Assuring a uniform high quality family of products and services...ON TIME...ANY TIME...ALL THE TIME in the Construction Industry

Nicholas J. Bouras, Inc. -- Bouras Industries -- is made up of United Steel Deck, Inc., New Columbia Joist Company, Inc., Prior Coated Metals, Inc. and ABA Trucking. These four separate but related companies enable Bouras Industries to provide a flexible set of options to the construction industry. United Steel Deck can provide a full line of deck and siding products and can also do custom designs. When combined with the many coating options available from Prior Coated metals a staggering number of combinations is possible. Deck combined with bar joists has always provided an economical method of construction but with the possibilities provided by combining the capabilities of United Steel Deck, Inc. and New Columbia Joist Co. many interesting design options are possible along with economy. On time delivery and expeditious material handling is provided by ABA Trucking. This synergism resulting from combining these four companies defines Bouras Industries. Please call if we can help with your jobs.
ASTM A 913 GRADE 65
Makes Miracles Happen!

14" x 730# JUMBO with 5" thick flanges - is a BIG beam!
60'8" maximum length or 44,286 lbs - is a HEAVY beam!
Available in ASTM A 913 GRADE 65 - is a STRONG beam!

CAN YOU BELIEVE IT CAN BE WELDED WITHOUT PREHEATING?

Please circle # 35

ASTM A913 GRADE 65 is available from ARBED in most standard and WTM (Tailor-Made) sizes.

HISTAR® is a registered trade-mark of ARBED.
Many hospitals are continuously growing. These two Milwaukee hospitals illustrate some of the challenges faced by health care designers—tight sites, constant change orders, and the need to build without disrupting occupied spaces.

FEATURES

15 **STRUCTURAL STEEL SHAPE AVAILABILITY**
A listing of available shapes from the major producers of structural steel members and tubing

24 **CONSTANT GROWTH**
A nearly constant need for more room complicated on-going construction projects

32 **MATCHING HEIGHTS**
A vertical addition to a Milwaukee hospital needed to match floor-to-floor heights with an adjacent building while accommodating massive mechanical ducts

38 **STRUCTURAL ENGINEERING SOFTWARE**
A compendium of software products, capabilities and prices

DEPARTMENTS

6 **EDITORIAL**

9 **STEEL INTERCHANGE**
- Deflection limits for crane runway systems
- Weep holes in tubular columns

38 **PRODUCTS**

11 **STEEL NEWS**
- Steel Seminars
- Quick Steel Survey
- Improving Structural design

50 **STEEL MARKETPLACE**

50 **AD INDEX**
STAAD - III / ISDS Release 19.0

Introducing Concurrent Engineering to Structural Software

What's New?

- Concurrent Graphics User Interface:
 Build the model, Perform Analysis/Design, Review results, and Generate Reports concurrently
- State-of-the-art Report Generator
- New Advanced Analysis/Design Facilities:
 - Tension Only Members
 - Finite Element Release Specs
 - Inclined Supports
 - Harmonic Time History Load Generator
- Advanced Automatic Element Mesh Generator
- On-screen error display with on-line editing
- Live on-screen analysis/design status display
- Full-scale PC and Workstation version including: SUN, HP, DEC, SGI, IBM RISC implementation.

A Milestone in Computerized Structural Engineering

STAAD-III/ISDS Release 19.0, from Research Engineers, Inc. represents a milestone in Computerized Structural Engineering. Built around a new Concurrent Graphics User Interface, the new release allows you simultaneous on-screen access to all facilities.

Build your model, verify it graphically, perform analysis/design, review the results, sort/search the data to create a report - all within the same graphics based environment. This “concurrent engineering” approach coupled with a live relational database, enhances the productivity of your design office to a level never witnessed before.

STAAD-III/ISDS - from Research Engineers - is an acknowledged world leader in structural software. Whether it is finite element technology or sophisticated dynamic analysis or CAD integration, Research Engineers had always been at the forefront of innovation. STAAD-III/ISDS has been consistently ranked #1 by all major industry surveys including ENR/McGRAW-Hill survey.

With over 10,000 installations, more than 30,000 engineers worldwide rely on STAAD-III/ISDS as their everyday companion in the design office.

