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Abstract 

Thin steel webs in plate girders possess strength beyond the elastic buckling load which is 

commonly referred to as the post-buckling capacity.  Semi-empirical equations based on 

experimental tests of plate girders have been used for decades to predict this post-buckling capacity 

up to the ultimate shear load.  However, these predictions are predicated on a specific set of 

assumptions regarding the boundary conditions of the plate.  Specifically, the rotational and 

translational restraint provided by the stiffeners and flanges are idealized when calculating the 

post-buckling capacity of the web. To this end, the current design equations provide an 

approximate (albeit generally conservative) estimate of capacity relative to the test data upon 

which they are founded. New research by the authors has examined the impact of web boundary 

conditions on the post-buckling shear capacity.  Analyses of isolated web plates, independent of 

the flanges and stiffeners with idealized boundary conditions, are compared against the response 

of webs within a plate girder loaded predominantly in shear.  Experimentally validated finite 

element models are the basis for this study. Outputs such as von Mises stresses and principal 

stresses are examined for the buckled plate, whose behavior is influenced by both membrane 

stresses and second-order bending effects. These evaluations are performed for a range of panel 

aspect ratios, axial (longitudinal) restraint, and initial imperfections, with the goal of exploring 

changes in post-buckling shear capacity as well as changes in the fundamental mechanics.  The 

results of this study have potential implications for current design-basis approaches. 

 

1. Introduction 

Shear buckling often governs the design of deep beams in buildings and bridges. Slender plate 

girders are susceptible to web shear buckling, and these plates have a significant amount of 

postbuckling shear strength that has been utilized by designers over the past half-century (Skaloud 

2013, AISC 2016). However, the true mechanics of this postbuckling shear behavior are yet to be 

fully understood. More than a dozen proposals have attempted to explain the postbuckling 

behavior of a plate girder in shear (White and Barker 2008). Virtually all of these proposals have 

been based on “Tension Field Action” (TFA), where the source of postbuckling strength is the 
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development of tensile stresses along a distinct diagonal called the “tension field.”  However, 

several key assumptions of TFA have been proven to be inaccurate by recent research (Yoo and 

Lee 2006, Glassman and Garlock 2016). A stronger understanding of postbuckling behavior is 

needed to enable more accurate design equations and more economical plate girder designs. One 

step towards this goal is to understand the effect of web boundary conditions on shear buckling 

behavior.  

 

Shear buckling is typically divided into two phases: the elastic regime prior to buckling and the 

postbuckling regime. Work by early researchers such as Timoshenko and Gere (1961) and Bleich 

(1952) has thoroughly investigated the elastic shear regime. The elastic shear buckling load Vcr is 

typically calculated using Eq. 1, where k is the shear buckling coefficient,  𝐸 is the modulus of 

elasticity, 𝜇 is Poisson’s ratio, 𝐷 is the web depth, and 𝑡𝑤 is the web thickness. 

 

𝑉𝑐𝑟 = 𝑘
𝜋2 𝐸

12(1−𝜇2)∗(𝐷/𝑡𝑤)2  (
𝐷

𝑡𝑤
)    (1) 

 

Bleich has determined the value of the plate shear buckling coefficient k based on plate aspect ratio 

and idealized plate boundary conditions (Bleich 1952). Lee et al. (1996) proposed a formula to 

calculate the k value based flange dimensions. However, the postbuckling behavior has been more 

elusive to characterize as the plate deviates from its pure shear state due to nonlinear geometric 

behavior, material plasticity, the development of multi-directional stress fields, and changing roles 

of the flanges and transverse stiffener. Current research in shear buckling over the past half-century 

has therefore focused on the postbuckling shear behavior. 

 

Axial and rotational restraint provided to the web by the flange has yet to be incorporated in the 

simplified and conservative simple-support model used in code (AISC 2016). The flange rotational 

contribution has not been addressed in either elastic or postbuckling regime in Tension Field 

Action theory; meanwhile, the flange frame action contribution to strength is only considered in 

the Eurocode (CEN 2006) and not in the AISC or AASHTO codes (White and Barker 2008). 

