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Abstract 
Established methods for system stability design that appear in the American Institute of Steel 
Construction’s Specification for Structural Steel Buildings (ANSI/AISC 360-16) include the 
Direct Analysis Method and the Effective Length Method. Both approaches require the use of the 
unbraced length of compression members. In 2016, AISC provided an alternate stability design 
method, Design by Advanced Elastic Analysis, which simplifies current design processes for 
systems when the unbraced lengths of compressive members are not clearly apparent (e.g. arch). 
Essential to this approach is the use of an equilibrium analysis that is based on the deformed 
geometry of the system. With this, the compressive strength of the member may be taken as its 
cross-section strength; thereby removing any reliance of design equations on the compressive 
unbraced length of the member.  In establishing this approach, many systems were investigated 
and systems with beam-columns subject to minor-axis bending appeared to deserve additional 
attention. This paper presents a detailed study that investigates such members. Employing results 
from advanced inelastic analyses as a basis for comparison, the accuracy of the conventional 
design methods and this new approach are established. The impact of residual stresses and 
subjecting the member to major-axis bending instead is also explored. Interaction equation curves 
for all methods are plotted and radial percent errors are calculated. W-sections over a wide range 
of member slenderness ratios are investigated. All three design elastic methods provide fairly 
similar results, with the Design by Advanced Elastic Analysis method providing the largest, but 
perhaps still considered acceptable, percent errors.  
 
1. Introduction 
For the past sixty years, the Effective Length Method (ELM) has been a widely employed stability 
design method (Ziemian, 2010). By scaling actual unbraced lengths to effective lengths when 
calculating the available strengths of compression members, the effective length K-factor is 
assumed to account for most factors known to impact the stability of structural systems, including 
geometric system imperfections, stiffness reduction due to inelasticity, and to a much lesser degree 
uncertainty in strength and stiffness (AISC, 2016). In 2005, design by the Direct Analysis Method 
(DM) first appeared in the American Institute of Steel Construction’s (AISC’s) Specification 
for Structural Steel Buildings. In DM, the available strengths of compression members are based 
simply on the unbraced length (K = 1), as long as system imperfections (but not member 
imperfections) and stiffness reduction due to inelasticity are represented in the structural analysis. 
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Since then, many in the structural design profession have moved from employing ELM to DM. As 
a result, DM was relocated AISC’s 2010 Specification from Appendix 7 to Chapter C, while ELM 
was relocated from Chapter C to Appendix 7.  
 
Both design methods rely on establishing the unbraced lengths of compression members, which in 
some cases may be difficult, if not impossible, to define. Examples include, but are not limited to 
arches, tree columns, and Vierendeel trusses. In response to this predicament, AISC introduced a 
Design by Advanced Elastic Analysis method that appears in Appendix 1 of their 2016 
Specification. In addition to the analysis modeling requirements of DM, the method further 
requires the direct modeling of member imperfections and, therefore the method is often 
represented by the acronym DMMI. In applying this approach, engineers can avoid the 
complexities of defining unbraced lengths, thereby being permitted to compute the strengths of 
compression members as their axial cross-sectional strengths. This paper reports on an ongoing 
study to complement previous studies on systems (Nwe Nwe, 2014; Giesen-Loo, 2016) to evaluate 
the performance of DMMI, especially with an eye towards members that are subject to the 
combination of compression and minor-axis bending. Using AISC’s Design by Advanced Inelastic 
Analysis Method, which is based on employing a rigorous geometric and material nonlinear 
analysis with imperfections (GMNIA), the accuracy of DMMI is assessed and further compared 
with the more traditional ELM and DM design methods. Additionally, the significances of thermal 
residual stresses, which are a consequence of uneven cooling of rolled cross-sections, and the axis 
of bending (minor versus major) are also explored. 
 
The paper begins by providing an overview of ELM, DM, and DMMI, along with details of the 
analysis method and interaction equation employed in each. Results of the study are then presented 
primarily in tabular format, which are followed by discussions of the effects residual stresses, axis 
of bending, and design method employed. 
 
2. Overview of Design Methods 
In this study, the ends of simply supported columns of various slenderness ratios are subjected to 
a wide range of combinations of applied axial force and end bending moments that are of equal 
magnitude and opposite direction (in the absence of axial force such moments would produce a 
uniform moment distribution). In all cases, the members are assumed to be fully braced out-of-
the-plane of bending. To assess the LRFD strength of beam-columns based on an elastic analysis, 
the following interaction equation is provided in AISC’s Specification: 
 
For 𝑃"/𝜙𝑃% ≥ 0.2, 
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*+

;,*-
+ 1 2+3

,2-3
+ 2+4

,2-4
5 ≤ 1.0	                                               (2) 

 
where 𝑃" is the required axial strength, 𝑀" is the required bending strength, 𝑃% is the nominal axial 
strength, and 𝑀% is the nominal bending moment about either the major x- or minor y-axis. The 
analysis for the required axial strength  𝑃" and flexural strength  𝑀" should include second-order 
(geometric nonlinear) effects. 
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The following design methods, including ELM, DM, and DMMI, are represented by Eq. 1 with 
terms defined per that specific method. In all cases, the controlling combinations of axial force and 
bending moment are determined for each of these elastic design methods by iteratively solving for 
the maximum value of 𝑀" for a given value of 𝑃" that will satisfy Eq. 1. 
 