Research Engineers, Inc.
22700 Savi Ranch Pkwy., Yorba Linda, CA 92687-4613
Tel: (714) 974-2500 Fax: (714) 974-4771 Toll Free: (800) FOR-RESE

USA UK GERMANY FRANCE CANADA NORWAY INDIA JAPAN KOREA
AS I WAS DEPLANING FROM MY TRIP TO PITTSBURGH AND THE NATIONAL STEEL CONSTRUCTION CONFERENCE, I grabbed a copy of the in-flight magazine to take with me. Most people don’t realize it, but the airlines actually want travelers to take the magazine with them. Magazines are only profitable if the advertisers are happy, and the best way to make advertisers happy is to generate a lot of response to their advertisements. To help increase (and to measure) responses, magazines often offer “Reader Service Cards” (bingo cards in publishing jargon). Airlines realize that if people take the magazines home with them, there’s a far greater chance of travelers filling out and returning the cards.

Beginning with this issue, Modern Steel Construction will include a Reader Service Card near the back of each issue (it’s easy to find because it’s printed on a different paper stock than the rest of the magazine). Included at the bottom of most ads and the descriptions of products mentioned in articles will be a number. To receive information on that particular product, simply circle the appropriate number on the Reader Service Card, clip it out of the magazine, and drop it in the mail. The card is postage-paid, so there’s no cost to you. Feel free to circle as many as you want.

In addition, we’ll occasionally run a Steel Survey in the news section (page 11 in this issue). This month we’re asking for your opinion about future AISC Seminar Series topics. Responding to the survey is simple. Again, the responses are tied into the free Reader Service Card.

Oh, and by the way, the National Steel Construction Conference was great this year—from the T.R. Higgins lecture on composite construction to a connection question-and-answer session featuring Omer Blodgett and Geoffrey L. Kulak to the new products in the exhibit hall. But I’ll write more about the show in next month’s issue. And, if you’re a real early bird about planning, keep in mind that next year’s show will be in San Antonio in May. If any of the conversations I’ve been overhearing are an indication, it will be even better than this year’s! Hope to see you there. SM
How to get from here to here.

Design Data's SDS/2 Steel Fabrication System.

SDS/2 gives you the flexibility to integrate all aspects of your business with one software system. That concept is called Information Management. Each module by itself will save you time and money and by combining products to implement Information Management you receive more than twice the benefit in savings and productivity. So whether you need one SDS/2 software module or all these tools working together, Design Data can provide the most productive system for you.

For more information about SDS/2, information management in the steel industry or future product demonstrations call 800-443-0782.

Please circle # 32

DESIGN DATA

"First in...software, solutions, service"
402-476-8278 or 1-800-443-0782
© 1992 Design Data Corporation
Why should I buy the new 2nd Edition LRFD Manual of Steel Construction?

To order the two-volume 2nd Edition LRFD Manual of Steel Construction (only $99 for AISC members, $132 for non-members, plus shipping), call 312/670-2400.

- LRFD is THE AISC recommended method of structural steel design.
- Since LRFD directly accounts for the most variable aspect of steel design—loads—it offers the most uniform reliability of any steel design method.
- LRFD increases an engineer’s international competitiveness—almost every other industrialized country has adopted limit state design.
- In most structures, LRFD is more economical.
- The 2nd Edition Manual combines and updates four previous AISC publications into a single two-volume set.
- It will be easier to directly compare LRFD Steel Designs with concrete designs because the next ACI 318 Specification is expected to incorporate the ASCE 7 load factors as an alternative.
- The 2nd Edition includes the AISC Seismic Provisions. And, NEHRP’s, SBCG’s and BOCA’s seismic provisions are based on LRFD.

- The 2nd Edition is a complete improvement over any previous AISC Manual—ASD or LRFD. It offers tremendously expanded coverage of connections and factored uniform load tables, as well as coverage of frame stability and leaning columns, floor deflections and vibrations, and single angle struts.
- The 2nd Edition includes a 45-page introduction, Essentials of LRFD, that makes it easy for engineer’s to upgrade to LRFD.
- Extensive editorial changes make this the easiest-to-use Manual in AISC’s history.
- All design problems are complete solutions—not just sample calculations for a few limit states.
- The 2nd Edition incorporates all of the latest steel research, including Astaneh’s shear tab work and Thornton’s Uniform Force Method for bracing connections and new approach to tee connection design.
- As professionals, it is incumbent upon engineers to utilize the best, most advanced design method available—LRFD.
Serviceability is a particular concern for crane systems in industrial buildings but is not clearly covered in standard code literature. What are deflection limits for crane runway systems?