Basler’s theory, upon which the US codes are based, conservatively assumes that flanges are 

infinitely flexible and thus cannot anchor the tension-field (Basler 1961). Lee and Yoo (1999) 

proposed in their experimental study that the flanges do not anchor the diagonal tensions from the 

tension field. Yoo and Lee (2006) proposed that the postbuckling reserve (from Vcr up to the 

ultimate shear capacity, Vu) is constant for different flange sizes via computational studies of 

isolated web panel models.      

 

Few studies have explored the effect of axial (longitudinal) restraint as a boundary condition on 

shear postbuckling behavior (hereafter called axial restraint). The flanges at the top and bottom of 

a web panel will add varying amounts of axial restraint at the plate boundary. A concrete slab can 

add significant axial restraint to a web’s freedom of axial translation along its top edge. Bearing 

supports and other connections may also provide a degree of axial restraint – for deep girders, this 

restraint is almost always applied eccentric to the girder’s neutral axis.  Both axially-restrained and 

axially-free plates have been shown to be in a state of pure shear up to the elastic buckling load 

(Glassman and Garlock 2016, Garlock et al. 2019, Yoo and Lee 2006).   The major differences 

arise in the postbuckling shear regime. 
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Different models of axial restraint in the literature have led to different ultimate shear strengths in 

numerical simulation. Yoo and Lee (2006) have modeled the lower bound of zero axial restraint, 

leading to predictions that are often lower than the TFA-predicted capacity and experimental tests, 

especially for smaller aspect ratios. Glassman and Garlock (2016) modeled an upper bound on 

axial restraint in an isolated web panel and demonstrated good agreement with the Vu of 16 plate 

girder experimental tests. The true degree of axial restraint offered by the realistic plate girder and 

the surrounding structure lies somewhere in between the upper and lower bound solutions. To the 

authors’ knowledge, researchers have yet to directly quantify how axial restraint influences 

postbuckling shear capacity, shear stiffness (load-displacement behavior), and sensitivity to initial 

imperfection in steel plate girders. 

 

This study investigates the shear postbuckling behavior of slender steel web panels subjected to 

differing boundary configurations. A detailed finite element study will examine the sensitivity of 

both isolated panel models and full beam models to axial restraint, panel aspect ratio, discrete 

modeling of flanges and stiffeners, and initial imperfection.  Isolated plate panel models are more 

convenient due to reduced computational complexity and are generally conservative because of 

the simply-supported boundary assumption. However, the elastic buckling load, Vcr, can be 

significantly underestimated by neglecting flange rotational restraint (Yoo and Lee 2006, Lee and 

Yoo 1998). Full beam models can assist in verifying the sensitivity analyses of individual plate 

panel tests by considering web and flange continuity as well as discrete stiffeners. The comparisons 

shown in this paper can take the next step toward understanding the postbuckling load path for 

thin web plates in shear. 

 

2. Plate Girder Prototype 

The plate girder prototype for this study is based on Design Example 1 from the FHWA’s Steel 

Bridge Design Handbook (Grubb and Schmidt 2012), hereafter referred to as the FHWA 2012 

girder. The girder is part of a 3-span continuous bridge design with spans ranging from 42 m (140 

ft.) to to 52 m (170 ft.). The girder cross section varies to accommodate positive and negative 

moment regions; as shown in Fig. 1, the cross section chosen for this study is taken at the location 

of largest shear with minimum moment. This girder was originally designed as composite with the 

deck slab and therefore had asymmetric flanges (i.e. a lighter top flange was enabled by continuous 

bracing against the slab).  For simplification, the slab is neglected except for the application of 

lateral bracing to the top flange.  Contributions of the composite slab to the web’s postbuckling 

mechanics will be studied in future phases of this project. As shown in in Fig. 1, the prototype is 

simplified as symmetric with both flanges having the same dimensions as the larger bottom flanges.  

           
Figure 1: Prototype cross section and typical buckled eigenmode 



 4 

3. Computational Modeling Approach 

The finite element analyses were conducted in the commercial software ABAQUS (Dassault 

Systemes 2017). Type S4 elements (doubly-curved, general purpose, finite membrane strains) 

were assigned 4 integration points per quad surface and 5 integration points through the thickness. 