2.1 Effective Length Method (ELM) 
In computing the nominal axial strength 𝑃% from AISC’s column curve, the effective length factor 
of a simply supported beam-column is K = 1. In determining the required flexural strength 𝑀", 
equilibrium equations are defined on the deflected shape to account for second-order effects. For 
a structural analysis associated with ELM, the beam-column is assumed geometrically straight 
prior to any applied loading (AISC’s column curve accounts for member out-of-straightness). As 
a result, the 𝑃 − 𝛿 effect in this method accounts only for the interaction between the applied axial 
load and bending moments, and thereby is not influenced by the presence of an initial member 
imperfection. Fig. 1 shows the deflected shape of the beam-column, in which 𝑣*2(𝑥) is the elastic 
curve of the deformed shape as a result of applied end actions that include axial force 𝑃 and 
bending moment 𝑀.  
 

 
Figure 1: Deflected shape of beam-columns with second-order effects included 

 
At any point along the span of the member, equilibrium on the deformed shape requires: 
 

𝑀"(𝑥, 𝑃) + 𝑃 ∙ 𝑣*2(𝑥) + 𝑀 = 0                                                (3) 
 

In establishing the design adequacy of this member, the required moment 𝑀"(𝑥, 𝑃) is a maximum 
at mid-span because 𝑣*2(𝑥) takes on a maximum value when 𝑥 = 𝐿/2. Thus, the interaction 
equation only needs to be checked at mid-span, where the required strengths (terms in the 
numerators) are at a peak. For an elastic analysis of a simply supported, originally perfectly 
straight, and prismatic member, the deflection and required flexural strength 𝑀"  at mid-span, 
which includes second-order effects, can be calculated as a function of the applied force P and 
moment M by the following “exact” equation (McGuire et al., 2000): 
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G𝑀"_IJKG =

1
cos	(𝜋2P𝑃/𝑃𝑒)

𝑀                                                     (4) 

 
where 𝑃R = Euler buckling strength of the beam-column. 
 
With 𝑃" = 𝑃 at mid-span, substitution of these terms for 𝑃" and 𝑀" = G𝑀"_IJKG in Eq. 1 results in 
an interaction equation for ELM defined by: 
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In which specific to ELM, 

𝑃% = 𝐹 _𝐴a  
𝑃R = 𝜋;𝐸𝐼/𝐿;  
𝑀% = 𝐹dZ  

where, 𝐹 _ is the critical buckling stress as defined by AISC’s column curve with K = 1 for the 
simply supported end conditions being investigated in this study, 𝐴ais the gross area of the cross-
section, 𝐸 is the elastic modulus of the material, 𝐼 is the moment of inertia, 𝐿 is the unsupported 
length of the beam-column, 𝐹d is the material yield stress, and 𝑍 is the plastic section modulus. In 
computing  𝑀%, it is important to note that only members with compact sections are investigated, 
and any members subject to major-axis bending are assumed fully braced out-of-plane. 
 
2.2 Direct Analysis Method (DM) 
Although DM permits the use of the unbraced length (K = 1), this provides no advantage over 
ELM for the specific end support conditions of the single beam-column investigated in this study. 
In fact, DM is somewhat penalized in this case by its required use of a stiffness reduction factor 
within the structural analysis. Although the equilibrium analysis is of the same form as that given 
for ELM, the Euler buckling strength 𝑃R  of the member is modified to represent the inelastic 
buckling strength of the member. As a result, interaction equation Eq. 1 for DM can be rewritten 
as Eq. 5, similar to that for ELM. However, Pe in Eq. 5 is specified differently. In summary, Eq. 5 
applies for DM with: 

𝑃% = 𝐹 _𝐴a, with 𝐹 _ defined by AISC’s column curve with no 0.8𝜏i stiffness reduction on E 
𝑃R = 𝜋;(0.8𝜏i𝐸)I/𝐿;  
𝑀% = 𝐹dZ  

According to the AISC Specification (2016) and given that all sections are compact, 𝜏i  is 
calculated as 

𝜏i = 4(𝑃/𝑃d)[1 − (𝑃/𝑃d)] for 𝑃/𝑃d > 0.5, and 𝜏i = 1.0  for  𝑃/𝑃d ≤ 0.5 
where 𝑃d = 𝐹d𝐴a. 

 
2.3 Design by Advanced Elastic Analysis Method (DMMI) 
As described earlier, DMMI is an alternative design method that may be particularly useful for 
more complex structures in which the unbraced length is not discernable. By directly modeling 
member out-of-straightness and representing potential inelasticity through the use of stiffness 
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reduction strategy employed in DM, the design axial strength 𝑃% of the member may be taken as 
its cross-section strength. The artificial and dramatic increase in axial strength 𝑃% that appears in 
the interaction equation is compensated for by larger required flexural strength 𝑀" , which is 
obtained from an advanced elastic structural analysis that accounts for initial system and member 
imperfections, second-order (geometric nonlinear) effects, and stiffness reduction due to 
inelasticity. 
 
In contrast to the above analysis for determining strengths for ELM and DM, the analysis for 
DMMI must also include the direct modeling of member out-of-straightness. In this study, the 
shape of the initial imperfection is assumed a sine wave with an amplitude at mid-span of 𝐿/1000 
per the AISC’s Code of Standard Practice for Steel Buildings and Bridges (AISC, 2016a). As 
such, the second-order 𝑃 − 𝛿 effect needs to include both the impact of the applied axial force and 
bending moment as well as the initial imperfection. Fig. 2 shows the initial imperfection 𝑣p(𝑥) 
and final deflected shape 𝑣(𝑥)  due to combined effect of the applied loading and geometric 
imperfection. 

