MODERN STEEL CONSTRUCTION
March 1991
STEEL TUBES
POUR STOP SELECTION CHART

<table>
<thead>
<tr>
<th>SLAB DEPTH (Inches)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.00</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>4.25</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>4.50</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>4.75</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5.00</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5.25</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5.50</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5.75</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6.00</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6.25</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6.50</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6.75</td>
<td>18</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7.00</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7.25</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7.50</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7.75</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8.00</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8.25</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8.50</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8.75</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>9.00</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>9.25</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>9.50</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>9.75</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10.00</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10.25</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10.50</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10.75</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11.00</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11.25</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11.50</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11.75</td>
<td>10</td>
</tr>
<tr>
<td>12.00</td>
<td>10</td>
</tr>
</tbody>
</table>

NOTES:

The above selection table is based on the following criteria:

1. Normal weight concrete (150pcf).
2. Horizontal and vertical deflection is limited to 1/4" maximum for concrete dead load.
3. Design stress is limited to 20 ksi for concrete dead load temporarily increased by one-third for the construction live load of 20 psf.
4. Pour stop selection table does not consider the effect of the performance, deflection, or rotation of the pour stop support which may include both the supporting composite deck and/or the frame.
5. Vertical leg return lip is recommended for type 16 and lighter.
6. This selection is not meant to replace the judgement of experienced structural engineers and shall be considered as a reference only.

Pour Stop Types

- 20: 0.0358
- 18: 0.0474
- 16: 0.0598
- 14: 0.0747
- 12: 0.1046
- 10: 0.1345

This chart is a repeat of our first Deck Design Data Sheet; the format has been revised to make the type (gage) selection easier.
Jim Bolling, President and CEO of Structural Software Company, is a second-generation steel man. His 15 years spent managing a 5,000-ton per year family fabricating shop gave him the insider's perspective.

This understanding of the steel man's needs has shaped every program the Structural Software Company markets.

Our programs speak the language of steel, instead of requiring you to become a programmer. And they are designed to work with you, the way you work, to reduce the time and the costs between the bid and the invoice.

Estimating figures labor and material costs and takes into account everything else that needs to happen. The program prices the dozens of items that go into a project, from the mill to the warehouse. Plus, it lets you change almost all of the pricing levels and labor codes to suit your needs.

FabriCAD, our computerized detailing program, is designed to cut through the steel man's most stubborn logjam—the long waits on details and shop drawings. You can gain control over your schedule and budget and smile at change orders.

Vertical Bracing works hand-in-hand with other detailing features to automatically detail X, V, K and Knee bracing with angles, double angles, and wide flange tees. It automatically details the bracing connections on the supporting beams and columns and lets you locate your working points wherever you want. Plus, it gives you an elevation view of any face.

Material Allocation lets you develop purchase orders by mutiling and combining your materials. Combine materials for mill or warehouse buying, and multi against your inventory, to recycle drops from previous job. Create cutting lists that will let you mark each beam with the job numbers and piece marks of the pieces you will cut from it.

If you also sell steel over the counter, **Point of Sale** will let you offer quotes over the phone, based upon material, tax, and labor costs, as well as the client's credit standing. All of these programs run on IBM-AT or compatible microcomputers.

Call today and talk to some people who can speak your language.

Structural Software Company

5012 Plantation Road
P.O. Box 19220
Roanoke, VA 24019

(800) 776-9118
FEATURES

17 BIDDING ALTERNATE DESIGNS FOR BRIDGE CONSTRUCTION
Innovatively utilizing the FHWA-required alternate designs can be the difference between an average bid and the lowest bid

23 UPSIDE-DOWN CASTING COMBINES ADVANTAGES OF STEEL AND CONCRETE
A proprietary composite bridge system reduces costs, speeds construction and improves deck performance

28 TOTALLY TUBULAR
Rectangular tube steel provides the most efficient structural system for automated storage warehouses

34 INNOVATIVE DESIGN SPEEDS CONSTRUCTION, CUTS COSTS
Using free-standing steel tube columns was crucial to the creation of a new budget hotel by the founder of the Holiday Inn chain

39 DEMONSTRATING TUBES CAPABILITIES
A manufacturer of steel tubes used its own expansion as a field laboratory

42 MAKING TUBES
A photographic display demonstrates step-by-step the process of converting steel coils into finished tubing

NEWS AND DEPARTMENTS

6 EDITORIAL
8 LRFD LECTURE SERIES
10 STEEL BRIDGE SYMPOSIUM
11 VIDEOTAPE REVIEW
12 STEEL EVENTS
44 WELDING INNOVATIONS
46 CERTIFIED WELDER PROGRAM
47 CODE CHANGES EFFECT STEEL CONSTRUCTION
48 WELDING PRODUCTS
50 AD INDEX
HISTAR®
A new generation of rolled beams and column shapes for economical steel construction.

Once again, ARBED leads the industry by featuring a trendsetting combination of mechanical, chemical and technological properties:

- HIGH YIELD STRENGTHS (up to 65 KSI) - even for ultra-heavy sections.
- OUTSTANDING TOUGHNESS PROPERTIES.
- EXTREMELY LOW CARBON EQUIVALENT — ensures excellent weldability.

A NEW PROCESS... QST.
The secret is in ARBED's revolutionary new in-line QST process.

OTHER RECENT ARBED INNOVATIONS:
ARBED-ROLLED 40", 44", and "TAILOR-MADE" (WTM) series — famous for high section moduli, great lateral buckling resistance, and big savings in fabrication costs and weights. These products are also available in the new HISTAR quality as is our standard WF series and H BEARING PILES.

NEW LITERATURE AVAILABLE
Send now for complete data on all these ARBED products, contact Trade ARBED, INC., 825 Third Ave., New York, NY 10022. (212) 486-8980, FAX 212-355-2159/2421. In Canada: TradeARBED Canada, Inc., 3340 Mainway, Burlington, Ontario, Canada L7M 1A7, (416) 335-5710, FAX 416-335-1292.

INNOVATORS OF STEEL CONSTRUCTION PRODUCTS.
It's Not Just Retail Anymore

One of the advantages of working on a monthly magazine devoted to the fabricated steel industry is the opportunity to see how different building types relate to each other. This morning I was examining an early copy of the February issue on Retail Construction, putting the finishing touches on the March issue on Structural Steel Tubing, and starting to work on next month’s issue on Airport Construction.

I happened to glance at a picture of the Oglethorpe Mall in Savannah, GA, and immediately noticed that the atrium framing consisted of steel tubing. Well, that made sense. Whenever tubing is mentioned, I immediately think of the exposed hollow structural sections seen in so many malls today.

But then it dawned on me that in our Steel Tube issue, we didn’t write about any retail applications. Instead, we wrote about a warehouse, a motel, and a manufacturing facility. And in thinking about airports for the April issue, I realized that an increasing number of terminals are utilizing steel tubing—including the award-winning United Airlines terminal at O’Hare International Airport, which was featured in the November/December 1990 issue.

I quickly gave a call to Fred Palmer, director of the American Institute for Hollow Structural Sections, and asked if tube use was rising. While he couldn’t offer historic data, he did unequivocally state that inquiries about tubing from fabricators, architects and engineers was on the rise. Estimates of total use range from 3% to 8% of the fabricated steel industry in the U.S., which is low compared with the 20% usage in Canada and 15% to 20% usage in Europe.

And he confirmed that steel tubes weren’t just for retail applications. “Tubing is at its best in long columns—compression members,” Palmer told me. “Warehouses are a natural, as are any large open spaces.”

Some people hesitate to use structural tubing because of their concerns about connections. But Palmer says that the connection between a tube and a wide flange is identical to that of a wide flange to a wide flange. The difference is that people are simply less familiar with a material that was only introduced to this country in the mid-1960s, versus the wide-flange shape that dates back almost to the turn-of-the-century.

Help is out there. For example, Palmer’s group has produced some technical literature, with more on the way. And at this year’s National Steel Construction Conference in Washington, DC, a seminar will be offered on “Simple Connections in Tubular Construction” (for more information, see page 10).

For immediate information on tube steel, contact: American Institute for Hollow Structural Sections, 929 McLaughlin Run Road, Suite 8, Pittsburgh, PA 15017. SM
WOULD YOU RATHER DO THE STRUCTURAL DESIGN OF THIS BUILDING BEAM-BY-BEAM — OR FLOOR-BY-FLOOR?

NOW! With RAMSTEEL's™ integrated floor-by-floor analysis, one engineer can design an entire building in one day.

Starting at the roof and working to the base, RAMSTEEL integrates the results of the analysis of each successive floor, automating nearly the entire design process.

RAMSTEEL:
- Runs on Your PC
- Has a Windows 3.0™ based Interactive Graphical Modeler
- Automatically distributes surface, line, and point loads to supporting members
- Calculates and applies live load reduction factors
- Optimizes beam (composite or non-composite) and column design per ASD or LRFD
- Calculates quantity take-offs by member type
- Permits interactive output editing
- Automatically incorporates applicable requirements of major building codes

For complete state-of-the-art analysis of all lateral elements RAMSTEEL automatically interfaces with ETABS® or supplies a tabularized printout of all gravity loads to members of the lateral frames. An automatic interface with your CAD software generates floor framing plans.

Now is the time to find out more about the power of RAMSTEEL.

1-800-726-7789
FAX: 916-895-3544

RAM Analysis
Integrated Structural Software
55 Independence Circle
Suite 201
Chico, California 95926

All trademarks are the sole property of their respective companies.
The first sessions of AISC's new lecture series, Practical Steel Design Using LRFD, were tremendously successful, according to Robert Lorenz, AISC director of education and training. Attendance has averaged nearly 75 engineers at each session.

The lecture program is designed to help structural designers become more familiar with Load and Resistance Factor Design. The lecture includes the design of a steel frame for a four-story office building. A set of design notes, including pertinent calculations, outline the LRFD process. The lecture begins with a description of the project as well as a short review of principles, and also covers the topics of roof and floor design, and framing systems and connections.