For each case, an eigenvalue analysis is initially performed to determine the Vcr and the shape of 

the first positive eigenmode, which was scaled to impose an initial imperfection. A quasi-static 

loading procedure was then performed using a Static-Riks analysis (Glassman and Garlock 2016) 

to load the plate to failure. The maximum magnitude of this eigenmode imperfection was analzed 

at both D/10,000 and D/100, where D is the depth of the girder, to examine sensitivity. As shown 

in Garlock and Glassman (2014), a scaled shape of the first positive eigenmode will allow the 

simulation to proceed beyond the elastic buckling bifurcation and demonstrate numerically stable 

postbuckling behavior. 

 

The steel material model was elastoplastic with strain hardening obtained from the Eurocode 3 at 

ambient temperatures (CEN 2001), with a Young’s Modulus of 200 GPa and a Poisson’s ratio of 

0.3. A von Mises yield criterion with a yield stress of 345 MPa was considered. The nominal stress-

strain curve was converted into true stress-strain data for input into ABAQUS. Two types of finite 

element models are employed: the isolated web panel model and the full beam model.  

  

3.1. Isolated panel models (“P” models) 

Isolated panel models are attractive for evaluating shear mechanics due to their computational 

simplicity. The idealized assumption of a simple supports on all four edges (Fig. 2a) is examined 

first. Then, the boundary conditions at the top and bottom edges of the web are released and flanges 

are implemented (F2 model in Fig. 2b). Next, the boundary condition at the vertical edges are 

released and stiffeners are implemented (F2-S2 model in Fig. 2c).  

 

 
Figure 2: Panel models: a) simply-supported panel, b) panel with flanges, and c) panel with flanges and stiffeners 

 

The boundary conditions used for the simply-supported web panel are given in Fig. 3, along with 

the loading for pure shear (Garlock et al. 2019). A panel with no restraint of axial translation 

represents a lower bound (LB). A panel with axial translation restrained on the vertical edges can 

be considered an upper bound (UB).  The mesh density shown in Fig. 3 (35 elements through the 

depth) was determined through a convergence study. The selected mesh predicted the theoretical 

elastic buckling load Vcr for a simply-supported square panel with less than 1% error versus an 

eigenvalue analysis.  
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Figure 3: Boundary conditions for isolated panel and mesh density 

 

Panels with flanges used the flange dimensions shown in Fig. 1 (Grubb and Schmidt 2012). 

Stiffeners were designed to satisfy the postbuckling stiffener moment of inertia requirement per 

US standards (AASHTO 2007, AISC 2010). To assess the role of the stiffener in providing vertical 

and rotational restraint to the web panel, all boundary conditions on the vertical web edges were 

released. No boundary restraints were directly applied to the flanges and stiffeners, and their 

interfaces with the web and each other were represented with tie constraints to simulate the welds. 

 

3.2. Full beam models (“F” models) 

Postbuckling shear results from the isolated plates were compared to full-beam models to examine 

the influence of realistic boundary conditions and plate continuity. The full beam analysis was 

performed using the same finite element modeling approach as the panels according to the 

specifications listed above for the FHWA 2012 girder. The loading and support of the full-beam 

model is based on the experimental setup used by Hansen (Hansen 2007, 2018) to evaluate the 

shear buckling behavior of several steel girder specimens. Fig. 4 shows that the full beam 

representation consists of a critical buckling section (ABCD) and two support sections (EACG and 

BFHD, which are designed to enforce continuity in the beam but not buckle). The critical section 

for each model follows the FHWA 2012 girder dimensions for flange and web thickness. The 

stiffener size was again based on the AASHTO and AISC requirements mentioned above. The 

length of this section is 4 times the depth of the girder, resulting in 4 panels for the a/D=1 models 

and 2 panels for the a/D=2 models. In the support section, the web thickness and the thickness of 

stiffeners 1 and 2 were increased by a factor of 5 in order to resist buckling and enforce plate 

continuity into the critical section. This section was given a length of 2D to enable to the shear to 

become uniform at an adequate distance from the discrete support points at F and G.  