 
Figure 2: Deflected shape of beam-column with second-order effects due to applied loading 

and geometric imperfection 
 

In this case, equilibrium on the deformed shape is given by: 
 

𝑀"(𝑥, 𝑃) + 𝑃 ∙ 𝑣(𝑥) + 𝑀 = 0                                             (6) 
 

where	𝑣(𝑥) is the total lateral deflection as a function of span length location x, which equals the 
sum of geometric imperfection, 𝑣p(𝑥) = 𝛿p ∙ sin	(

st
u
), and deflection 𝑣*2(𝑥)	due to the applied 

combination of P and M. Starting with an elastic moment-curvature relationship, the moment 
equilibrium equation can be rewritten as: 
 

𝐸𝐼 𝑑
2𝑣𝑃𝑀
𝑑𝑥2 + 𝑃𝑣*2(𝑥) + 𝑃𝑣p(𝑥) + 𝑀 = 0                                    (7) 

 
The solution to this differential equation is: 
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As a result, the total deflection 𝑣(𝑥), which is the sum of 𝑣*2(𝑥) and 𝑣p(𝑥), is expressed as: 
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Given that the mid-span 𝑥 = 𝐿/2 remains the critical location to check for stability, the total 
deflection can be expressed as: 
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            (10) 

 
With 𝑣 |u

;
~, equilibrium on the deformed shape at mid-span will result in a required moment 

strength of: 
 

G𝑀"_IJKG = 𝑀 + 𝑃 ∙ 	𝑣 |u
;
~               (11) 

 
Similar to DM, a stiffness reduction factor of 0.8𝜏i should be applied to all the members of the 
system, which in this study means that all EI terms (within Pe) in the above equations should be 
0.8𝜏i𝐸𝐼. With values of 𝑃" = 𝑃 and 𝑀" = G𝑀"_IJKG as defined above, the interaction equation Eq. 
1 is expressed for DMMI as: 
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In which specific to DMMI, 

𝑣 |u
;
~ is given by Eq. 10, with 𝛿p = 𝐿/1000, and 𝑃R and 𝜏i as defined for DM 

𝑃% = 𝐹d𝐴a and 𝑀% = 𝐹d𝑍  
 
2.4 Design by Advanced Inelastic Analysis Method (GMNIA) 
Since 2010, the Design by Advanced Inelastic Analysis Method has been provided in Appendix 1 
of the AISC Specification. Given that this design method is based on a geometric and materially 
nonlinear analysis, it will be referenced by the acronym GMNIA. The second-order inelastic 
analysis routines used in this study are included in the finite element analysis software FE++ 
(Alemdar, 2001), in which a distributed plasticity model is employed. Each beam-column is 
modeled by eight line elements, thereby permitting a sine wave member out-of-straightness of 
𝛿p = 𝐿/1000 to be directly modeled in the analysis. Residual stresses are represented by pre-
stressing (compression or tension) the cross-section fibers that define the cross-section. The 
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applied axial force P and bending moments M are applied simultaneously, and an incremental-
iterative arc length solution scheme is employed until a limit point is achieved. Because of the 
relatively high accuracy of this analysis, an error analysis of the above elastic design methods is 
based on the combinations of P and M that this inelastic design method would permit and still 
satisfy the provisions of Appendix 1 of AISC’s Specification. 
 
It is well known that partial yielding of the cross-section can have a significant effect on the 
stability of beam-columns. In cases where member imperfections are not removed by processes, 
such as rotary straightening, this partial yielding can be accentuated by the presence of residual 
stresses. On the other hand, the use of such straightening processes can be shown to alleviate or 
even eliminate the presence of residual stresses (Ge and Yura, 2019). As result, ultimate strength 
combinations were determined for cases in which residual stresses were and were not included in 
the analysis. When residual stresses are taken into account, the Galambos and Ketter (1959) 
residual stress distribution shown in Fig. 3 was employed with a maximum compressive stress at 
the flange tips of 0.3F� . Additionally, the material elastic modulus E and yield stress F�  are 
reduced by a factor of 0.9, per the requirements of Appendix 1 of the AISC Specification. An 
elastic-perfectly plastic material model is employed. 
 

 
Figure 3: Residual stress distribution of Galambos and Ketter (1959) 

 
3. Normalized P-M Interaction Curves and Error Calculation 
To compare the accuracy of each of the design methods, with special attention on DMMI, 
normalized P-M interaction curves of ELM, DM, DMMI, and GMNIA are first plotted. Data points 
are obtained by determining the maximum combination of axial load P and bending moments M 
that can be applied at the member ends such that the strength requirements of the design method 
would just be satisfied. Calculation of error values in the curves are then computed using the 
GMNIA curve as a basis. To further allow the errors to be comparable for the wide range of 
member slenderness ratios investigated, all axial forces and moments were normalized by the 
maximum GMNIA values, with 𝑃�2���  being the maximum axial strength when the applied 
moment is M = 0, and with 𝑀�2��� being the maximum moment strength when the applied axial 
force is P = 0 (which would equal 0.9FyZ for all members in this study). As an example, Figure 4 
shows the normalized P-M interaction curves and a plot of the radial errors for a W12X50 member 
with an L/r = 90 that is subjected to minor-axis bending and with residual stresses included. Plots 
for the same member and conditions of the four other L/r slenderness ratios (30, 60, 120, and 150) 
studied are provided in Appendix A. 
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Using radial lines at 10° increments measured clockwise from the normalized P-axis to the M-
axis, the intersections of the radial lines and the P-M curves are found. It is noted that values at 
intersection points that lay between data points are obtained from a parabolic interpolation between 
the adjacent three data points. The percent errors of the design methods are then established by 
comparing their radial R-distances from the origin to the interaction curves according to: 
 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑟𝑎𝑑𝑖𝑎𝑙	𝑒𝑟𝑟𝑜𝑟 = 𝑅𝑋𝑋𝑋−𝑅𝐺𝑀𝑁𝐼𝐴
𝑅𝐺𝑀𝑁𝐼𝐴

× 100%                                (13) 
 

where 𝑅��� is the radial distance of the P-M curves for the elastic design methods (ELM, DM, 
and DMMI), and 𝑅�2��� is radial distance to the GMNIA P-M curve. As a result, error plots (Fig. 
4b) at different radial angles represent a comprehensive range of different combinations of applied 
axial force and moment.  
 

