effect 

of the wall thickness t must be taken into account, the r/t ratio still leads to a significant scatter. The 

above assertion can be clearly confirmed by looking at the plots Ck,r vs. hw/bf, which show values 

ranging between about 1.0 and 1.2, but without exhibiting any clear trend regarding r/t − note that 

these plots also indicate that the presence of the rounded corners may increase the local buckling 

stresses up to 20%.  

(ii) In the plots Ck,r vs. (hw + bf)/r (radial parameter) the rounded-edge member Ck,r values concerning 

the three r/t ratios considered are more “packed together”, thus providing some evidence of the 

existence of a “common trend”. Moreover, as it would be logical to expect, Ck,r tends asymptotically 
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Figure 13: 𝑘𝑤̅̅ ̅̅  vs. hw/bf, (b) and Ck,r vs. hw/bf, (c) Ck,r vs. (hw + bf)/r and (d) Ck,r vs. UM concerning the straight-edge 

and rounded-edge members under minor-axis bending 

 

  to the unit value as the corner radius progressively decreases. Conversely, a large corner radius leads 

to a Ck,r value considerably above 1.0. 

(iii) It is also worth noting that, within members sharing the same radial parameter, a thickness increase 

often leads to a larger Ck,r value. 

(iv) The plots Ck,r vs. 𝑈𝑀/𝑈 provide clear indications that there exist some correlation between the Ck,r 

values and the membrane strain energy percentage increase, which suggests that the membrane 

action is linked to the improved local buckling behavior exhibited by the rounded-edge members 

− recall, from the illustrative example presented in Section 4.2, that the membrane energy increase 

stems almost exclusively from the growth of the strain energy component percentages 𝑈𝑥
𝑀/𝑈 and 

𝑈𝑥𝑦
𝑀 /𝑈, which are associated with the warping and shear effects. 

(v) It is still worth mentioning that some of the Ck,r values obtained are below 1.0 (particularly for the 

members under axial compression), which means that the presence of the rounded corners leads to 

a buckling coefficient decrease. Although the investigation of this surprising feature has already been 

initiated by the authors, it won’t be addressed in this work, due to space limitations. The outcome of 

this ongoing study will be reported in the not too distant future. 
 
4.4 Local Buckling under Combined Loading Cases 

This section deals with the buckling behavior of RHS members subjected to various combinations of 

axial force and uniaxial or biaxial bending. A total of 2232 members were analyzed, corresponding to the 
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Figure 14: Plots (a) 𝑘𝑤̅̅ ̅̅  vs. hw/bf, (b) and Ck,r vs. hw/bf, (c) Ck,r vs. (hw + bf)/r and (d) Ck,r vs. UM concerning the 

straight-edge and rounded-edge members under major-axis bending 

 

loading cases B, D, E, F, H and I indicated in Figure 7(b). Since the results obtained are qualitatively 

similar to those presented and discussed in the previous sections, and due to space limitations, only a 

brief summary of the most relevant features is included in this paper − a much more detailed account can 

be found in a very recent work by the authors (Vieira et al. 2019). The following conclusions of the 

research effort carried out deserve to be specially highlighted: 

(i) The presence of the rounded of corners generally leads to a bucking coefficient increase, which does 

not exhibit good correlation with the cross-section height-to-width ratio hw/bf − this is the main reason 

why no such results are presented in this paper. 

(ii) A much better correlation can be obtained by plotting the Ck,r ratios against the radial parameter 

(hw + bf)/r − such plot makes it clear that a relative increase in the corner radius (i.e., a decrease of 

the radial parameter) dimensions leads to higher equivalent buckling coefficient. 

(iii) For similar radial parameter values, a wall thickness increase generally leads to higher Ck,r values − 

this means that the influence of the rounded corners is generally higher in members with thick walls. 

(iv) The Ck,r ratio correlates positively with the difference between the membrane strain energy percentages 

of the rounded-edge and equivalent straight-edge RHS members − this difference stems mostly from 

warping and shear effects in the corner regions. 