 
Figure 4: Full beam model (elevation). 
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The finite element analysis of these models was similarly performed using the Static Riks analysis 

in ABAQUS (Dassault Systemes 2011). The loading was applied as shown in Fig. 4 with equal 

value at points A, B, C, and D and increased gradually until failure to avoid localized crumpling 

at the extents of the critical section. Point G was assigned a pin condition that restrained the flange 

against translation in all three directions. The support at Point F was modeled as a pin for the upper 

bound (UB) case and as a roller (i.e. no restraint in the axial direction) for the lower bound (LB) 

case. 

 

In each analyses, the vertical displacements at A, B, C, and D were incrementally recorded as well 

as the loads and stresses. The following loading milestones were recorded: load at which the load-

displacement curve becomes non-linear (representing Vcr), the ultimate load (Vu), the load at which 

the first plastic hinge forms in the flange (Vh), and the load at which a mechanism forms to collapse 

the beam (Vm).  

 

3.3. Initial imperfections 

Two initial imperfections were examined for both “P” and “F” models to evaluate the sensitivity 

to different boundary configurations. The lower bound initial imperfection had a magnitude of 

D/10,000 of the first positive buckled eigenmode, where D is the depth of the girder web 

(corresponding to a ~0.2-mm magnitude imperfection for the prototype).  The upper bound was 

an initial imperfection magnitude of D/100 (corresponding to a ~2-cm magnitude imperfection for 

the prototype), which is the maximum initial imperfection allowed by the American Welding 

Society (AWS) in the Bridge Welding Code (Yoo and Lee 2006). Similarly, the Eurocode (CEN 

2006) recommends an equivalent geometric imperfection of magnitude D/200 of the first positive 

buckled eigenmode to model the effect of weld-based residual stresses and geometrical 

imperfections on shear behavior.    

 

4. Results 

An eigenvalue analysis and subsequent Static Riks failure analysis was conducted for each 

boundary configuration model. The elastic shear buckling load (Vcr) and the ultimate shear load 

(Vu) for each case are summarized in Table 1. For each model, the ratio of Vu /Vcr and a measure of 

the additional shear strength beyond elastic buckling (the postbuckling reserve Vu - Vcr) is also 

shown. Boundary configurations are noted using the following nomenclature. The first letter in 

each run denotes a full beam model (F) or isolated panel (P). The second index lists the web panel 

a/D ratio (1 or 2). The third index indicates the axial restraint in the plate (UB = fully restrained, 

LB = no restraint). If the flange is modeled, an “F2” index is present. If the stiffener is modeled, 

“S2” is added. Lastly, the initial imperfection magnitude is indicated by I1 (D/10,000) or I2 

(D/100).  Note that the model for the a/D = 2 panel with axial restraint and an initial imperfection 

of D/100 did not obtain a failure mechanism due to numerical non-convergence but successfully 

reached all other milestones in the analysis.  All other cases achieved full numerical convergence 

to the formation of a failure mechanism. 
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Table 1: Matrix of analysis cases and results 

 
a/D = 1 girder panel: TFA capacity is 3649 kN 

a/D = 2 girder panel: TFA capacity is 2601 kN 
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The results for ultimate shear strength are compared with TFA estimates. Lee and Yoo (1998) 

showed that TFA predictions agree relatively well with experimental tests for a/D ≤ 1.5 but are 

increasingly conservative at a/D ratios approaching 3.0. The P-#-UB- models corresponded well 

with the TFA ultimate strength predictions for both a/D = 1 and 2. The lower bound P-#-LB- 

models tended to fall well below TFA capacity (by ~30% for P-1-LB-I1). However, as more girder 

components were discretely modeled, the underestimation of the ultimate strength reduced. In 

particular, the P-1-UB-F2-S2 models (with flanges and stiffeners) included agreed within 1% of 

TFA estimates. Model predictions were under TFA predictions at a/D = 1 but produced mixed 

predictions for a/D = 2. This relation with TFA predictions agrees with the trends observed from 

previous experimental studies (Lee and Yoo 1998). The full beam models also agreed relatively 

well with TFA predictions, with a/D = 1 cases ~15% lower and a/D = 2 cases ~15% greater.  The 

smaller D/10,000 imperfections produced up to 15% greater Vu than the larger D/100 

imperfections, with the P-#-UB- models and all full beam models showing very little difference 

(less than 5%) between the two. 