 
                                                  (a)                                                                                 (b)  
Figure 4: For a W12X50 member with an L/r = 90 subject to minor-axis bending and with residual stresses included, 
(a) normalized P-M interaction curves of the four design methods, and (b) plots of percent radial errors 
 
The legend within the radial error graph (Fig. 4b) contains information important to this study. 
Working from the top downward, rows within this legend represent results for the ELM, DM, and 
DMMI methods, respectively. The first two numbers in each row represent the error of each design 
method with an angle (𝜃) that corresponds to where the DMMI error is at its maximum. The second 
two numbers correspond to the maximum error of each design method and the angle (𝜃) where 
this maximum occurs. Points with positive percent errors are indicative of situations in which the 
elastic design method (ELM, DM, or DMMI) are unconservative when compared to design 
strengths determined by GMNIA.   
 
4. Cross-sections investigated 
As indicated in Table 1, this study investigated 65 wide flange W-shapes of A992 steel (E = 
29,000ksi and Fy = 50ksi). These shapes are all of the compact sections that appear in the column 
design portion of the AISC Manual (AISC, 2016b), and their depth to width ratios are all less than 
1.5. 

10°
20°

30°

40°
50°

60°

70°

80°
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Table 1: W-shapes studied 

W14 

W14X730 W14X665 W14X605 W14X550 W14X500 W14X455 W14X426 
W14X398 W14X370 W14X342 W14X311 W14X282 W14X257 W14X233 
W14X211 W14X193 W14X176 W14X159 W14X145 W14X132 W14X120 
W14X109 W14X82 W14X74 W14X68 W14X61 W14X53 W14X48 

W12 
W12X336 W12X305 W12X279 W12X252 W12X230 W12X210 W12X190 
W12X170 W12X152 W12X136 W12X120 W12X106 W12X96 W12X87 
W12X79 W12X72 W12X58 W12X53 W12X50 W12X45 W12X40 

W10 W10X112 W10X100 W10X88 W10X77 W10X68 W10X60 W10X54 
W10X49 W10X45 W10X39 W10X33  

W8 W8X67 W8X58 W8X48 W8X40 W8X35  
 
5. Results 
Interaction curves and plots of percent radial errors that correspond to the four different design 
methods (ELM, DM, DMMI, and GMNIA) were prepared (see for example, Fig. 4) for all 65 W-
shapes over a range of member slenderness L/r ratios of 30, 60 , 90, 120, and 150, with 𝑟 = Z𝐼 𝐴⁄ . 
With four cases, including minor- or major-axis bending and with or without residual stresses, this 
study evaluates 1,300 conditions, which are represented by a total of 57,200 analysis data points. 
An example of the specific results for a W12x50 member are provided in Appendix B.  
 
A summary of the results for all members are provided in Table 2, in which the maximum, average, 
and median of all of the individual member maximum percent radial errors are reported. In general, 
the percent radial errors reported for the three design methods are fairly similar.  The largest 
percent radial errors are always for the DMMI method, and the smallest percent radial errors are 
for the DM method. Given that the ELM and DM methods are essentially the same, except that 
DM requires the analysis to include the stiffness reduction 0.8𝜏i, it is expected (and confirmed in 
Table 1) that DM will be more conservative (smaller radial errors) than ELM for all slenderness 
ratios. 
 
As exemplified in Fig. 4, it is further noted that larger unconservative errors for DMMI for sections 
with residual stresses consistently occur when the applied loading combination is predominately 
axial force (q = 10°), where in contrast the larger unconservative errors for ELM and DM occur 
when the loading is primarily bending (q = 80°). 
 