(v) In some RHS members with a r/t= 1.5, Ck,r is below the unit value. 
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4.5 Approximate Formulae Accounting for the Rounded Corners  

As mentioned previously (see Eq. (11)), Ck,r is the ratio between the equivalent buckling coefficient 

determined for the rounded-edge member and the buckling coefficient obtained for the equivalent 

straight-edge member (both members share the same hw and bf values). Since analytical expressions have 

already been developed to calculate the straight-edge member buckling coefficients (kw.str − edge and 

kf.str − edge), it now suffices to determine formulae to determine the Ck,r ratio. The results presented in this 

work provide strong evidence that using “straight-edge buckling coefficients” (i.e., assuming Ck,r 

equal to 1.0) generally leads to safe local buckling loading predictions (i.e., underestimations) − this is 

because such buckling coefficients are based on (fictitious) wider walls. Moreover, note that, in the few 

cases that do not follow the above general rule (i.e., those for which the presence of rounded corners 

causes a buckling loading decrease), the buckling coefficient difference never exceeds 2%. 

Therefore, this section aims at presenting analytical expressions to calculate Ck,r. Although all the nine 

loadings cases identified earlier have been addressed, the expressions dealt with in this work concern only 

the simple loadings − expressions for the remaining loading cases can be found in Vieira et al. (2019). 
 
It was decided to look for expressions based on the radial parameter (hw + bf)/r, since the numerical results 

indicated that it is a reasonable choice, even if a fair degree of scatter is still obtained. In order to 

achieve an adequate problem parameterization, the numerical results were split and curve-fitted according 

to the (i) the cross-section type (SHS or RHS), (ii) radius-to-thickness ratio r/t and (iii) loading case. The 

MATLAB (The MathWorks Inc. 2017) curve-fitting toolset was employed to develop the various 

analytical expressions. The best compromise between simplicity and accuracy was achieved with 

the expression 
 
 Ck,r=

a

(
hw+bf

r
-b)

2 +c. ,   (15) 

 
where a, b and c are constants whose values are given in Table 5 for the simple loadings: axial 

compression (N), minor-axis bending (Mz) and major-axis bending (My). A very good fit is obtained, as 

shown in Figure 15, where the curves provided by Eq. (15) are compared with the numerical results − 

this is confirmed by the corresponding statistical indicators, not shown here (see Vieira et al. 2019). 
 

4.6 Influence of Rounded Corner with Moderate-to-Large Radii − Preliminary Study 

The previous sections addressed RHS member exhibiting rounded corners with radii commonly found in 

practice − such radii are almost always much smaller than the cross-section height and width: the 

ratio r/bf varies between 0.03 and 0.17 (0.50 is the maximum possible). In order to extend the scope 

of this investigation beyond “rounded corners with small radii”, this section addresses, for members under 
 

Table 5: Values of the constants a, b and c appearing in the Ck,r approximate analytical expression 

  r/t=1.5 r/t=2.0 r/t=2.5 

 Loading a b c a b c a b c 

SHS 

N 2.195 -0.001 0.991 8.042 -0.004 0.991 17.79 -1.668 0.990 

Mz 38.59 -4.862 1.004 39.30 -3.337 1.005 42.16 -2.607 1.008 

My 38.59 -4.862 1.004 39.30 -3.337 1.005 42.16 -2.607 1.008 

RHS 

N 229.7 -86.55 0.991 34.27 -10.74 0.992 17.45 -0.823 0.997 

Mz 42.31 -7.354 1.005 39.98 -5.074 1.006 41.32 -3.883 1.007 

My 28.92 -0.089 0.996 29.28 -0.054 1.003 39.94 -0.621 1.003 
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Figure 15: Curve-fitting of 𝑪𝒌,𝒓 for SHS and RHS under the simple load cases A, C and G 
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axial compression, the influence of rounded corners with moderate-to-large radii on the local buckling 

behavior. In particular, insight on the local buckling mechanics is acquired for members with cross-

sections covering the full range between straight-edge square (SHS) and circular (CHS) tubes. 

 

The analyses were performed by means of the Variant 2 of the GBT-based numerical model and the all 

the cross-sections considered shared the dimensions hw=bf =100 mm and t=1 mm − the corner radius r 

varies between 0 (SHS) and 50 mm (CHS), in 1 mm steps. Following the outcome of a mesh sensitivity 

study, 10 wall segments were adopted in each corner, flange and web (such number was indispensable 

to analyze the members with cross-sections having r/bf between 0.25 and 0.40). Figure 16 shows the 

variation of the equivalent web buckling coefficient with the half-wave length for members 

increasing corner radii (in 2 mm steps). The local minima of the various curves are identified by either a 

circle (lowest minima) or a small square (other minima). 