 

4.1. Strength Comparison: Panel to Full Beam 

Table 2 summarizes the variation in values of Vcr and Vu between the panel and full beam models 

for each boundary configuration. The Vu of case 1-LB-F2-S2-I1 (axially-free with a/D = 1 and 

D/10,000 initial imperfection) showed the best agreement between the isolated panel and full beam 

models, differing by only +0.5%. The axially-restrained version for the panel produced 15% larger 

Vu for a/D = 1 than the full beam due to the closer proximity of its restrained boundary condition 

to the buckled section.  The full beam models showed lower Vcr for all cases, up to 42% lower for 

cases with a/D = 1 and UB axial restraint, due to their added flexibility and non-ideal boundary 

conditions.   

 
Table 2: Comparison of panel and full beam model results. 

 
*positive % difference corresponds to a higher shear value from the isolated panel models. 

 

The increase in initial imperfection had a negligible effect on Vu for models with axial restraint 

(UB) for both isolated panel and full beam (UB) cases, agreeing well in their sensitivity. However, 

the increase in initial imperfection yielded a large 10-14% reduction in Vu in the isolated panel 

models with no axial restraint (axially free plates). In addition, the effect on Vu of increasing the 
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initial imperfection was magnified when flanges and/or stiffeners were discretely modeled in the 

isolated panel.  The axially-free full beam models (e.g. F-1-LB-F2-I2 and F-2-LB-F2-I2) also 

demonstrated slightly larger sensitivity to initial imperfection than the restrained case, with a 1-2% 

reduction in ultimate strength due to the D/100 imperfection.  

 

Overall, though not as significant as that in the isolated panel models, the effect of the change in 

the initial imperfection from D/10,000 to D/100 causes a decrease in Vu  ranging from 20 to 70 kN, 

which accounts for only about 2% of the strength of the full beams. This indicates that the beam 

models are overall not as sensitive to the imperfection changes. By increasing the initial 

imperfection, there is a large reduction in shear stiffness among all isolated panel models, as 

illustrated in the load vs. vertical displacement curves of Fig. 5. The buckling bifurcation Vcr in 

the load-displacement curve is less visible for larger D/100 initial imperfection, as second order-

bending effects soften the onset of buckling. The plots of maximum out-of-plane web displacement 

in Fig. 6 confirm that the D/100 imperfection allows much more “bulging” of the plate throughout 

the application of shear, even well before buckling would be expected. The reduction in shear 

stiffness is much less significant for the full beam models, as observed in Fig. 7 and 8.  

 
 

 
Figure 5: Load vs. vertical displacement for the axially-free panels, a/D = 2. The circles denote Vcr for each curve. 
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Figure 6: Load vs. lateral displacement for the isolated panels: a/D = 2 (left) and a/D = 1 (right).  

 

 
Figure 7: Load vs. vertical displacement at point A (see Fig. 4) of the full beam model 
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Figure 8:  Load vs. vertical displacement at point B (see Fig. 4) of the full beam model 

 

4.2. Effects of axial restraint: 

The corresponding P-#-UB- and P-#-LB- models experienced the same Vcr since both axially-

restrained (UB) and axially-free (LB) conditions subject the plate panel to pure shear prior to 

buckling. However, the ultimate postbuckling strength Vu (and therefore the postbuckling reserve) 

was found to be largely dependent on the axial restraint in the plate. This shows that the degree of 

axial restraint is especially important in the postbuckling behavior. By observing the load vs. 

lateral deflection curves from Fig. 6, the LB models experience higher out-of-plane deformation 

at lower loads, showing that they crumple faster after Vcr, which may reduce their postbuckling 

strength. For the a/D = 1 simply-supported plate panel, the Vu with axial restraint was 38% greater 

than the axially-free plate (1-UB-I1 vs. 1-LB-I1, respectively), while for a/D = 2 the difference 

was 28% (2-UB-I1 vs. 2-LB-I1). The effect of axial restraint is therefore magnified when the axial 

restraints are placed closer to each other (as in the a/D = 1 panel).  