Table 2: Summary of percent radial errors 
 Minor-axis bending 

with residual 
stresses 

Minor-axis bending 
without residual 

stresses 

Major-axis bending 
with residual 

stresses 

Major-axis bending 
without residual 

stresses 

L/r = 30 

DMMI 
Max= 3.0% 
Ave= 2.2% 

Median= 2.2% 

DMMI 
Max= 1.8% 
Ave= 0.5% 

Median= 0.4% 

DMMI 
Max= 7.0% 
Ave= 6.5% 

Median= 6.6% 

DMMI 
Max= 5.9% 
Ave= 5.0% 

Median= 5.0% 
ELM 

Max= 3.2% 
Ave= 2.1% 

Median= 2.0% 

ELM 
Max= 2.5% 
Ave= 1.1% 

Median= 1.1% 

ELM 
Max= 6.9% 
Ave= 6.1% 

Median= 6.2% 

ELM 
Max= 5.8% 
Ave= 4.7% 

Median= 4.6% 
DM 

Max= 2.6% 
Ave= 1.5% 

Median= 1.5% 

DM 
Max= 1.9% 
Ave= 0.6% 

Median= 0.5% 

DM 
Max= 6.0% 
Ave= 5.1% 

Median= 5.2% 

DM 
Max= 4.9% 
Ave= 3.8% 

Median= 3.6% 
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L/r = 60 

DMMI 
Max= 14.8% 
Ave= 13.7% 

Median= 13.9% 

DMMI 
Max= 7.3% 
Ave= 6.1% 

Median= 6.1% 

DMMI 
Max= 10.5% 
Ave= 10.0% 

Median= 10.0% 

DMMI 
Max= 7.5% 
Ave= 6.7% 

Median= 6.6% 
ELM 

Max= 9.7% 
Ave= 8.4% 

Median= 8.4% 

ELM 
Max= 8.8% 
Ave= 7.5% 

Median= 7.6% 

ELM 
Max= 9.2% 
Ave= 8.5% 

Median= 8.6% 

ELM 
Max= 6.1% 
Ave= 5.2% 

Median= 5.3% 
DM 

Max= 8.2% 
Ave= 7.3% 

Median= 7.3% 

DM 
Max= 6.7% 
Ave= 5.5% 

Median= 5.5% 

DM 
Max= 6.4% 
Ave= 5.7% 

Median= 5.8% 

DM 
Max= 3.6% 
Ave= 2.9% 

Median= 3.0% 

L/r = 90 

DMMI 
Max= 15.8% 
Ave= 14.8% 

Median= 14.8% 

DMMI 
Max= 9.7% 
Ave= 8.2% 

Median= 8.2% 

DMMI 
Max= 10.0% 
Ave= 9.2% 

Median= 9.2% 

DMMI 
Max= 5.4% 
Ave= 4.7% 

Median= 4.7% 
ELM 

Max= 13.0% 
Ave= 11.1% 

Median= 11.1% 

ELM 
Max= 11.3% 
Ave= 9.8% 

Median= 9.8% 

ELM 
Max= 7.6% 
Ave= 6.9% 

Median= 6.9% 

ELM 
Max= 4.5% 
Ave= 3.5% 

Median= 3.5% 
DM 

Max= 11.2% 
Ave= 9.6% 

Median= 9.6% 

DM 
Max= 8.2% 
Ave= 6.7% 

Median= 6.7% 

DM 
Max= 3.9% 
Ave= 3.2% 

Median= 3.3% 

DM 
Max= 1.5% 
Ave= 0.6% 

Median= 0.6% 

L/r = 120 

DMMI 
Max= 15.3 % 
Ave= 14.2% 

Median= 14.1% 

DMMI 
Max= 11.0% 
Ave= 9.6% 

Median= 9.6% 

DMMI 
Max= 7.1% 
Ave=6.2% 

Median= 6.2% 

DMMI 
Max= 2.9% 
Ave= 2.2% 

Median= 2.2% 
ELM 

Max= 12.7% 
Ave= 11.3% 

Median= 11.3% 

ELM 
Max= 11.4% 
Ave= 9.9% 

Median= 9.9% 

ELM 
Max= 5.8% 
Ave= 4.6% 

Median= 4.6% 

ELM 
Max= 2.7% 
Ave= 1.8% 

Median= 1.8% 
DM 

Max= 9.5% 
Ave= 8.0% 

Median= 8.0% 

DM 
Max= 8.1% 
Ave= 6.6% 

Median= 6.6% 

DM 
Max= 2.6% 
Ave= 1.5% 

Median= 1.4% 

DM* 
Max= n/a 
Ave= n/a 

Median= n/a 

L/r = 150 

DMMI 
Max= 14.0% 
Ave= 12.6% 

Median= 12.6% 

DMMI 
Max= 11.8% 
Ave= 10.4% 

Median= 10.4% 

DMMI 
Max= 5.6% 
Ave= 4.8% 

Median= 4.7% 

DMMI 
Max= 2.1% 
Ave= 1.2% 

Median= 1.2% 
ELM 

Max= 12.4% 
Ave= 10.9% 

Median= 10.9% 

ELM 
Max= 11.2% 
Ave= 9.8% 

Median= 9.8% 

ELM 
Max= 4.4% 
Ave= 3.4% 

Median= 3.4% 

ELM 
Max= 1.4% 
Ave= 0.5% 

Median= 0.5% 
DM 

Max= 9.0% 
Ave= 7.6% 

Median= 7.6% 

DM 
Max= 7.8% 
Ave= 6.4% 

Median= 6.4% 

DM 
Max= 1.1% 
Ave= 0.2% 

Median= 0.1% 

DM* 
Max= n/a 
Ave= n/a 

Median= n/a 
DM* no unconservative errors are observed 
 
5.1 Effects of Residual Stresses 
As would be expected, not including a residual stress distribution increases the design capacities 
of the beam-columns per the GMNIA design method. As a consequence, and given that the 
GMNIA results form the basis for the error analysis, the unconservative percent radial errors for 
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all three of the elastic design methods (ELM, DM, and DMMI) are significantly reduced. A 
representative example of this is shown in Fig. 5, where the performance of the DMMI design 
method is significantly improved with much better agreement (smaller radial errors) with GMNIA. 
This increase in accuracy, however, is relatively pronounced where 𝜃 is small, when the axial load 
is more significant than the bending moment, and is less obvious when 𝜃 is large, a combination 
of a larger bending moment and a smaller axial force. Of course, this is expected because it is well 
known that such residual stresses rarely impact the strength of a member primarily subjected to a 
loading combination that is predominately bending (again noting that all members in this study are 
either subject to minor-axis bending or laterally braced when subject to major-axis flexure). The 
trend observed in Fig. 5 is consistent for all shapes and design methods investigated in this study, 
regardless of the slenderness ratio or the axis of bending investigated. It is further noted that the 
ELM and DM design methods are significantly more conservative when residual stresses are not 
present.  
 