The design notes handout provides realistic design solutions not found in manuals and textbooks. The analysis includes evaluation of various load combinations as required for the 100' x 150' building and the utilization of design limit loads for components and frames.

In evaluations, attendees reported that the handouts and slides will prove invaluable to their future practice. "These kind of meetings are very helpful to practicing engineers like me, who like to be in touch with the latest design methods," wrote one attendee in Pittsburgh.

Fees are $65 ($110 with Manual) for AISC members and $95 ($145 with Manual) for non-members. To register, send the adjacent form to: AISC-LRFD Lectures, P.O. Box 806286, Chicago, IL 60680-4124. For more information, call (312) 670-5422.

Seminar Schedule

West
Salt Lake City (3/7); Irvine, (3/28); Seattle (4/10).

Midwest
Milwaukee (3/21); St. Louis (4/2); Minneapolis (4/4); Grand Rapids (4/9); Detroit (4/10); Kansas City (5/2); Indianapolis (5/7); Cincinnati (5/8); Columbus (5/9).

South
Orlando (3/6); Greenville (3/12); Charlotte (3/14); Knoxville (3/20); Birmingham (3/26); Raleigh (4/9); Richmond (4/11); Oklahoma City (4/16); San Antonio (4/23); Albuquerque (4/25); San Juan (5/21); Columbia (T.B.A.); Norfolk (T.B.A.); Wilmington (T.B.A.).

East
Baltimore (3/6); Washington, DC (3/7); Harrisburg (3/12); Philadelphia (3/13-14); New York (3/19-20); Newark (4/24); Buffalo (5/14); Rochester (5/15); Syracuse (5/16).
Stronger, Faster Construction with Nelson® Stud Welding

Because of inherent advantages, Nelson stud welding has become the standard in many fastening applications in industrial and commercial buildings, bridges, power generating structures, military structures and rehabilitation.

Nelson studs literally anchor other members to the basic framework of structures. This design makes for maximum strength since the welds are actually stronger than the base metal. Since stud welding is at least three or four times faster than hand welding, it impressively reduces total man hours on a job. At the same time stud welding does away with all the problems associated with holes in structural members—weakening the main frame, sealing holes to prevent leakage, etc.

All these factors inevitably add up to lower in-place anchoring costs. In some types of construction, most notably composite, further savings result from the use of lighter and less costly beams that also reduce building height and weight.

Call us toll free at 1.800.321.2005 and ask for our design literature, samples or application engineering assistance or write to:
TRW Nelson Stud Welding Division
7900 West Ridge Road
Elyria, OH 44036-2019

International:
 England • France • Japan • Korea
 West Germany • Australia

Applications

Composite Bridges – Shear connectors provide equal shear in all directions, eliminate distortion that might result from hand welding and permit more satisfactory compaction of concrete around the connectors.

Composite Buildings – Shear connector studs welded to the beam or through a permanent form steel deck result in increased live load capacity. As much as 20% less steel may be used and shallower floor sections reduce building height.

Retrofitting – Bridge retrofitting usually involves removing the old concrete and replacing it with new concrete tied to the beam with stud welded shear connectors.

Applying new facia and interior retrofitting of old buildings requiring installation of new electrical fixtures, sprinklers and piping can be accomplished by welding threaded studs to structural members.

Concrete Anchoring – Stud welded headed concrete anchors deliver specified axial tension and shear strength values and can be applied up to three times faster than hand welded anchoring devices. Other advantages include much higher yield points, elimination of costly set-up time for shearing and bending, stronger welds, reduced material handling and no distortion.

Insulation/Lагging – Stud welded fasteners secure all types of insulation material in all density ranges faster, easier, more economically and better than any other methods.

Electrical/Mechanical – Threaded studs and a variety of stud configurations are used to fasten conduit clamps, lighting fixtures, outlet boxes, sprinkler systems, cable runs and piping. Fast positive attachment is achieved without holes or costly clamping devices.

Other cost saving construction applications are securing concrete forming and timber shoring, wood nails, crane and guide rails, grating, refractory and wear resistant materials.
Video Review:
"Today's Structural Steel"

By Robert Lorenz, P.E.

For those who require an audio-visual update to their structural steel educational file, the Architectural/Engineering Department of Penn State has produced a wonderful 33-minute videotape that should do the job. Titled "Today's Structural Steel", it presents a quick—though surprisingly comprehensive—overview of the role of structural steel in the construction industry.

The narrator is Patty Satalia, and she provides a professional and informative commentary from various job site locations. The introduction is a collage of industry scenes with the World Trade Center as a symbolic focus of activity. Also included are historic snippets from films of the erection of the Empire State Building—scenes from the 1930s with its emphasis on the old, hot rivet days.

The film then shifts venue to provide a glimpse of a mill operation, and this segment opens with an exciting shot of glowing, molten steel. For anyone who thinks of the steel industry as boring or humdrum, these powerful images should quickly dispel that false notion.

The centerpiece of the story is the fabrication shop. The camera zooms in to look over the shoulder of the computer operator as machine instructions are punched in. Steel shapes are then automatically drilled and cut. And the latest in bolting and welding techniques are demonstrated.

Steel erection gets equal time in footage using the helicopter-assisted setting of the CN Tower mast and pre-assembly of the Seattle Space Needle restaurant as dramatic counter-points. In addition, field cutting of intolerant fit-ups gives insight into real world problems.

Wrapping-up the film are some comments from industry experts warning of false economies from the overuse of computers and the need for professionals to know the limits of the industry's tools and machines.

This short film is extremely well done. It avoids the broad cliches found in self-serving industry promotion pieces. Likewise, neither

1991 NATIONAL STEEL CONSTRUCTION CONFERENCE

WASHINGTON, DC
JUNE 5-7

The 1991 National Steel Construction Conference (NSCC), the only "all steel" conference and trade show in the United States, will be held June 5-7, 1991, at the historic Sheraton Washington Hotel in Washington, D.C.

The American Institute of Steel Construction, Inc., a trade association representing fabricators of structural steel in the United States, hosts the event for those who manufacture or produce goods and services for the structural steel industry. Last year's record attendance in Kansas City included fabricators, erectors, consulting engineers, architects, educators and suppliers. For the fifth consecutive year the NSCC combines the AISC National Engineering Conference and AISC Conference of Operating Personnel.

This conference provides an excellent opportunity to obtain the maximum information about steel design and construction in the field of buildings and bridges, while it continues to be the premier meeting place for engineering professionals.

Exhibit Hall events include workshop sessions, seminars and technical programs, pre-conference events, spouses program/optional events, drawings, cocktail parties, and industry dinners.

EXHIBIT BOOTH SPACE AVAILABLE The National Steel Construction Conference offers an ideal marketplace to those who provide products and services to the structural steel industry. In addition to display booths, exhibitors will also be given an opportunity to conduct a Product/Service Workshop. These special sessions offer a forum where companies can share the latest technological advances in specialized fields, conduct demonstrations or question-and-answer dialogues, or introduce new or updated equipment and programs.

To obtain additional information on exhibits and registration, contact:

David G. Wiley
Director of Meetings and Conferences
AISC
One East Wacker Drive • Suite 3100
Chicago, IL 60601-2001

Phone 312/670-5422
FAX 312/670-5403
Steel Bridge Symposium

This year's Prize Bridge Awards will be presented at the 1991 National Symposium On Steel Bridge Construction in St. Louis. The presentation, one of the highlights of the two-day symposium, will be made during a banquet on September 16.

Previous winners have ranged from such historic structures as the Golden Gate Bridge at San Francisco to smaller projects such as the Trinity Church Pedestrian Bridge near Wall Street in New York City. (See pages 13-14 of this issue for an entry form.)

While speakers have not yet been announced, sessions are scheduled on a wide range of topics, including: seismic design; bridge paints and coatings; steel bridge aesthetics; short span bridges; economical detailing and connections; fatigue-resistant details; and long-range FHWA research.

In addition, a panel discussion is scheduled on the subject of designing for constructability and a session is planned on the design of bridges in France.

Prior to the symposium, a workshop will be held on bridge painting. On the Wednesday after the symposium ends, there will be an in-depth, full-day workshop on the subject of fatigue resistant details by Professor Peter Keating of Texas State A&M University, College Station, TX, a recognized authority on the subject.

To receive registration materials for the symposium, contact Lew Brunner, American Institute of Steel Construction, Inc., One East Wacker Dr., Suite 3100, Chicago, IL 60601-2001 (312) 670-5420.

Robert Lorenz is director of education and training at AISC.

You can always spot the leader in the crowd...

everyone is following them!

Dogwood Technologies, Inc. ♦ P.O. Box 52831 ♦ Knoxville, TN 37950-9928
615-531-4073 ♦ 800-346-0706
Time Saved Is Profit Earned.

Are your profits ticking away? Minutes wasted in the office because of manual processing or outdated software can equate to hours or days lost in the shop or field.

STEEL 2000 is a new, fully integrated, multi-user steel fabrication management system, created to increase your profits by decreasing the time you spend on each job. Even computer novices can become productive immediately.

Designed and implemented by fabricators, STEEL 2000 is the result of years of research and development by Steel Solutions, Inc. in conjunction with Steel Service Company, an operational, multi-plant steel company. Call today for more detailed information - don't waste another second.

Service Center Mill Orders Estimating
Fabricator Purchase Orders Drawing Control
Inventory Multing Accounting

STEEL SOLUTIONS, INC.
2260 Flowood Drive
P.O. Box 1128
Jackson, Mississippi 38215
601·932·2760 FAX 601·939·9358

STEEL EVENTS

The Steel Structures Painting Council (SSPC) will hold its Fourth Annual Conference on Lead Paint Removal from Industrial Structures at the Omni Charlotte Hotel in Charlotte, NC on March 18-20. The conference will include panel discussions and case histories.

On April 29-May 3, SSPC will hold a Conference on Coatings Evaluation and Durability at the Westin William Penn Hotel in Pittsburgh. The purpose of the conference is to assess the state of the technology and reach a consensus on testing and reporting methodology.