 

When axial restraint is present in the isolated panels, the closer case is a pin-pin condition in the 

full-beam test setup (though in this case, the locations of axial restraint are placed much farther 

away from each other, separated by both longitudinal distance and depth). There is no clear 

bifurcation in the load-displacement curve at the elastic buckling load in either case (see Fig. 7 and 

8). Instead, the loss in stiffness is gradual following elastic buckling.  

 

When the panels are axially-free (e.g. P-2-LB-F2-S2-I1), the analogous case is a pin-roller 

condition in the full-beam tests (F-2-LB-F2-S2-I1). For these cases, there is typically a clear 

bifurcation (change in slope) in the load vs. vertical displacement curve at the elastic buckling load, 

as illustrated in Fig. 5 for a/D = 2 panels.  The bifurcation in the load-displacement curve is clearly 

demarcated by a circular marker at Vcr for all three axially-free plates shown. The clarity of the 

buckling bifurcation goes away when the degree of initial imperfection is raised to D/100 in the I2 

models. A similar trend exists for the axially-free full beam models. 

 

The full beam saw significant differences in the eigenvalues (Vcr) based upon the axial restraint. 
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The initial buckling occurred much earlier in the axially-restrained beams than the axially-free 

(LB) ones. There were minor differences, up to 5.6%, in Vu based upon this factor, indicating that 

the axially restrained beams displayed much more post-buckling reserve than the non-restrained 

ones. The observed phenomenon is a result of far-end restraint and eigenmode differences. The 

axially-restrained beam will favor nearly symmetric eigenmodes, which will cause buckling more 

quickly but will be distributed more evenly throughout the beam. The unrestrained beam favors 

the pinned side much more in the eigenvalue analysis, and the rest of the beam therefore retains 

resistance longer before buckling. This can be seen in the load-deflection curves in Figs. 7 and 8 

which show that the post-Vcr displacement to Vu for the axially restrained beams is larger than for 

the non-axially restrained ones. These findings regarding the larger postbuckling reserve for the 

axially-restrained beam agrees well with the findings from the isolated panels. 

 

4.3. Influence of discrete flange and stiffeners 

By comparing models P-2-LB-I1, P-2-LB-F2-I1, and P-2-LB-F2-S2-I1, it is seen that the elastic 

buckling load Vcr grows progressively as more physical components are added in lieu of idealized 

boundary conditions (as was also shown by Lee and Yoo 1998). The elastic shear stiffness (vertical 

stiffness) and Vu are also increased when the flange and stiffener are explicitly modeled (see Fig. 

5). 

 

For the full beam models, the shear load at the onset of flange hinging (Vh) stays nearly constant 

through all of the models, varying by less than 5%. This indicates a low sensitivity of this 

mechanical milestone to the a/D ratio, axial restraint, and initial imperfection. In addition, the 

flange mechanism load Vm always occurs after the ultimate shear Vu is reached. This finding 

suggests that the flanges take on more of the load via flange frame action only after the web has 

been compromised. Values for Vm follow a very similar pattern to Vu and are sensitive to the axial 

restraint and panel aspect ratio. 

 

4.4. von Mises stress analysis 

The von Mises stresses are used to compare overall stress distributions between different panel 

and full beam models. Fig. 9 shows the von Mises stresses plotted for P-1-UB-I1, P-1-LB-F2-S2-

I1, P-1-LB-F2-S2-I2 and F-1-LB-F2-S2-I2 (taking the web panel in the center-right of the full 

beam model). For each specimen, the stresses are plotted at the top and bottom web plate surfaces 

as well as at the center of thickness. The grey shading represents yielding in the plate. 

 

The von Mises stresses in the full beam test section F-1-LB-F2-S2-I2 (in the area of high shear 

and minimum moment) agrees well with the von Mises stress distributions of the isolated panels, 

as shown for the a/D = 1 model without axial restraint (P-1-LB-F2-S2-I1, P-1-LB-F2-S2-I2). Note 

that the shear on the F-model is acting in opposite direction to the shear on the P-model.  For each 

of the models shown in Figure 9, the von Mises stresses vary across the three plate planes shown 

(from bottom surface to center of thickness to top surface). This implies that bending stresses exist 

at the ultimate postbuckling shear load Vu.  