 

 
                                                        (a)                                                                         (b)  
Figure 5: Percent radial errors for a member of an L/r = 60 subjected to minor-axis bending comprised of a W12X50 

section that (a) includes and (b) excludes residual stresses in the GMNIA-based design 
 
 
With a focus on the DMMI method, Table 3 shows the maximum and average of the maximum 
changes in the individual percent radial errors for all 65 W-sections as a result of not including the 
residual stress effect in the GMNIA-based design. Results for both minor-axis and major-axis 
bending are provided. All changes reported indicate a reduction in the percent error. For example, 
the maximum radial error of all members with an L/r = 60 subject to minor-axis bending was 
reduced by DMax = 8.4% with an average maximum change of DAve = 7.7%. The reduction in DMMI 
errors for sections with and without residual stresses is largest when the slenderness ratio is L/r = 
60 for minor-axis bending and L/r = 90 for major-axis bending. The change in error is the smallest 
at the extreme slenderness ratios investigated, including the least-slender (L/r = 30) and most-
slender (L/r = 150) members. 
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Table 3: Effect on DMMI results when excluding residual stresses in the GMNIA-based design 
(reduction in percent radial error) 

Slenderness Ratio Minor-axis bending Major-axis bending 

30 DMax= 2.5% 
DAve= 1.7% 

DMax= 2.2% 
DAve= 1.5% 

60 DMax= 8.4% 
DAve= 7.7% 

DMax= 4.1% 
DAve= 3.3% 

90 DMax= 7.0% 
DAve= 6.5% 

DMax= 5.4% 
DAve= 4.6% 

120 DMax= 5.1% 
DAve= 4.6% 

DMax= 4.6% 
DAve= 4.0% 

150 DMax= 2.6% 
DAve= 2.3% 

DMax= 4.0% 
DAve=3.6% 

* DMax= maximum of all of the individual maximum changes for the 65 W-sections investigated by DMMI when 
moving from including residual stresses to excluding residual stresses in the GMNIA-based design. 
* DAve= average of all of the individual maximum changes for the 65 W-sections investigated by DMMI when 
moving from including residual stresses to excluding residual stresses in the GMNIA-based design. 
 
5.2 Effect of Bending Axis 
Using an approach similar to that used in the previous section, the DMMI method was investigated 
with regard to the axis of the bending moment. The example in Fig. 6 is representative of the results 
observed, in which the percent radial error is significantly reduced when moving from minor-axis 
bending to major-axis bending, while the slenderness ratio remains the same. Similarly, the change 
in the DMMI results for all members are provided in Table 4. For the example of L/r = 90, changing 
the bending axis from minor to major for the condition of when residual stresses are excluded 
produces a reduction in the maximum percent radial error of DMax = 5.1% with an average 
maximum change of DAve = 3.5%. Negative values in Table 4 indicate an increase in the error. 
With the exception of more-stocky members (L/r = 30), the percent radial errors are reduced when 
members are subject to major-axis flexure instead of minor-axis bending.   
 

 
                                                      (a)                                                                          (b)  

Figure 6: Percent radial errors for members of an L/r = 120 with a W12x50 section that excludes residual stresses 
subjected to (a) minor-axis and (b) major-axis bending 

 



 13 

Table 4: Effect of bending axis on DMMI results (reduction in percent radial error) 

Slenderness Ratio Residual stresses included in the 
GMNIA-based design 

Residual stresses excluded in the 
GMNIA-based design 

30 DMax= -3.6% 
DAve= -4.3% 

DMax= -2.8% 
DAve= -4.5% 

60 DMax= 4.9% 
DAve= 3.7% 

DMax= 1.0% 
DAve= -0.6% 

90 DMax= 6.9% 
DAve= 5.5% 

DMax= 5.1% 
DAve= 3.5% 

120 DMax= 9.3% 
DAve= 7.9% 

DMax= 9.1% 
DAve= 7.3% 

150 DMax= 9.4% 
DAve= 7.9% 

DMax= 11.1% 
DAve=9.2% 

* DMax= maximum of all of the individual maximum changes for the 65 W-sections investigated by DMMI when 
moving from minor-axis bending to major-axis bending. 
* DAve= average of all of the individual maximum changes for the 65 W-sections investigated by DMMI when 
moving from minor-axis bending to major-axis bending. 
 
5.3 Comparison with ELM and DM 
As shown in Table 2, all three elastic design methods will produce unconservative errors when 
compared with GMNIA-based design.  For the reasons given earlier, DM will always provide 
smaller percent radial errors when compared with ELM. This applies only for the simply-supported 
member explored in this study – for systems comprised of members with effective length K-factors 
exceeding 1.0, this will not necessarily be the case (Martinez-Garcia, 2006).  
 

Table 5: Summary of effect of changing bending axis 
Slenderness Ratio Minor-axis bending Major-axis bending 

30 DMax= 1.3% 
DAve= 0.1% 

DMax= 0.6% 
DAve= 0.4% 

60 DMax= 5.8% 
DAve= 5.3% 

DMax= 2.6% 
DAve= 1.4% 

90 DMax= 4.2% 
DAve= 3.7% 

DMax= 3.6% 
DAve= 2.3% 

120 DMax= 3.4% 
DAve= 2.9% 

DMax= 2.2% 
DAve= 1.6% 

150 DMax= 1.9% 
DAve= 1.7% 

DMax= 1.6% 
DAve=1.4% 

* DMax= maximum of all of the individual maximum changes for the 65 W-sections investigated when moving from 
DMMI to ELM. 
* DAve= average of all of the individual maximum changes for the 65 W- sections investigated when moving from 
DMMI to ELM. 
 