As part of the International Bridge Conference, SSPC will hold a seminar and forum on "Maximizing the Service Life of Bridge Coatings" at the Pittsburgh Hilton Hotel on June 12-14.

For information on these SSPC activities, contact: Rose Mary Sargent, SSPC, 4400 Fifth Ave., Pittsburgh, PA 15213-2683 (412) 268-2980.

The AWS International Welding Exposition and Convention is scheduled for April 16-18 in Detroit. More than 100 in-depth seminars and conferences are planned, and the exposition will include more than 400 exhibitors.

For more information, contact: AWS, 550 N.W. LeJeune Road, P.O. Box 351040, Miami, FL 33135 (800) 443-9353.

The 1991 National Steel Construction Conference, the industry's only "All-Steel" conference, is scheduled for June 5-7 in Washington, DC. More than 20 informative seminars are scheduled, and more than 70 exhibitors will be present.

For more information, contact: David Wiley, AISC, One East Wacker Dr., Suite 3100, Chicago, IL 60601-2001 (312) 670-5422.

TUBE DETAILS in minutes

using "PLANS & ELEVATIONS"

with AutoCAD®

OTHER PROGRAMS AVAILABLE FOR DETAILING

BEAMS, COLUMNS, STAIRS, PLANS AND ELEVATIONS, BRACING, GUSSETS, MATERIAL MANAGEMENT

CALL NOW:
For information about saving time with productivity programs from

COMPUTER DETAILING CORPORATION
1310 Industrial Blvd.
Southampton, PA 18966 215-355-6003
Eligibility
To be eligible, a bridge must be built of fabricated structural steel, must be located within the United States (defined as the 50 states, the District of Columbia, and all U.S. territories), and must have been completed and opened to traffic from July 1, 1986 through May 1, 1991.

Judging Criteria
Will be based primarily upon aesthetics, economics, design and engineering solutions. Quality of presentations, though not a criterion, is important.

Award Categories
Entries will be judged in one or more categories, but may receive only one award.
- **Long Span**: One or more spans over 400 ft. in length.
- **Medium Span, High Clearance**: Vertical clearance of 35 ft. or more with longest span between 125 and 400 ft.
- **Medium Span, Low Clearance**: Vertical clearance less than 35 ft. with longest span between 125 and 400 ft.
- **Short Span**: No single span greater than 125 ft. in length.
- **Grade Separation**: Basic purpose is grade separation.
- **Elevated Highway or Viaduct**: Five or more spans, crossing one or more traffic lanes.
- **Movable Span**: Having a movable span.
- **Railroad**: Principal purpose of carrying a railroad, may be combination, but non-movable.
- **Special Purpose**: Bridge not identifiable in one of the above categories, including pedestrian, pipeline and airplane.
- **Reconstructed**: Having undergone major rebuilding.

Entry Requirements
All entries must contain an entry form, photographs and a written description of the project.

1. **Entry form**: All information requested on the form must be completed in full.
2. **Photographs**: Professional quality 8x10 color prints of various views showing the entire bridge, including abutments. 35 mm slides should also be submitted if available. All photographs must be cleared for use by AISC.
3. **Description**: Explanation of design concept, problems and solutions, aesthetic studies, project economics and any unique or innovative aspect of the project. Include no larger than 11x17 drawings showing elevation, framing system and typical details.

Method of Presentation
Each entry should be submitted in an 8½" x 11" binder, containing transparent window sleeves for displaying inserts back to back. The entry form included in the brochure must be easily removable, so that the identification of the entry can be concealed during judging. All information requested on the entry form must be included.

Awards
The winners will be notified shortly after the June judging. Public announcements of the winners will be made in the September Issue of Modern Steel Construction magazine. Award presentations will be made to the winning designers during the National Steel Bridge Symposium, September 16, 1991, in St. Louis, MO.

Deadline for Submission
AISC 1991 Prize Bridge Competition

<table>
<thead>
<tr>
<th>Entry Date</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Bridge</td>
<td>Completion Date</td>
</tr>
<tr>
<td>Location</td>
<td>Date opened to traffic</td>
</tr>
<tr>
<td>Category in which entered</td>
<td>Approx. total cost</td>
</tr>
<tr>
<td>Span lengths</td>
<td>Roadway widths</td>
</tr>
<tr>
<td>Vertical clearance</td>
<td>Steel tonnage</td>
</tr>
<tr>
<td>Structural system(s) (describe briefly here)</td>
<td></td>
</tr>
<tr>
<td>Innovative Concepts</td>
<td></td>
</tr>
<tr>
<td>Descriptive data: Attach separate sheets (see entry requirements)</td>
<td></td>
</tr>
<tr>
<td>No of photographs enclosed: Color prints</td>
<td>35 mm slides</td>
</tr>
</tbody>
</table>

Design Firm:
- **Address:**
- **Phone:**
- **Person to contact:**
- **Street:**
- **City and State:**
- **Zip:**

Consulting Firm (if any):
- **Address:**
- **Phone:**
- **Person to contact:**
- **Street:**
- **City and State:**
- **Zip:**

General Contracting Firm:
- **Address:**
- **Phone:**
- **Person to contact:**
- **Street:**
- **City and State:**
- **Zip:**

Steel Fabricating Firm:
- **Address:**
- **Phone:**
- **Person to contact:**
- **Street:**
- **City and State:**
- **Zip:**

Steel Erecting Firm:
- **Address:**
- **Phone:**
- **Person to contact:**
- **Street:**
- **City and State:**
- **Zip:**

Owner:
- **Address:**
- **Phone:**
- **Person to contact:**
- **Street:**
- **City and State:**
- **Zip:**

This entry submitted by:
- **Name:**
- **Firm:**
- **Address:**
- **Phone:**
- **Street:**
- **City and State:**
- **Zip:**

(ADDITIONAL ENTRIES MAY BE SUBMITTED ON COPIES OF THIS FORM)
Could computers be friendlier to your bottom line? Come to this show!

The A/E/C Show

A/E/C SYSTEMS® '91

May 7-10 • Washington, DC Convention Center

This is the only show you need to keep yourself and your firm current on the profitable use of computers in design and construction. Don't miss it!

What you get:

• everything you need in one place at one time to pinpoint how computers can help you stay profitable today

• 150 conference sessions—by users, for users

• 500 vendors who specialize in products for this industry

• 30,000 attendees for the ultimate in peer exchange

• free pre-show exhibit registration and very affordable conference fees, air fare and hotels

Plus these "shows within the show":

• CMC Spring for contractors

• Facilities for facility managers

• REPROGRAPHICS

• Intellimap for GIS professionals

• Surveyors Expo for surveyors

• CAS (Computer-Assisted Specifying)

• Autodesk Expo for AutoCAD users

• INTERconnection by Intergraph
We have to agree. A single coat of gray IC 531 zinc silicate isn’t exactly an eye catcher. But then isn’t beauty in the eye of the beholder? If bridge maintenance is your headache, you will find that the real beauty of high-ratio IC 531 is below the surface — because IC 531 is a chemically bonded permanent steel treatment.

IC 531 isn’t paint or just galvanic protection but rather a combination of high-ratio liquid glass and pure zinc that chemically bonds to the steel and seals off to become a permanent barrier to moisture, oxygen, deicing salts and ultra-violet rays. Should an area become damaged, IC 531 is easily repaired with itself — inexpensively, without blasting and for as long as you care to preserve your steel.

All of the advantages of IC 531 zinc silicate add up to amazing short and long term economics and peace of mind that will make everything look beautiful . . . even single-coat IC 531.

Inorganic Coatings, Inc.
500 Lapp Road • Malvern, Pennsylvania 19355
215/640-2880 • 800/545-0531 (USA) • 800/522-0531 (PA)
Bidding Alternate Designs For Bridge Construction

By Robert J. Desjardins

To foster more efficient and less costly design, the FHWA requires that bridge projects with an estimated cost of more than $10 million be put out to bid with at least two alternate designs, usually with one steel and one concrete design. In addition, contractors often are allowed to prepare and bid on their own alternate designs. This option sometimes is crucial because one of the state's alternate designs often is less efficient than the other.

Cianbro Corporation, a large bridge contractor headquartered in Pittsfield, ME, has been bidding alternate designs for more than 11 years. Our first alternate bid was for a 3,000'-long bridge in Chesapeake, VA, in 1979. We were the low bidder at $9,836,000 using precast concrete AASHTO beams for the approach spans, and steel beams for the three center spans. Since that time, we have bid on many bridges for which the owner has prepared alternate designs.

Bid Failure

We became interested in submitting our own alternate designs after not receiving a contract in Tennessee in 1981. We hadn't given the option of preparing an alternate design much consideration and were shocked when the bids were opened and the lowest bid was on a contractor-designed alternative. The low bidder won by bidding the state's steel design with modifications consisting of increasing the span lengths to eliminate several piers.

Shortly after that, we were the low bidder on two projects using an alternate design prepared by a consultant hired by us.

The first was the 1,550'-long Bangor-Brewer bridge advertised by the Maine DOT in early December, 1983. The state prepared a design using conventional steel girders, and T.Y. Lin prepared a design using a cast-in-place segmental concrete superstructure. The state also allowed bidders to submit their own alternatives.

We retained the services of Figg & Muller Engineers of Tallahassee, FL, and Paris, France, to prepare an alternate design using a precast segmental concrete superstructure. This design eliminated one land pier on the Bangor side, and moved one water pier to land by increasing the main span to 430', from 300' in the state's steel design.

Lowest Two Bids

Because alternative designs are subject to the state's approval, we bid both our alternative and the state's steel design. When bids...
A segmental concrete bridge over the Albemarle Sound in Edenton, NC, was completed two years behind schedule and with claims totaling 61% of the original contract price.

signed alternatives.

After reviewing the bid documents and preparing preliminary estimates for the various options, we decided not to prepare our own alternative since the state’s design’s were very cost effective. Because of the large number of state-provided alternatives, we opted to bid on only the most cost-effective, which turned out to be the segmental concrete option in the amount of $22,389,000. The seven lowest bids were only separated by an aggregate amount of approximately 11%, and no bids were received for contractor-designed alternatives.