 

At the ultimate load Vu, through-section yielding occurs on the tension diagonal when there is axial 

restraint in the plate (P-1-UB-I1). However, when the axial restraint is released there is no von 

Mises yielding in the center of thickness (P-1-LB-F2-S2-I1 and P-1-LB-F2-S2-I2), only on the 

plate surfaces. No through-section yielding occurs in the full beam model (F-1-LB-F2-S2-I2) 
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either.  This yielding behavior through the depth of the thickness likely plays a role in the 

development of Vu.   

 

The plots for P-1-LB-F2-S2-I1 and P-1-LB-F2-S2-I2 are compared to view the effect of initial 

imperfection magnitude on stress distribution (Fig. 9). The stress pattern for both models is the 

same but the larger initial imperfection of D/100 results in slightly more von Mises yield at Vu. 

This observation is likely related to the larger Vu for the D/100 model compared to the D/10000 

model (3202 kN vs 2799 kN). 

 

4.5. Principal membrane stress analysis 

The principal membrane stresses are independent of bending effects and thus enable one to 

investigate the load path and flow of forces through the web panel. Membrane stresses are equal 

to the membrane forces divided by the plate thickness. Garlock et al. (2019) have performed an 

initial analysis on an axially-restrained plate. In this paper, different boundary conditions are 

considered: an axially restrained plate, an axially-free plate, and an axially-free plate with flanges 

and stiffeners. Analyses are made for plates of a/D = 1; however, results for a/D = 2 are similar.  

 

To analyze traditional shear load paths, the compression diagonal is first analyzed (shown shaded 

in the inset figure of Fig. 10). Many previous papers (Glassman and Garlock 2016, Yoo and Lee 

2006) have focused on the state of stresses at the elastic shear buckling load and at the ultimate 

shear load; however, this paper explores the load history to give a more continuous sense of the 

postbuckling mechanics. Tension Field Action (TFA) theory posits that after the elastic shear 

buckling load, compressive stresses cease to increase and all additional load is taken by the tension 

field (increased tensile membrane stresses only). Garlock et al. (2019) showed that this was not 

the case for an axially-restrained plate by investigating the load history. 

 

Figure 10 plots the minimum principal membrane stress (i.e. the compressive membrane stress) 

for each element along the compression diagonal. Green curves are for elements with a 

compressive membrane stress greater than the elastic buckling stress τcr at the ultimate load Vu, 

while orange curves are for elements at compressive stress less than τcr at Vu. Similar to what is 

shown in Garlock et al. (2019), compressive membrane stresses increase beyond τcr across the 

entire compression diagonal until more than half (67%) of the postbuckling reserve (additional 

strength beyond Vcr) has been achieved. The intermediate shear load (Vi) represents the load up to 

which compression membrane stresses continue to increase throughout the plate. In addition, 

compressive membrane stresses farther from the plate center (around the plate perimeter) are 

shown to increase at a uniform rate up to the ultimate shear load Vu, similar to the rate of stress 

increase before buckling. While some compressive membrane stresses are at or lower than the 

elastic buckling stress τcr at the ultimate shear load Vu, Fig. 10 shows that they increase beyond the 

elastic buckling load Vcr before decreasing prior to failure. 
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Figure 9: von Mises stress distributions at the bottom surface, center of thickness, and top surface of each web plate. 

Gray denotes regions of yield. All stresses shown are in Pa. 
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(a) 

 
(b) 

Figure 10: P-1-UB-I1 (a) compressive stress vs. load applied to elements on the compression field diagonal (shaded 

in inset figure), (b) Zones I, II and III on load vs. vertical displacement plot 

 

Figure 11 is similar to Figure 10 except that it is for an axially-free web plate (Model 1-LB-I1). 

Though there is less restraint afforded against crumpling of the plate, a similar phenomenon is 

observed. Fig. 11(a) shows that compression membrane stresses increase across the entire 

compression diagonal until more than half (55%) of the postbuckling reserve is achieved, 

regardless of axial restraint in the plate. (This is alternatively shown by Zone II in the load-

displacement graph [Fig. 11(b)].) This result demonstrates that axial restraint on the plate is not 

necessary for postbuckling compressive stresses to develop; a lower-bound model without flanges 

or slab can develop increasing postbuckling compressive stresses (though the extent of the 
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compressive stress increases beyond Vcr is reduced for elements near the plate center when 

compared to the axially-restrained plate). 