To provide a basis for interpreting the errors observed by DMMI, the maximum and average 
change in the maximum errors associated with moving from DMMI to ELM are presented in Table 
5.  For the condition of including residual stresses in the GMNIA-based design, changes are 
reported for both minor- and major-axis bending. The positive values reported indicate that the 
percent radial errors are reduced. For example, the maximum observed for the maximums of all 
members with an L/r = 60 subject to minor-axis bending was a reduction in the error of DMax = 
5.8%, with the average change in the maximum of all sections being DAve = 5.3%. This indicates 
that results for DMMI and ELM are not significantly different, with the largest differences 
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occurring for members subject to minor-axis bending in the low- to mid-slenderness (L/r = 60 to 
90). Knowing that ELM has been a well-established design method that has performed well in the 
U.S. since the early 1960’s, it is the authors’ opinion that the unconservative errors reported in 
Table 1 for all three elastic design methods may not be reason for significant concern. 
 
6. Summary and Conclusions 
This study evaluates three elastic design methods (ELM, DM, and DMMI) appearing in the 2016 
AISC Specification by making comparisons with a forth inelastic method that some may consider 
the most “exact” and titled Design by Advanced Inelastic Analysis Method, which also appears in 
this Specification. With 1,300 conditions studied that required a total of 57,200 analyses, simply-
supported beam-columns comprised of a fairly wide range of column W-sections and slenderness 
ratios are investigated for conditions of minor- or major-axis flexure that include or exclude the 
presence of residual stresses.  
 
In general, all three elastic design methods provide fairly similar results, with AISC’s relatively 
new Design by Advanced Elastic Analysis Method consistently indicating more strength (1% to 
5%) than AISC’s Effective Length and Direct Analysis design methods. Conditions of major-axis 
bending significantly improved the performance of all three elastic design methods. Regardless of 
the axis of bending, results are always improved when residual stresses are not present, a condition 
that is often the consequence of rotary straightening during the rolling process. 
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Appendices 
A. Plots of interaction curves and percent radial errors  
As a complement to Fig. 4, the remaining normalized P-M interaction curves and corresponding 
plots of percent radial errors that were studied for the specific case of a W12X50 member that 
includes residual stresses and subjected to minor-axis bending are provided. 
 

 
Figure A1:  L/r = 30 

 

 
Figure A2:  L/r = 60 

 

 
Figure A3:  L/r = 120 
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Figure A4:  L/r = 150 

 
 
 
 
 
B. Data for plots of percent radial errors  
The following tables provide numerical values for the data points appearing in the percent radial 
error plots given in Fig. 4 and Appendix A. 
 

Table B1:  L/r = 30 (values are percent radial errors) 
 Minor-axis bending 

with residual stresses 
Minor-axis bending 

without residual stresses 
Major-axis bending 

with residual stresses 
Major-axis bending 

without residual stresses 
𝜃 DMMI ELM DM DMMI ELM DM DMMI ELM DM DMMI ELM DM 
0° 1.5 0.1 0.1 -6.2 -7.4 -7.4 1.9 -0.4 -0.4 -0.8 -3.1 -3.1 
10° -3.8 -4.3 -5.6 -7.2 -7.7 -8.9 3.5 2.3 0.9 -1.1 -2.2 -3.5 
20° -7.4 -8.0 -9.0 -9.1 -9.6 -10.6 4.7 3.4 2.3 -0.8 -2.0 -3.1 
30° -10.5 -11.0 -11.8 -12.1 -12.6 -13.5 5.2 4.1 3.1 1.2 0.1 -0.9 
40° -12.6 -13.0 -13.8 -14.5 -14.8 -15.7 5.4 4.6 3.5 4.2 3.3 2.3 
50° -12.6 -12.7 -13.6 -14.9 -15.1 -16.0 5.4 4.8 3.8 3.9 3.3 2.2 
60° -9.6 -9.6 -10.5 -12.2 -12.3 -13.2 5.2 4.9 3.9 5.0 4.7 3.6 
70° -4.3 -4.1 -4.9 -6.6 -6.5 -7.3 4.8 4.7 3.8 4.5 4.4 3.5 
80° 1.3 2.0 1.4 0.3 1.1 0.5 1.6 2.2 1.6 2.2 2.8 2.2 
90° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 
Table B2:  L/r = 60 (values are percent radial errors) 

 Minor-axis bending 
with residual stresses 

Minor-axis bending 
without residual stresses 

Major-axis bending 
with residual stresses 

Major-axis bending 
without residual stresses 

𝜃 DMMI ELM DM DMMI ELM DM DMMI ELM DM DMMI ELM DM 
0° 12.5 7.7 7.7 -4.8 -8.8 -8.8 3.8 -2.6 -2.6 -6.6 -12.3 -12.3 
10° 12.7 7.2 3.9 0.4 -4.5 -7.3 6.9 0.4 -2.7 -1.8 -7.8 -10.6 
20° 9.1 4.7 1.0 0.0 -4.2 -7.5 8.1 2.5 -1.1 1.4 -4.0 -7.3 
30° 6.3 3.0 -0.7 -1.5 -4.9 -8.3 8.5 4.0 0.3 3.4 -1.1 -4.6 
40° 5.2 2.6 -1.0 -1.8 -4.6 -7.9 8.8 5.2 1.5 4.5 0.8 -2.8 
50° 5.1 2.9 -0.4 -1.2 -3.4 -6.7 9.5 6.5 3.0 5.2 2.1 -1.4 
60° 5.9 4.2 1.2 0.5 -1.3 -4.3 9.9 7.5 4.3 5.8 3.3 0.1 
70° 7.0 6.8 4.2 3.4 2.5 -0.2 8.4 7.4 4.6 6.1 4.6 1.9 
80° 6.9 8.3 6.4 5.5 7.0 5.0 4.4 5.6 3.7 2.9 4.1 2.1 
90° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table B3:  L/r = 90 (values are percent radial errors) 