Over Budget And Behind Schedule

We were awarded the project and the Notice to Proceed was issued in March 1985. The bridge was opened to traffic in June 1989, two years after the scheduled opening date.

During construction we suffered delays caused by numerous problems resulting from inadequate design and incomplete plans and specifications.

Because of the design problems, we were directed to perform a substantial amount of extra work. We have submitted claims for these delays and extra work totalling $13.8 million.

Our experience on this bridge is similar to that of other contractors working on segmental concrete bridges. The final cost of these bridges is usually substantially more than the original bid price. The November 2, 1989 issue of ENR contained a cover story entitled “Segmental Bridges—A Question of Constructability”. The article stated:

“State departments of transportation say that contractor’s claims on segmental elevated highways and bridges run far higher than other types of construction. For example, 10 segmental bridges with bid prices totaling $242 million generated a total of $101 million in claims. On one bridge, the contractor is asking for nearly 50% more than the contract sum. Contractors contend that the claims result from designs that are incomplete or not constructable.”

Claims on our North Carolina project total 61% of the original contract price. When bidding for a bridge, it is essential that the final cost of the project be considered.
were opened in February, 1984, our alternative was the low bid at $13,882,000, while our steel bid was the second lowest at $13,939,000. The specifications allowed a 45-day review period following bid opening for the state to decide if the alternative design was acceptable, and after the review and several meetings with us and our designers, the state elected to award us the project based on our bid for the state’s steel design at an additional price of $57,000. Construction proceeded with no significant problems or claims, and the bridge opened to traffic on schedule in November, 1986.

In hindsight, after looking at the problems on other segmental concrete bridge projects, this turned out to be a very wise decision.

Imperfect Process: Contractor Beware

Not everything works out perfectly with contractor-designed alternatives, however. The second job we bid using a contractor-designed alternative was the Dame Point Bridge in Jacksonville, FL. Again, we engaged the services of Figg & Muller Engineers. Their design for the approach span contract provided for the use of modified AASHTO beams with an integral deck. They also made substantial changes to the superstructure design.

When the bids were opened in November, 1984, our bid of $24,049,000 was the lowest submitted for the approach span contract. We were shocked when the Jacksonville Transit Authority later announced, after review, that the contract would be awarded to the seventh lowest bidder. No explanation was forthcoming, though we suspected they were influenced by their personal preferences for that contractor. While we didn’t get the job, we did succeed in recovering our expenses in the amount of $750,000.

In 1985, we discovered firsthand the problem with segmental concrete bridges. Cianbro and our joint venture partner from Texas submitted a bid for the construction of a bridge over Albemarle Sound in Edenton, NC. This was a new 18,500'-long bridge consisting of low-level approach trestles and a high-level center section over the navigation channel. The state provided some 16 bid alternatives, as well as allowing contractor-de-
Two factors need to be considered when evaluating structural steel and segmental concrete designs:

- The increased inspection costs incurred by DOT on segmental concrete designs;
- The major delays and claims resulting from segmental concrete construction, which has not occurred with more conventional designs.

I am aware of claim settlements on three major segmental bridge projects. If these settlements of $16 million, $8.2 million, and $6.4 million were added to the original low bid, the segmental bridge option would not have been low at all.

The problem may take care of itself as more contractors that have built a segmental concrete bridge decide not to bid on another one because of the problems encountered, difficulties in resolving claims, and the long delay in collecting final payment. However, it is important that DOTs spend more money during the design stage to make sure that the design is complete and is constructable. Also, the total cost of a project should be evaluated before deciding between alternate bids. The total cost should include design review and inspection costs as well as the construction cost.

State DOTs also need to design more competitive steel alternatives. We bid on the Baldwin Bridge for the Connecticut DOT in December 1989. The state provided alternate designs for structural steel and segmental concrete construction. Cianbro and our joint venture partner from Kansas City were the low bidder for the structural steel option at $99,985,000, but lost out to the only bidder on segmental concrete at $95,807,000.

While it may not have effected whether or not we were the low bidder, we did note several requirements of the steel design that made it less competitive than concrete. These included:

- Shop painting of ASTM A588 weathering steel. Our bid included approximately $2.5 million for shop painting. We feel that the painting could have been eliminated. If painting was necessary for some reason, then A572 steel should have been specified, which would have saved more than $500,000.
- The steel design required installation of an inspection walkway under the bridge. The design of this walkway required a substantial amount of field welding, and was very difficult to install. The design also required the use of fiber glass grating. Total cost of this walkway was $870,000. A more efficient and simple design would have cut this cost in half, to approximately $435,000. In addition, a movable platform system was specified that cost approximately $2 million. We question the need for such an elaborate inspection system, as we haven't seen it used on other bridges we've bid.
• The crossframes were specified to be installed using field welded connections. Field bolted connections would have saved approximately $380,000.

In addition to the specifics I cited for the Baldwin Bridge, we've noticed that one of the biggest problems in bidding alternate designs is that the various designs are not always comparable. Differences include:

• Different estimated pile lengths. One designer assumes the piles will reach refusal at a higher elevation than the other designer.
• Different pier designs. One designer will have a less cost-effective design (size, shape, etc.).
• Different span lengths. One designer will have a more efficient design, which results in fewer piers.

I believe it is extremely important for the state DOT to closely review alternate designs being prepared for the same project to ensure that each design is as efficient as possible. This is very important, especially because of the growing number of contractors only bidding the steel design because of the difficulties normally encountered in constructing a segmental concrete bridge.

Preparing more efficient designs would eliminate the need for costly contractor-prepared alternatives. Our own company is no longer interested in preparing contractor alternative designs because of the high cost of preparing these designs, the added design liability risk we would incur, and the bad experience we've had on previous jobs.

Other Suggestions

Three more suggestions for improving the design and construction of bridges:

• The use of design competitions. This practice is fairly common for major building projects, but is rarely used for bridges. This procedure would allow the submission of preliminary designs by several designers, after which the DOT would select the best design, and only that designer would prepare detailed plans.

• Constructability reviews during the design stage. Cianbro has done a number of these at the request of a designer or owner. We are generally asked to review the plans at various stages and make suggestions that might make construction easier and less costly.

• Value engineering clauses. We have used value engineering very successfully on a recent bridge rehabilitation project in New York. The plans called for a precast concrete deck because of the limited time available to remove the existing deck and construct the new one. We felt that we could give the owner a better schedule using cast-in-place concrete. We submitted a value engineering proposal that saved nearly $140,000, and this proposal was accepted.
OUR WELDING PRODUCTS ARE UNSEEN IN ALL THE RIGHT PLACES.

BP America's corporate headquarters in Cleveland, Ohio leaves a lasting impression on everyone who sees it.

What they don't see is the contribution of Lincoln Electric.

Using Lincoln Innershield® self-shielded FCAW welding electrode, Lincoln lightweight air-cooled guns, and Lincoln power sources, operators were tested and qualified with minimal training.

Unlike conventional gas-shielded processes, with Innershield, operators could work in tight situations, free from cumbersome gas cylinders, hoses, and restrictive shielding curtains.

Portable Lincoln wire feeders simplified continuous welding on long joints and virtually eliminated stops and starts. Easily adjusted for voltage and wire-feed speed, they provided full welding flexibility.

What's more, Lincoln provided expert technical assistance to keep each welding application running smoothly.

If you're working on the kind of project that people are going to notice, specify Lincoln Electric.

The results will be as enduring as they are endearing.

LINCOLN ELECTRIC

Where productivity isn't a foreign idea.

For more information about Lincoln welding products, contact your Lincoln distributor or The Lincoln Electric Company, 22801 St. Clair Ave., Cleveland, Ohio 44117-1199.
Upside-Down Casting Combines Advantages Of Steel And Concrete

A proprietary composite bridge system reduces costs, speeds construction and improves deck performance

By Stanley J. Grossman, P.E.

When a major route to the ski resorts in Upstate New York was hampered by a deteriorated bridge, the New York DOT turned to an "upside down" bridge to quickly and inexpensively remedy the problem.

The steel-beam Horseshoe Bridge across Spruce Creek on busy Route 23A in Greene County, NY, was originally built in the 1930s. But by 1987, it had deteriorated to such an extent that it was posted for seven tons, which was a significant impediment to traffic.

After carefully considering replacement options, the New York DOT chose INVERSET, a proprietary pre-stressed, composite steel bridge system. The contract was awarded to Eastern States Construction Co. of Upper Nyack, NY, with the stipulation that the road could not be closed for more than three weeks. Three 9' 3 1/2"-wide by 31'-long units were ordered from The Fort Miller Co., Schyerville, NY, which holds a license to make and distribute this type of
The new bridge has three 9'3½"-wide by 31' long units, each consisting of two W16×36 steel beams supporting an 8½"-thick slab. The cost of the superstructure, excluding the rehabbing of the abutments, was $60,000, or $70/sq. ft.

The masonry bridge has three 9'-3½"-wide by 31'-long units, each consisting of two W16×36 steel beams supporting an 8½"-thick concrete slab. While the previous 37 bridges of this type used a 7" slab, the minimum thickness allowed by New York DOT is 8½".

Following a procedure developed by Grossman & Keith Engineering Co., Norman, OK, Fort Miller cast the units upside-down in their plant. The forms were suspended from the beams, which were supported at extended ends beyond the ends of the form. In this position, the weight of the form, beams, and wet concrete stressed the steel beams producing compressive stress in what would be the bottom flange when the unit is turned over.

Increased Strength

When the concrete hardened, the unit assumed the greatly increased sectional properties of a composite member instead of those of the beams alone. As a result, after the unit was turned over, the bottom flange had approximately a zero stress leaving almost the entire allowable stress range to resist the live load plus impact stresses. As well as having the composite section support all of the dead loads, this "prestressing" of the steel results in approximately a 30% reduction in the weight of the steel beams.

The concrete also benefits from being cast upside down. The process of turning the unit over induces longitudinal compressive stress in virtually the entire slab, producing a crack-resistant deck with sufficient residual stress to even allow the unit to be supported at its middle and still have the deck remain in compression throughout.