 
Figure 16: Variation of web buckling coefficient (logarithmic scale) with the half-wave length for uniformly compressed 

SHS members with hw=bf =100 mm, t=1 mm and r varying between 0 and 50 mm in 2 mm steps 

 

Regarding the number of minima, it is observed that it increases as the cross-section approaches the CHS, 

even if a second minimum only occurs for corner radii equal or greater than 18 mm. As r increases, 

the lowest minimum buckling coefficient becomes substantially higher and corresponds to smaller 

half-wave lengths, except for cross-sections very close the CHS − in these cross-sections, the critical 

buckling mode is distortional. These observations are in good agreement with the results presented in 

Figure 17, which shows, for the various r values, (i) the strain energy component percentages, (ii) the 

minimum buckling coefficient and (iii) a few representative buckling mode shapes. As r increases, abrupt 

changes in the strain energy component percentages are observed − they stem from significant 

changes in buckling mode shape or nature. For corner radii up to 43 mm, the buckling modes are “local”, 

since they involve much higher displacements in the flat walls than in the rounded corners, and are 

associated with larger contributions of the bending strain energy (𝑈𝐵 = 𝑈𝑥
𝐵 + 𝑈𝑥𝑦

𝐵 + 𝑈𝑦
𝐵) to the total 

strain energy. Indeed, the local buckling mode shape is (i) rotational anti-symmetric for 0 < r ≤ 13 mm, 

(ii) rotational symmetric, for 14 < r ≤ 33 mm, and (iii) rotational anti-symmetric for 34 < r≤ 43 mm. 

For r > 43 mm, the critical buckling mode is distortional and involves almost solely longitudinal 

membrane (𝑈𝑥
𝑀) and transverse bending (𝑈𝑦

𝐵) strain energies. 
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Figure 17: Strain energy component percentages, equivalent web buckling coefficients and buckling mode shapes of 

uniformly compressed SHS members with hw=bf =100 mm, t=1 mm and r varying between 0 and 50 mm in 1 mm steps 

 

5. Conclusions 

This paper reported results of an ongoing numerical study on the local buckling behavior of RHS 

members subjected to combinations of axial load and biaxial bending. The critical local buckling loads 

were calculated by means of a numerical model based on a computationally efficient GBT formulation 

specifically developed for RHS members. Both members with straight and rounded edges were 

analyzed. For straight-edge members, it was shown that the inclusion of only Vlasov local deformation 

modes in the GBT-based buckling analysis suffices to provide accurate local bifurcation loads for non-

compact cross-sections. This fact made it possible to perform analyses that depend only on the cross-

section (i) normal stress distribution and (ii) mid-line height-to-width ratio (hw/bf) − the results 

obtained with this model were shown to agree very well with those available in literature for either 

axial compression, major-axis bending or minor-axis bending (members subjected to combinations of axial 
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force and biaxial bending were tackled for the first time by the authors). For each loading case, charts 

and approximate analytical expressions, obtained from curve-fitting techniques, were developed. 
 
For rounded-edge members, it was showed that, in order to obtain accurate local buckling results, it is 

indispensable to included in the GBT-based buckling analysis also shear and transverse extension 

deformation modes. The results obtained provided solid evidence that the local buckling coefficients and 

loadings increase in the presence of rounded corners (except for a few cross-section with small radius-

to-thickness ratios). It was concluded that the buckling coefficient/loading increase becomes more 

significant as the cross-section radius and thickness increase with respect to its mid-line height and width. 

Moreover, a correlation was found between this increase and the increase in the buckling mode 

linear membrane strain energy components associated with warping and shear. 
 
For uniformly compressed square tubes with rounded edges, a comparison between the numerical 

results obtained in this work and those provided by the provisions of either Part 1-5 of Eurocode 3 or the 

North American Specification for the Design of Cold-Formed Steel Structural Elements of the 

showed that the last two often lead to unsafe local buckling loading predictions. Curve-fitting techniques 

were employed to develop approximate (but accurate) analytical expressions to calculate critical local 

buckling loadings of rounded-edge RHS members − they provide “correction factors” to be multiplied by 

the corresponding buckling loadings determined for equivalent straight-edge RHS members. 
 
Finally, the influence of the presence rounded corners with medium-to-large radii on the local buckling 

behavior of uniformly compressed square tubes with (i) fixed web height, flange width and wall 

thickness, and (ii) different corner radii, whose variation covers the whole range between a straight-

edge square tube and a circular hollow tube. It was shown, for this particular case, that (i) the equivalent 

web buckling coefficient increases with the corner radius and (ii) the critical buckling mode nature 

changes, from local to distortional, when the cross-section becomes quite close to a circular tube. 
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