 
(a) 

 
(b) 

Figure 11: P-1-LB-I1 (a) compressive membrane stress vs. load applied to elements on the compression field 

diagonal (shaded in inset figure), (b) Zones I, II and III on load vs. vertical displacement plot 

 

Although not shown, similar studies were done with the plate with flanges and stiffeners for 

boundary conditions (P-1-LB-F2-S2-I1). The results are similar. The main difference in the 

behavior is that: 1) the rate of compressive stress increase is pushed forward to a higher elastic 

shear buckling load Vcr, as noted by Lee and Yoo (1996, 1998); and 2) there are fewer elements 

along the compression diagonal that are above the elastic buckling stress τcr at the failure load. Note 
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that the compressive membrane stress still increase after reaching Vcr, but they decreased shortly 

prior to failure.  

 

Yoo and Lee (2006) and Garlock et al. (2019) have shown the potential importance of compressive 

membrane stresses along the perimeter of the plate, which Garlock et al. (2019) have shown to 

continue to increase at a rate similar to the rate of compressive stress increase prior to elastic shear 

buckling. An analogous study is taken to view the compressive membrane stress behavior along 

the opposite (tension field) diagonal, where the compression load path is less disturbed by the out-

of-plane bifurcation. Fig. 12 shows the results of the same analysis conducted on the tension 

diagonal for the axially-free plate with flanges and stiffeners. The graph appears analogous to the 

graph for elements on the compression diagonal, with a key difference. The blue “elastic line” 

denotes the rate of compressive stress increase before elastic buckling. It appears that certain 

elements that are near the perimeter of the plate have compressive membrane stresses that are 

mirrored across the blue line; meaning that compressive membrane stresses increase at a greater 

rate for these elements after elastic buckling.  Though not pictured, the same phenomenon occurs 

with the axially-free plate without flanges and stiffeners (P-1-LB-I1). This points to a 

redistribution of the load path towards compression in the perimeter elements. Further, the tensile 

principal membrane stresses of these same perimeter elements are significantly less than the 

compressive membrane stresses at ultimate shear load Vu.  

 

 
 

Figure 12: P-1-LB-F2-S2-I1 compressive membrane stress vs. load applied to elements on tension field diagonal 

(shaded in inset figure) 

 

5. Conclusions 

This paper evaluated the shear postbuckling behavior of slender steel web panels subjected to 

differing boundary configurations as represented by: (1) isolated panel models vs. full beam 
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models; (2) axial restraint in the longitudinal direction; and (3) discrete modeling of flanges and 

stiffeners vs. idealized boundary conditions.  The effects of panel aspect ratio and initial 

imperfection were also examined. The elastic shear buckling load Vcr, and the ultimate shear 

postbuckling load Vu were evaluated for these different parameters as well as the load path.  The 

results indicated the following:   

 

 Isolated panels vs. full beam models: The prediction of Vcr was significantly larger for panel 

models.  The prediction of Vu agreed to within 16%.  The stress distributions were similar for 

both models. 

 Axial restraint: The shear postbuckling behavior was found to be sensitive to the degree of 

axial restraint in a girder panel. The additional shear capacity beyond elastic buckling (Vu – 

Vcr) was significantly larger for panels with axial restraint.   

 Initial imperfection: For the single panel models, axially-free boundary conditions were found 

to be more sensitive to initial imperfection than axially-restrained panels in terms of Vu; 

however, in the full beam models, where the locations of axial restraint were placed farther 

from each other, the difference in sensitivity diminished. The effects of initial imperfections 

on Vu were similar for the different panel aspect ratios tested.  

 Load path:  Examination of compressive stresses along the two ‘diagonal cuts’ of the plate 

(i.e., the compression path and tension path) indicated that the compressive stresses continue 

to increase beyond Vcr for both axially-restrained and axially-free plates.  Additionally, the 

compressive stresses indicated a change in load path and movement towards the perimeter 

elements (i.e., towards the corners). 
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