Another advantage of upside-down casting is reduced water permeability. During casting, small air bubbles trapped in the concrete structural unit in nine northeastern states. Steel fabricator was AISC-member Schenectady Steel Co., Schenectady, NY.
rise to the top, thereby increasing water permeability. By casting the concrete upside down, the air bubbles form on what will eventually be the bottom of the slab instead of the top. A test conducted on a sample 4"-diameter, 8"-high cylinder showed substantial differences between the top and bottom. A testing lab determined that a 2" slice off the bottom was 50% less permeable than a 2" slice off the top.

Upside-down casting also increases the density of the concrete wearing surface, providing increased resistance to deck deterioration. Further, as was done with the Horseshoe Bridge, a form liner can be used to mold a rough texture into the wearing surface so that the deck is ready immediately for traffic.

Steel Structure Cuts Costs

Upside-down casting is only practical with a steel structure, however. With a concrete structure, the dead load costs escalate rapidly and the weight of the system makes it too hard to handle. Also, there are substantially increased prestressing costs with a concrete structure.

After casting, the Horseshoe Bridge was transported to the site in three pieces. On Nov. 22, 1988, Route 23A was closed. The deteriorated deck was removed, and the abutments seats were modified and repaired. On Dec. 6, the units were lifted from trucks and lowered onto pre-set bearings. The erection of the units took about half a day. A steel diaphragm was bolted between the units and the joints were filled with non-shrink grout. Also, the precast backwalls were connected and steel guard rails were attached using sleeves cast in the decks. On Dec. 13, just 21 days after it was closed, the Horseshoe Bridge was reopened.

The cost of the superstructure, excluding the rehabilitation of the existing abutments, was $60,000, or $70/sq. ft.

Because of the extremely short time-frame for the project and the possible difficulty in locating A588 beams, the deck units were designed using A36 steel. However, after the bid award, Fort Miller was granted permission to substitute A588 steel, which removed the painting requirement in the original contract. However, due to time constraints, no redesign was done to take advantage of the higher allowable stress permitted with A588 steel. The latter grade steel has been used on most bridges built with this system not only to reduce maintenance costs but also to exploit the higher strength.

OUR STEEL JOISTS ARE
AT THE WORLD
Tinley Park, Illinois is now the home of the largest open air pavilion in America. With seating for 11,000 under roof and 17,000 more on the five acres beyond the structure.

But some of the star performers there aren’t musicians or singers. They’re joists. Vulcraft steel joists and joist girders. And steel deck too. Vulcraft was chosen over structural steel because our product is inherently less expensive and because of our experience and expertise, which enabled us to calculate the most economical sizes for the joists.

The result: a savings of roughly $750,000. That’s a lot of C notes compared to an overall construction cost of $23 million.

No money was lost on delivery problems either, because we sequenced the job perfectly, including the joists, joist girders and 177,000 square feet of deck. But that’s what our customers expect and that’s what we expect of ourselves.

So before you start your next project, contact one of our plants or see Sweet’s 05100/VUL and 05300/VUL.

No matter what you’re building, the chances are we could make some beautiful music together.

VULCRAFT
A Division of Nucor Corporation
Imagine a 234' x 637' x 107'-high box with more than 4,500 vertical steel members spaced evenly throughout. Imagine the structure filled with 78,400 pallet loads of merchandise, each weighing as much as 2,500 lbs. And finally, imagine that this storage facility is almost completely manned by robots.

While it may sound like something from a science fiction novel, the building—and a large number of brethren—actually exists. The building is known as a "rack structure," and includes what the material handling industry refers to as an Automated Storage and Retrieval System (AS/RS). Simply put, an AS/RS is a computer controlled system that automatically receives, stores, inventories, and retrieves a palletized load. The major components of the system are the input/output conveyors, the aisle cranes or retriever machines (robots), the steel storage racks, and the computerized control system.

The building described above is one of the largest of its kind and was erected in Brampton, Ontario, Canada, by the Rack Structures Group of AISC-member Broad, Vogt & Conant, Inc., River Rouge, MI, for Canadian Tire Corp., Ltd.

If ever a building completely followed the axiom that form follows function, it is a rack structure. "The parameters of the building are rooted in the handling equipment," explained Thomas C. Esper, P.E., general manager of the Rack Structures Group.

Design begins with an accurate description of the pallet itself, progresses to the number and maximum weight of loads, and only then considers such factors as seis-
mic conditions. "Given the project specifics and a description of the material handling system from Eaton-Kenway, Inc. [a Salt Lake City-based supplier of material handling systems], the building is designed to be entirely supported by the rack system," said Esper. Owner representative/project manager on the Canadian Tire project was Giffels Associates Ltd., Toronto.

Other important considerations in rack design include: the required flue space, which is the space between two pallets for mechanical piping, fire protection, heating, and ventilation; the space requirements for the exterior girt wall; and the space requirements for the lighting and mechanical items above the storage racks and below the roof structure.

The rack system itself provides structural support for the building. "The rack frame acts as a vertical truss," Esper explained, "with multiple arms that come off the side to support the load shelves."

The racks are constructed from rectangular steel tubes. "Tubular steel is very efficient for this type of building," Esper said. The weight of a 4" x 4" tube is much less than the equivalent wide flange. Also, square tube is good in compression and doesn’t have a weak axis. The reason you use wide flanges in most buildings is that it’s easier to fabricate the connections. In this building, most of the components are welded together, so tubes are much more efficient."

As with other rack structures, ASTM A500 Grade B 46 ksi steel was specified for this project.

Rectangles are used instead of round tubes to simplify the welding of connection plates. "When creating the rack frames, it’s much easier to work with flat surfaces rather than round."

Lateral support of the rack frame is provided in the down-aisle direction with down-aisle tie angles spaced every 10’ to 12’, while the structure’s storage shelves provide lateral support in the cross-aisle direction. All of the lateral loads on the structure are brought to the floor through vertical bracing in the flue spaces.

Foreign Construction

"One of the challenges of the project was the cultural differences between the U.S. and Canada," according to Esper. Canadian holidays are different, there are labor restrictions and different labor practices, and shipment of materials and equipment across the border is difficult. In addition, the design had to comply to Canadian building codes and standards.

To simplify the code issue, the building was first designed to U.S. standards and then checked against the Canadian codes with modifications made where needed. «We roughly doubled the engineering cost [to approximately $100,000], but we made sure the building
would work." A Canadian engineer was required to certify the design.

On Broad, Vogt & Conant projects, the vertical truss rack frames are shipped to the jobsite in one piece. Because of their size it is essential that the fabricator that does the final assembly of the frames be located near the jobsite. For the Canadian Tire project, each rack frame was more than 100'-long, and the logistics of transporting the frames were further complicated by the need to pass through Toronto. As a result, the racks could only be transported at night prior to 6 a.m.

Broad, Vogt & Conant often uses multiple fabricators for its rack projects. "One fabricator located near the site does the final assembly. We select other sources for the components," Esper said. On this project there were nine major material suppliers and five fabricators.

Other manufacturer's of rack structures have their own fabrication plants and ship the rack frames in 40' sections to be assembled at the site. "This method realizes some economies in fabrication, but loses its advantage in long-distance trucking costs and job site labor costs," Esper said.

Since most fabricators are unfamiliar with rack structures, Broad, Vogt & Conant has developed fabrication techniques for these projects and trains the selected fabricators. The firm brings with it specialized equipment and provides in-plant supervision. Broad, Vogt & Conant provides the fixtures used to assemble the rack frames.

"During the past two years, we have developed robotic welding techniques," Esper said. "The majority of the fabrication labor is in welding. On the Canadian Tire project, we installed our robot at the fabrication plant and we manned the whole robotic operation." The material handling requirements with robotic welding are about the same, but labor costs are cut by as much as 75%, according to Esper.

Innovative Construction

Another innovative technique on this project was the use of three-post, double-sided rack frames instead of two-post frames. The typical design of a rack structure features two rack frames placed back-to-back with a flue space in between. Each rack has two posts, for a total of four posts. To reduce costs, one of the center posts was eliminated. "We strengthened the middle post of the three-post frame by using a heavier gauge tube," Esper said. "It's much more efficient than having four posts."

According to Esper: "The construction process used by Broad, Vogt & Conant is unique in that we preassemble the rack building in large modules on the ground." Each assembly is then tilted up and lifted into place. Each 28-ton module consists of nine, three-post rack frames, down-aisle ties, bracing and, in this case, the fire protection system. "We try to reduce the number of man-hours of people working high in the air," he said. In addition to reducing the erection time by as much as 20%, the preassembly process enhances the safety of...
The vertical truss rack frames are shop fabricated into one piece (bottom photo). While this complicates shipping, it reduces field labor and improves quality control. Pictured at top is the erection of a rack frame.

...
STAAD-III/ISDS - Ranks #1 in America.

A recent ENR/McGraw Hill survey of the Architectural/Engineering/Construction industry has ranked STAAD-III/ISDS, from Research Engineers, as the #1 structural engineering software in the market today.

The choice of engineers since 1978, STAAD-III/ISDS is being used worldwide as an everyday companion in the design office. The first truly integrated structural engineering software, STAAD-III/ISDS combines geometric layout, analysis, design and drafting in a single software system.

Simple to use, yet sophisticated in application, STAAD-III/ISDS offers the most comprehensive solution to your structural engineering needs. Today, Research Engineers, with six offices in four continents, is setting the structural engineering standard worldwide.

STAAD-III/ISDS - #1 For a Reason.

Research Engineers, Inc.
A reputation you can build on.

For Information Call: 1-800-833-ISDS

Main Office: 540 Lippincott Drive, Marlton, NJ 08053
Phone: (609) 983-5050 Fax: (609) 983-3825 Telex: 4994385
West Coast: 1592-1A N.Batavia St, Orange, CA 92667
Phone: (714) 974-1864 Fax: (714) 974-4771

W. Germany: Research Engineers, Wilhelm-Busch-Str. 23, 6140 BENSHHEIM 3 ADERBACH Phone: 06251/79577 Fax: 06251/175437
India: Research Engineers Pvt. Ltd, 40 B Darga Road, Calcutta 700 017 Phone: 448914 Telex: 214102
Innovative Design Speeds Construction, Cuts Costs

Using free-standing steel tube columns was crucial to the creation of a new budget hotel by the founder of the Holiday Inn chain.