 Minor-axis bending 
with residual stresses 

Minor-axis bending 
without residual stresses 

Major-axis bending 
with residual stresses 

Major-axis bending 
without residual stresses 

𝜃 DMMI ELM DM DMMI ELM DM DMMI ELM DM DMMI ELM DM 
0° 8.2 9.4 9.4 -2.4 -1.3 -1.3 0.2 -1.2 -1.2 -6.5 -7.8 -7.8 
10° 14.4 9.0 2.1 1.7 -3.0 -9.0 4.3 -1.9 -8.0 -1.0 -6.8 -12.5 
20° 14.2 8.5 1.7 2.7 -2.5 -8.6 5.7 -0.6 -6.8 0.6 -5.5 -11.3 
30° 13.1 7.6 1.3 3.1 -2.1 -7.8 6.9 0.7 -5.2 2.7 -3.3 -9.1 
40° 12.4 7.2 1.3 3.9 -1.1 -6.7 8.0 2.2 -3.6 3.8 -1.9 -7.5 
50° 12.3 7.5 2.1 5.5 0.9 -4.3 9.0 3.7 -1.7 4.0 -1.2 -6.4 
60° 11.7 8.7 3.9 6.6 3.1 -1.6 9.0 5.0 0.2 4.6 0.4 -4.3 
70° 11.2 11.2 7.1 7.3 6.6 2.4 7.5 6.4 2.2 4.3 2.8 -1.3 
80° 9.9 11.4 8.5 8.1 9.7 6.7 4.4 5.7 2.8 2.0 3.3 0.4 
90° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 
Table B4:  L/r = 120 (values are percent radial errors) 

 Minor-axis bending 
with residual stresses 

Minor-axis bending 
without residual stresses 

Major-axis bending 
with residual stresses 

Major-axis bending 
without residual stresses 

𝜃 DMMI ELM DM DMMI ELM DM DMMI ELM DM DMMI ELM DM 
0° -0.3 5.7 5.7 -6.4 -0.7 -0.7 -5.9 -1.7 -1.7 -6.7 -2.5 -2.5 
10° 10.7 2.9 -5.0 0.4 -6.6 -13.7 0.9 -7.0 -14.1 -1.2 -9.0 -15.9 
20° 13.3 3.6 -3.9 2.5 -6.2 -13.0 3.6 -5.9 -12.7 0.0 -9.2 -15.8 
30° 13.6 3.7 -3.2 4.4 -4.8 -11.2 5.6 -4.4 -10.8 1.0 -8.6 -14.7 
40° 13.1 4.4 -1.9 5.4 -2.9 -9.0 6.2 -2.8 -8.8 1.6 -7.1 -12.9 
50° 12.6 5.7 -0.3 6.4 -0.4 -6.2 6.4 -1.0 -6.7 2.3 -4.9 -10.4 
60° 12.3 7.6 2.3 7.5 2.6 -2.5 6.2 0.9 -4.2 2.2 -2.9 -7.8 
70° 11.8 10.3 5.7 8.7 6.7 2.2 5.5 3.3 -1.1 1.9 -0.3 -4.5 
80° 10.8 11.2 8.0 9.4 9.9 6.6 4.1 4.3 1.2 1.7 2.0 -1.1 
90° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 
Table B5:  L/r = 150 (values are percent radial errors) 

 Minor-axis bending 
with residual stresses 

Minor-axis bending 
without residual stresses 

Major-axis bending 
with residual stresses 

Major-axis bending 
without residual stresses 

𝜃 DMMI ELM DM DMMI ELM DM DMMI ELM DM DMMI ELM DM 
0° -3.9 -0.3 -0.3 -5.8 -2.3 -2.3 -7.7 -5.3 -5.3 -9.2 -6.8 -6.8 
10° 8.1 -2.7 -10.0 -0.6 -10.5 -17.3 -0.8 -11.3 -17.9 -4.9 -15.0 -21.4 
20° 11.1 -1.2 -8.3 2.0 -9.2 -15.8 1.6 -10.3 -16.8 -1.9 -13.4 -19.6 
30° 11.9 -0.2 -6.8 3.9 -7.4 -13.5 3.0 -8.8 -14.8 -0.1 -11.5 -17.4 
40° 12.1 1.1 -5.2 5.4 -5.0 -10.9 3.9 -6.9 -12.8 0.5 -10.0 -15.7 
50° 12.2 3.0 -2.9 6.9 -2.1 -7.7 4.5 -4.8 -10.3 0.1 -8.8 -14.1 
60° 12.4 5.5 0.2 8.3 1.5 -3.6 4.8 -2.3 -7.4 0.5 -6.5 -11.3 
70° 12.3 8.1 4.2 9.6 6.1 1.5 4.7 0.8 -3.6 0.9 -3.0 -7.2 
80° 11.4 10.9 7.5 10.3 9.7 6.4 3.9 3.3 0.0 1.5 0.8 -2.3 
90° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 
 