When Kemmons Wilson founded Holiday Inns in the 1950s, his intent was to create a worldwide chain of clean, comfortable—and most importantly—inexpensive hotel rooms. But while Holiday Inns have gone upscale, Wilson remained true to his original concept and has introduced a new chain bearing his name.

The Wilson Inns and Wilson World Hotels are primarily located in the Southeast and the 15' x 27' rooms are priced from as little as $29.95 per night.

Low Construction Cost

Crucial to this value-oriented pricing is a low construction cost. Including furnishings, but excluding land, the 110-room Inns cost only $2 million, or $18,181 per room, according to Robert McCaskill, P.E., who formerly was vice president of construction for Wilson Inns but who now has his own consulting firm in Memphis. By comparison, the average construction cost of a "budget" motel room in the United States is between $20,000 and $25,000, according to Stephen W. Brenner Associates, a New York City-based consulting firm specializing on the hotel industry.

"The low construction cost is
achieved through a very efficient construction method," explained McCaskill. As with many buildings, the design involves steel tubular columns and poured-in-place concrete floors. The difference, however, is in the use of free-standing five-story-high columns.

Evolutionary Technique

"We found that people used a similar type of construction in the 1930s, but with one-story columns sitting on top of each other," McCaskill said. McCaskill had used that same method on the all-suite Lagniappe Inns which he had earlier designed in the Louisiana area.

What’s different on the Wilson Inns project is that the steel columns are erected at full height, instead of one story at a time.

“We tried to get a contractor to go full height on the Lagniappe Inns, but we couldn’t find one that would. Fortunately, Mr. Wilson had enough influence to get a contractor to give it a try." Also, unlike lift-slab construction, the forms are moved into place instead of the slabs being hydraulically lifted into place.

“Once a contractor tried it, he usually liked it", McCaskill added. “The construction process is safe, quick and efficient.”

The Inns have 64 columns with each column spaced 15' on center. The columns are 8" x 4" x 5/16" rectangular A500 Grade B (Fy = 46ksi) steel tube. “We chose tubes because with them we can maintain a
relatively small dimension, which meant we could keep the column within a wall stud,” McCaskill said. “Also, steel tubing is very strong.” Each Inn uses approximately 40 tons of steel.

Prior to erection, a 1”-thick steel plate with a hole in the center is slipped over the column and welded to it every 8½’. After the columns are erected and bolted to the foundation, forms are placed below the plates, reinforcing rods and electrical conduit are laid, and then 6” of concrete is poured for each floor. After each floor is poured, the columns are plumbed to ensure that they remain straight.

Diagonal Bracing

For stability, diagonal tube bracing is added to the frame. Typically, braces are added to three bays in the long direction and four bays in the short direction, though on coastal projects with high winds six braces are used in the short direction. “We put the bracing in after pouring the third floor,” McCaskill said. “The structure is fairly stable until it gets taller than that.” The bracing is added to all five floors and is located so that it falls in a partition and is not visible once the hotel is complete.

In addition to a low construction cost and fast construction time, the innovative design and small column size allow great flexibility in the location of interior partitions, according to McCaskill.

Another advantage of this type of construction system is simplified foundation construction. “The columns are in a row, so we put in a 3½’-wide strip footing the full length of the building. The footing went in very quickly. We used a back hoe to dig a trench and then poured concrete.” The trench is 2’ deep.

Total construction time on the Inns is about 8½ months, and more than 20 have been constructed. In addition to the Inn design, Wilson also has developed three Wilson World Hotels, each with 200 rooms and a 100’ x 232’ center atrium, and a 136-room Wilson World Hotel with a 100’ x 180’ center atrium.

The 200-room Wilson World Hotels have 130 columns and rigid framing for the atrium. Construction time for the $7 million hotels is about 14 months.

THIS IS WHAT IT TAKES TO BE A BOLT MANUFACTURER IN THE 1990s:

- U.S. made steel
- Wide-range manufacturing capabilities
- Weathering steel: Corten X
- Guaranteed full traceability
- In-house lab testing
- Certification

ST. LOUIS SCREW & BOLT COMPANY

6901 N. Broadway/St. Louis, MO 63147/(314) 389-7500

FAX, (314) 389-7510
Toll Free, 1-800-237-7059

Registerd Head Markings on all structural and machine bolts from ¼” to 3” diameter, all lengths

- Countersunk
- Bent anchor
- Double & Single-End Anchor
- Swedge Anchor

Special Products from ½” to 3” diameter
We make steel detailing a snap!

Yes, we know it's a big claim. And, yes, we understand that steel detailing is a complex and demanding process. After all, Steelcad was designed by steel detailers.

As detailers, we felt that computers could offer a solution to the traditional problems facing our business. Our goal was to increase drawing productivity through computers, at a level of operator expertise that did not require a degree in rocket science, engineering or a huge level of experience in steel detailing.

To those ends, we've succeeded. We let the computer deal with the complex or tedious issues; the math, the actual drawing, material counts, shipping, etc... and made 'talking' with the computer very easy to do.

We've succeeded so well that Steelcad is the world's best selling computer steel detailing system. And while we're not perfect, our clients tell us we're a lot closer than anyone else... and easier to use.

1-800-456-7875

Call toll free for a free demonstration

STEELCAD INTERNATIONAL

200 E. Robinson St.
Suite 250
Orlando, FL 32801
TWO NEW DESIGN AIDS

These 120-page books contain design aids for shear connections not previously published. Presented in easy-to-use tabular form, the books include designs for double-angle web-bolted connections, structural tee single shear connections and single-angle connections welded to the support. Included in these easy-to-use references are design aids for other connections reprinted from AISC, ASD and LRFD Manuals. They include double-angle web-welded connections, single-angle connections bolted to the support, end-plate shear connections, shear tabs, unstiffened and seated connections.

For Allowable Stress Design of Simple Shear Connections order S337. For Load and Resistance Factor Design of Simple Shear Connections order S338L.

ORDER FORM

Name______________________________
Company____________________________
Street/P.O. Box__________________________
City__________________________ State________ Zip________
Phone__________________________
AISC Membership No.________________

Please enclose payment with order, no C.O.D. orders, American Currency Only)

☐ Visa ☐ Mastercard ☐ Check or Money Order

Card Number__________________________ Expiration Date________________
Signature__________________________ Phone Orders: AISC, 312/670-2400 x433

Mail to: AISC, P.O. Box 806276, Chicago, IL 60680-4124

$16.00 EACH

ASD:LRFD
Demonstrating Tubes Capabilities

A manufacturer of steel tubes used its own expansion as a field laboratory

By Mike West, P.E., AIA

When Welded Tube Co. of America needed to expand its Chicago manufacturing facility, it was only logical to build with steel tubes. The company has a vested interest in increasing the use of structural tubes, and this project gave them first hand experience with the issues involved in designing, fabricating, and erecting a steel tube structure.

The addition was needed to enclose a fourth production line and store its production. The production equipment was designed and fabricated by Kusakabe Electric and Machine Co., Ltd., of Kobe, Japan, and will produce tubes that range in size from 1" square to 2" square and from ¾" round to 2½" round in thicknesses from 0.060" to 0.188". The production speed of the mill is 650' per minute with an annual production based on expected sales mix of 125,000 tons per year. Tubes will be produced to ASTM Specifications A53, A135, A513, and A500 Grades A, B, and C.

The new mill is laid out parallel to the three existing mills but is in an independent gable-framed building that connects the existing coil storage building to the existing warehouse. Additional warehouse space also was constructed.

The linear nature of the production process (uncoiling, accumulating, forming, welding, squaring, cutting, painting and bundling—see sidebar) dictated a long, narrow building. The requirement for a maintenance crane and the...
building's relatively narrow 58' width meant that there would only be a single clear span.

And the building's shape suggested the use of rigid frame bents to resist transverse loads.

On the exterior, a standing-seam roof and metal-panels were used to match the exiting facility.

Structural Framing

The mill building uses rigid framing spanning 58'. The columns are square tubes. The beam element is a king post truss constructed with tubes. These bents are spaced at 24' to match the column grid of the existing mills. The roof purlins are rectangular tubes, which are two-span continuous. The crane girders are supported by cantilevered tube brackets from the rigid frame columns.

The bracing for the lateral loads in the longitudinal direction is consists of three sets of paired bents connected by diagonal round tube struts in the planes of the roof and side walls. Steel fabricator was AISC-member Jones and Brown Co., Inc., Addison, IL.

The warehouse extension is a lean-to structure on the side of the existing warehouse and has a clear span of 88'. In order to maximize crane hook height while connecting the new roof below the eave of the existing roof, a low-slope standing seam roof was used. The roof framing uses rectangular tube purlins, which span to a simply supported single-span inverted king post truss. The top chord of the truss is a TS 12x20x½, which is the largest tube size that is domestically produced. In addition, its length of 88' 6" may be a record.

The warehouse is served by two 10-ton overhead cranes, one of which is radio operated. Both of the cranes are equipped with magnetic hooks. The crane girders are paired rectangular tubes with a top full width plate under the crane rail. The crane girders and the roof truss are supported at the outside wall by cantilevered Vierendeel trusses of two columns and horizontal webs. The outboard column supports the roof truss, while the inboard column supports crane girders. This cantilevered framing supports all transverse lateral loads.

The Vierendeel trusses are laid out so that the lowest web is high enough so that there is a useable walkway between the columns. The support of the structure on the interior side of the building is from the existing column, while the roof truss is framed to the face of the existing column flange. Also attached to the existing column flange is a diagonally stiffened wide flange bracket, which supports the runway beam. As in the mill building, the resistance to longitudinal lateral loads is by means of struts in the plane of the roof and sidewalls. There also is a line of bracing to stabilize the bottom of the inverted king post truss.

Simplified Connections

In addition to the previously stated parameters, another design concern was the need for simplicity and clarity in detailing and fabrication. Despite the many benefits of structural tubing, some designers are hesitant to use it because of perceived difficulties with connections. To simplify connections on this project, butt joints, end capped or side plated joints were used wherever possible. Also, in
general thicker tube walls were used in lieu of complex stiffening and reinforcing schemes.

The connection of the crane girders to their supports was by means of oversized end plates with projections on each side so that the plate could be bolted to the projecting cap plate on the column or on the top side of a bracket. The end connection to the bracing struts was by means of a short tee. The tee flange was welded to the end of the tube and the projecting web was connected to a gusset plate using bolts in single shear.

During the planning stage consideration was given to fabrication at the site to eliminate the cost of shipping the material to a fabrication shop and then back to the site where it had originally been produced. However, this was not done because an analysis revealed that the cost of field fabrication exceeded the shipping costs.

Design Details

The design philosophy employed on the project is best illustrated by the following examples:
- The primary roof framing elements are king post trusses that consist of only six major pieces, while the horizontal chord is a single piece.
- In the case of the gabled truss, the diagonal chords meet at the ridge by butting to a vertical plate. The web members, of which there are three, are connected between the top and bottom chords, and the diagonal chords are fitted to the horizontal chords and reinforced with side plates.
- In all instances, the trusses are attached to the sides of the columns. An end plate with projecting sides is bolted to a matching plate on the face of the column, and in the case of the mill building, this joint is designed to include the forces induced by the rigid frame bending moments.

As cited above, the cantilevered Vierendeel truss in the warehouse allows separate crane and building columns and a walkway at the building perimeter. The square panels of the truss simplified the square cut butted joints of the web members.

All of the joints were designed to be field bolted. The girder and purlin angle clips were welded to the framing and requiring a field weld between clips and purlin or gir. The fabricator added an erection bolt through the outstanding clip leg so that the girts and purlins could be held in place prior to field welding.

Straightforward Erection

Erection of the structure was straightforward, though careful consideration was needed for the connections between the existing and new structure.

Because the tube purlins were too narrow to be "walked", they were set from below using bucket lifts. Also, the tubes mostly did not provide hand and foot holds familiar to the iron workers, which required new strategies on their part. There also was a concern that the rounded tube corners did not grip into the hoisting slings as would the square edge of a wide flange shape. Fortunately, these concerns were met during construction to everyone's satisfaction.

Those concerns, however, were a prime impetus to Welded Tube using structural steel tubes on this project. One of the company's goals is to increase the use of structural tubes, and the construction of their own facility gave them first hand experience designing, fabricating, and erecting a building using structural tubing.

It also pointed out the advantages of the tubular shape, including: minimized surface area for painting and cleaning; uncluttered appearance; high ratio of strength to weight in columns; and high lateral stability which eliminated the need for flange bracing.

Mike West is vice president of Computerized Structural Design, Inc., a Milwaukee structural engineering firm. He is both a registered architect and a registered engineer.
Making Tubes

One—Large steel coils are warehoused. Some of the coils weigh as much as 40 tons.

Two—The coils are uncoiled at the beginning of a long process line. This line is almost 800' long.

Three—The coil is pulled through a series of forming stands, which shape the flat steel into a tube. The first five stands are breakdown sections.

Four—Next, the strip is pulled through three fin stands, which presents the strip into the weld pass.

Five—The strip is pulled through a seam guide, which centers the seam for correct weld location.

Six—The strip is welded into tube with a high frequency contact welder and adjoining squeeze roll stand.
Seven—The tube goes through an air cool section, then a water cool section, and then into a two-stand sizing section, which finalizes the round shape before shaping it into either a rectangular or square shape.

Eight—The tube is pulled through a four-stand sizing section, which progressively shapes the round tube into the desired shape.

Nine—The tube is cut into the desired length by a friction cut-off saw.

Ten—The tube is discharged onto a bundling table and stacked into the desired configuration and then banded. It's then warehoused and shipped.

Eleven & Twelve—Another line in operation.

Information and photography courtesy of Welded Tube Company of America.
Photography: Dan Pollack Photography, Inc.
Welding Innovations Are Expected To Slash Costs

By Alan W. Pense

High-strength yet highly weldable materials, heavier shapes, innovative welding processes and new quality control methods will enhance the role of welding in structural applications.

Higher-strength, more-durable steels will soon replace more traditional types used today, possibly within five years. Already, microalloyed compositions are available with yield strengths in the 50 to 100 ksi range. But perhaps more important than their strength and toughness, these new steels have substantially improved weldability. They achieve their improved strength with decreased carbon contents, allowing much more flexibility in welding and reducing both the preheat required and the hardness of heat-affected zones after welding.

And materials of even higher strength with good weldability likely will be prevalent soon. In fact, within 20 years, the industry could see more weldable materials with yield strengths that are two or three times current ones. These economical, high-strength weldable materials should be even more competitive on a cost basis with concrete materials.

Easier Fabrication

Currently in development are new high-quality heavy construction shapes that will allow easier fabrication of large-size structures. Rolled sections of jumbo sizes with flanges and webs in the 3" to 6" range now are being produced with excellent toughness, strength and weldability.

For heavy section materials, toughness and weldability are as important as strength. Heavier sections of these constructional materials will be developed within five to 10 years, which will improve the productivity of welded connections. If the expected strength and combinations can be achieved, welded steel shapes—jumbo sections, especially for large structural systems—will generate increased interest.

New Welding Processes

Laser welding and other high-energy density processes will emerge probably within 20 years, replacing older arc processes. Medium power lasers are beginning to mature into systems that will be small enough to be used both in the shop and in the field. In addition, prices are dropping to levels that will make laser equipment a reasonable investment for fabricators and erectors.

High-density welding processes will radically change the joint designs currently used in welding. Present designs rely on weld preparations in which a substantial amount of metal is removed to provide an open joint that accommodates limited penetration.

Using deeply penetrating processes, joint designs would be radically altered. For example, very narrow gap joints could be welded with relatively small amounts of filler metal, which will greatly improve welding productivity and re-
duce weld defects.

In the future, welding through highly penetrating processes will utilize essentially square butt preparations—through laser cutting followed by laser welding of two abutting surfaces with little or no filler metal required. Among other things, inspection of these joints will prove simpler. Overall, radical changes in weld design and production will result in rapid and substantial improvement in productivity—which also will lower costs of welded products. Both labor and consumable costs should be reduced by 20%.

Detecting Defects

Within 10 years, new control systems are expected to be available that will detect and prevent welding defects before they form. Several organizations, including the United States Army Construction Materials Laboratory and the ATLSS Center at Lehigh University, are working on systems that detect defects during their formation and feed back this information immediately.

Real-time measurements by acoustic emission will identify when and how welding configurations are changing from preset quality standards. Automatic feedback controls will then adjust welding parameters to prevent defect formations. These quality control systems already are very close to reality.

Alan W. Pense is an American Welding Society Expert to the Commission IX on the Behavior of Metals Subjected to Welding of the International Institute of Welding. He also is provost and vice president at Lehigh University, Bethlehem, PA. Prior to this, he was dean of the College of Engineering and Applied Sciences and R.D. Stout professor in the Department of Materials Science and Technology.
Having trouble getting good detailers?

Testimonials from our overseas clients verify our competency and ability to deliver on schedule

"they have submitted prices consistently which are economic and which have aided us to obtain a substantial share of the market"

"they are used to working with companies at a fair distance away from their (BDS) home base"

For complete steel detailing

BDS STEEL DETAILERS
8925 Folsom Blvd., Suite T
Sacramento, CA 95826
Ph:(916)368-1666 Fax: (916)368-2885

MERLIN DASH
Design & Analysis of Steel Girder Bridges

FHWA — Endorsed and Used by DOT’s — Used by Most States

☑ New — VERSION 3.2
☑ New — Design Capability
☑ AASHTO — New 14th Edition
☑ Menu-Driven Input — Very Easy
☑ Graphics Display of Results
☑ Output Report Selection

MERLIN DASH is a product of the Bridge Engineering Software (BEST) Center at the University of Maryland. OPTI-MATE, INC. is proud to have been selected as its sole representative. For the BEST in Bridge Engineering Software... Call Today!

OPTI-MATE
P.O. Box 9097, Dept. A, Bethlehem, PA 18018
(215) 867-4077

Session Touts Certified Welder Program

By Richard A. Huber

The benefits of the American Welding Society Certified Welder Program are described in a special series of presentations scheduled to be held at most of 21 accredited test sites throughout the country in 1991.

The certification program is designed so that welders can transfer their certification from employer-to-employer and location-to-location. Essentially, it allows certified testing laboratories to test to D1.1. Ideally, a standardized testing procedure will provide validity, credibility and reliability.

The AWS kicked off the Certified Welder tour presentations last December in Allentown, PA, the location of the Welder Training & Testing Institute, the first accredited welder certification laboratory. Two open-to-the-public sessions attracted 70 people, with an even mix of welders and users/specifiers.

Growing Program

More than 35 welders have been certified through the program, which was inaugurated in February, 1990. Program administrators—confident that the on-site tours will increase interest in the program—expect 1991 to be a watershed year. By the end of 1991, AWS hopes that at least 200 welders will be certified and the number of test facilities will increase to more than 40.

When it matures, the certification program is expected to generate significant cost savings for the industry. Because AWS Certified Welders can be listed in an easily accessible nationwide registry (subject to the approval of the employers from whom they work when they are first certified), employers will save on retraining and recertification costs.

Nationally Recognized

Certified Welders will have earned a nationally recognized, independent, third-party, portable certification that travels them and enhances their professional standing.

Test facilities are accredited to AWS QC4 (Standard for Accreditation of Test Facilities) by the American Bureau of Shipping (ABS), an independent technical organization with more than 125 years of experience in administering standards. Only facilities accredited by ABS may administer the AWS Certified Welder examinations.

Registrants at the 1991 AWS Welding Exposition in Detroit (April 14-19) can learn more about the AWS Certified Welder Program at two events during the show. Session E1: "Symposium on AWS Welder Certification" is a two-hour program to be held on Wednesday, April 17, at 10 a.m. "AWS Test Facility Accreditation Seminar" is a two-day program to be held on Thursday, April 18, and Friday, April 19, at 8 a.m.

Richard Huber is president of the American Welding Society and a developmental group leader at Martin Marietta Energy Systems, Inc., Oak Ridge, TN.
Code Changes Effect
Steel Construction

By John Bartley

The welding industry owes much of its success to a code that is revised frequently to incorporate the latest in technology and practical experience. The Structural Welding Code (ANSI/AWS D1.1-90) for welding structures fabricated with carbon and low-alloy steels is updated every two years to keep pace with rapid industry development and improved practices.

The Structural Welding Code—Steel remains the definitive working document for designers, engineers, fabricators and contractors concerned with creating tubular and statically or dynamically loaded steel structures. It covers detailed welding requirements, allowable unit stresses, structural details, workmanship, inspection procedures and acceptance criteria.

Changes in the 1990 edition include:
• Prequalified partial penetration groove welds: Detailed root face tolerances have been revised.
• Skewed T-joints: A subsection on skewed T-joints has been added, along with a figure and table.
• Workmanship: Extensive revisions include provisions that have been revised for the preparation of access holes, new allowable camber measurements and maximum fillet weld convexity.
• Box tube welder qualification: The requirements for the qualification of welders performing box tube welding have been revised to include corner macroetch tests.
• Revised wire image quality indicator (IQI) requirements: Wire sizes are now given for a revised set of thickness ranges.

• Radiation imaging systems: Real-time imaging requirements are now included.
• Girder web flatness provisions: The requirements for the flatness of girder webs have been modified.
• Radiographs of tubular groove welds: Requirements are given for the quantity and location of film exposures for tubular circumferential groove welds.
• Revision to Appendix IV: The prequalified welding procedure specification checklist is deleted; the Code now addresses only requirements that may be changed by procedure qualification tests.
• Revision of Appendix E (Welding Procedure Specifications): Revised forms replace the 1988 prequalified and qualified WPS forms.
• Addition of Appendix H: This new non-mandatory appendix includes a list of the Code provisions that are required to give prequalified status to a joint welding procedure specification.
• Addition of Appendix J: This new non-mandatory appendix outlines the general requirements for safety in an environment where welding and cutting operations are being performed.
• Mechanical testing: ANSI/AWS B4.0, Standard Methods for Mechanical Testing of Welds, provides additional details of test specimen preparation and details of test fixture construction.

John Bartley is president-elect of the American Welding Society and is head of the Welding Engineering Division at Mare Island Naval Shipyard, Vallejo, CA.
Burco, Inc.
The company has recently acquired L-TEC's stud welding business. Burco will exhibit at the 1991 AWS International Welding Exposition, Booth #1378, a complete state of the art stud welding product line from 600 AMP to 3,000 AMP power supplies, including short-cycle and towable engine-powered systems. Also on display will be a line of stud welding guns and accessories.

For more information, contact: BURCO, Inc., Box 2115, 530 Chapel Hill Road, Burlington, NC 27215 (919) 228-0760.

Lincoln Electric Co.
The new Weldanpower 250 D10 Pro is a combined engine-driven multi-process arc welding machine and portable 10,000-watt auxiliary generator. Powered by a fuel efficient water-cooled Perkins diesel engine, this unit has been insonorized (sound insulated) for ultra-quiet operation. The unit is designed to provide 100% duty cycle and a full 250 amps of welding output for either AC or DC operation and has a built-in contractor for use with a wide range of processes and semiautomatic wire feeders.

For more information, contact: Lincoln Electric Co., 22801 St. Clair Ave., Cleveland, OH 44117-1199.

TRW Nelson Stud Welding Division
Stud welding is three-to-four times faster than hand welding. Two brochures describe the stud welding process used in the construction industry.

"Nelson Stud Welding For Non-Residential Construction" includes information on composite construction, concrete anchoring, electrical/mechanical, retrofitting, and facia.

"Nelson Stud Welding Process" is a more technical description, and discusses stud welding methods, designing for stud welding, stud selection, weld fillets, welding power, and surface conditions.

For more information, contact: TRW, 7900 West Ridge Road, P.O. Box 4019, Elyria, OH 44036-2019 (216) 329-0400.

Henrob
The Dillon MKIII is designed to make the welding of difficult materials easier. A very concentrated, low velocity flame produces a soft mushroom-like shield that protects the weld puddle, allowing difficult metals—such as very-thin sheet aluminum, stainless steel, and other specialties including cast iron and aluminum alloys—to be welded easily.

Other features include: a precise flame; optimum combustion; minimum oxidation; and reduced preparation time.

For more information, contact: Henrob Corp., 3551 Voyager St., Suite 106, Torrance, CA 90503 (213) 214-4946.
Hornell Speedglas, Inc.

A new welding hat with a lens that automatically darkens in 1/500 of a second after an arc is struck is now available. The lens turns dark when an arc is present and transparent when there is no arc. The lens works in either indoor or outdoor light and with any arc welding process, including low-current TIG welding and inverter welding.

The company also offers a new powered air-purifying respirator/helmet system for welders. The Speedglas Fresh-Air Welder Protection system blows a cooling supply of filtered air through a lightweight helmet that shields the welder's eyes and head. The belt-worn respirator filters gases, vapors, and particulates and can be customized to match specific occupational environments. The extremely light, 1 1/2 lb. helmet also features the automatic lens described above.

For more information, contact: Hornell Speedglas Inc., 2374 Edison Blvd., Twinsburg, OH 44087-2340.

PowCon

New welding products include an add-on device that brings plasma cutting and gouging capability to a standard welding power source and an improved power source. StarCut is an inverter plasma cutter weighing just 68 lbs. It takes direct welding current input and increases its voltage to provide a plasma cutting output rated for 110 VDC at 80 amps. PlasmaPLUS is a series of power sources. The units weigh 85 lbs. and can air plasma cut steel up to 1/2" thickness and weld with 225 amps at 50% duty cycle.

For more information, contact: Wade Chase, PowCon Inc., 8123 Miralani Dr., San Diego, CA 92126 (800) 833-9925.

Woodland Cryogenics Inc.

This company offers a wide range of products, including: pumps; vaporizers; manifolds; pig-tails; fittings; carts; computer controlled systems; specialty gas equipment; tools; and a variety of parts.

For information, contact: Woodland Cryogenics, P.O. Box 311, Darby, PA 19023 (215) 727-0950.
Advertisers' Index

A
- A/E/C Systems .. 15
- AISC Design Aids .. 38
- AISC Prize Bridge Awards ... 13-14

B
- BDS Technical Services ... 46
- Bouras, Nicolas J. ... Cover II
- Burco, Inc. ... 30

C
- CAST .. 49
- Chaparral Steel ... CIII
- Computer Detailing ... 12
- Computers & Structures ... CIV

D
- Design Data .. 18
- Dogwood Technologies .. 11

E
- EPIC Metals .. 19

I
- Inorganic Coatings ... 16

K
- KOPE-ing ... 49

L
- Lincoln Electric ... 22

M
- Modern Steel Construction .. 48
- Mountain Enterprises ... 45

N
- National Steel Construction Conference 10

O
- Optimate ... 46

R
- RAM Analysis .. 7
- RISA .. 48
- Research Engineers .. 33

S
- St. Louis Screw & Bolt .. 36
- Steelcad ... 37
- Steel Deck .. 32
- Steel Solutions ... 12
- Structural Analysis, Inc .. 45
- Structural Software ... 3

T
- TRW Nelson Stud Welding ... 9
- TradeARBED .. 5

V
- Valmont Industries .. 20-21
- Vulcraft ... 26-27

For advertising information, contact:

For advertising information in OK, NE, KS, SD, ND, MN, CA, MT, WY, CO, NM, AZ, UT, ID, WA, OR, HI, AK, and Canada, contact:

Ed Sreniawski
Pattis/3M
7161 North Cicero
Lincolnwood, IL 60646
(708) 679-1100
FAX (708) 679-5926

For advertising information, contact:

Eric K. Nieman
Pattis/3M
7161 North Cicero
Lincolnwood, IL 60646
(708) 679-1100
FAX (708) 679-5926

50 / Modern Steel Construction / March 1991
The reasons fabricators call Chaparral are as strong as our steel.

Broad Product Line. Chaparral's beams, rounds, channels, flats and angles enable us to be your best source for one-stop shopping.

Availability—What you need when you need it. Chaparral offers innovative roll-and-hold programs to match your delivery requirements.

Knowledgeable Shipping/Central Location. Our centrally located mill allows us to ship with ease throughout North America. In fact, some of Chaparral's shipping innovations have become industry standards.

Sales Force—The strongest in the industry. Our sales teams are responsive to your needs. One phone call to any of our qualified professionals will take care of your complete order.

Price. We're competitive. Prices are quoted on a delivered basis. Give us a chance to meet or beat your current source. Just call us at 1 (800) 527-7979.

CHAPARRAL STEEL

Toll Free (800) 527-7979 In Texas (800) 442-6336
Local (214) 775-8241 Metro 299-5212 Telex 73-2406
300 Ward Road, Midlothian, Texas 76065-9651
State of the Art
Personal Computer Software for Structural and Earthquake Engineering
Developed by Edward L. Wilson & Ashraf Habibullah

SAP90™
General Analysis & Design

Building Analysis

Dynamic Analysis

Bridge Analysis

ETABS®
Building Analysis & Design

Shear Wall Design

Space Frame Design

Shearwall/Frame Interaction

Complex Slab Design

Pattern Loading

Slab Deflection Contours

SAFE™
Slab Analysis & Design

For more information:
Computers & Structures, Inc.
1995 University Avenue
Berkeley, California 94704
TEL: (415) 845-2177
FAX: (415) 845-4096
TWX: 5101003830 CSI BERKELEY