In Industrial Buildings, AISC Design Guide series No. 7, 1993 by James M. Fisher, deflection limits are given as follows:

- Vertical deflection of the crane beam due to wheel loads (no impact);
- L/600 for Light and Medium Cranes (CMAA Classes A, B, C, and D)
- L/1000 for Mill Cranes (CMAA Classes E and F)
- Lateral deflection of the crane beam due to crane lateral loads:
 - L/400 for all cranes.

Hussain Shanaa, Ph.D., P.E.
AEC Engineering
Minneapolis, MN

Another response:

Excessive deflections cause steep slopes on the runway and are a serious operating obstacle. Sometimes a crane cannot climb the slope caused by this deflection and will become stuck in midspan. Conversely, the crane can increase speed dangerously on the downhill portion of the trip.

The Crane Manufacturers Association of America (CMAA) recommends vertical deflections (from dead load plus rated load) not to exceed 0.00125 inch per inch of span of bridge girders. This limit could be applied to runway girders as well.

Horizontal deflections are not so critical but excessive deflection can cause excessive wear on wheel flanges and on the rail. Horizontal deflection of girder should be limited to half the difference between width of rail head and the inside flange-to-flange dimension of the wheel. Expressed differently, the center-to-center dimension of runway rails must not vary more than the difference of the inside flange-to-flange wheel less the width of rail head.

Gerald A. Reed, P.E.
Kenneecott Utah Copper Corp.
Bingham Canyon, UT

Another response:

There is no consensus among designers and engineers regarding crane runway deflection limits. However, there is general agreement that these limits should be considerably less than, for example, the L/360 deflection limit normally adhered to for members supporting plaster ceilings.

Deflection limits recommended in the literature vary from L/600 for light cranes up to L/1200 for heavy, fast cranes. Stone & Webster’s procedures require runway vertical deflection limits of from L/800 to L/100. Generally, lateral deflection is limited to L/400. These limits may be marginally exceeded when re-rating existing runways. We have been using these criteria for simple span girders on cranes in CMAA Classes A1, A2, B, and C with no apparent problems.

The deflection limit is only one of several important aspects of crane runway design. There are many other concerns to be addressed by the crane runway designer. To note all of them is impractical in this type of response. A very good introduction to crane runway design is the article, Tips for Avoiding Crane Runway Problems by David T. Ricker, AISC Engineering Journal, 4th Quarter 1982.

G. Jeffrey Ashworth, P.E.
Stone & Webster Engineering Corp.
Boston, MA

Steel Interchange is an open forum for Modern Steel Construction readers to exchange useful and practical professional ideas and information on all phases of steel building and bridge construction. Opinions and suggestions are welcome on any subject covered in this magazine. If you have a question or problem that your fellow readers might help you to solve, please forward it to Modern Steel Construction. At the same time, feel free to respond to any of the questions that you have read here. Please send them to:

Steel Interchange
Modern Steel Construction
One East Wacker Dr., Suite 3100
Chicago, IL 60601-2001

The following responses from previous Steel Interchange columns have been received:

Answers and/or questions should be typewritten and double-spaced. Submittals that have been prepared by word-processing are appreciated on computer diskette (either as a Wordperfect file or in ASCII format).

The opinions expressed in Steel Interchange do not necessarily represent an official position of the American Institute of Steel Construction, Inc. and have not been reviewed. It is recognized that the design of structures is within the scope and expertise of a competent licensed structural engineer, architect or other licensed professional for the application of principals to a particular structure.

Information on ordering AISC publications mentioned in this article can be obtained by calling AISC at 312/670-2400 ext. 433.

Steel Interchange
Modern Steel Construction
One East Wacker Dr., Suite 3100
Chicago, IL 60601-2001
Another response:

Excessive crane beam deflection is the underlying cause of many crane runway problems, such as: weakening and eventual fracture of the crane beam-to-column connections, bending in the crane column, cracking of the crane beam web, creeping of the crane rail leading to loosening of the rail clips or hook bolts, yawing of the crane bridge resulting in binding wheels with subsequent wear of rails, wheel flanges, and bearings, etc. Historically, stiffer crane beams have a better performance record. The design profession, however, is not in agreement as to the desired degree of stiffness. For example:

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>MAX. VERT. DEFL. (IN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.S. Merritt</td>
<td>L/750</td>
</tr>
<tr>
<td>Gaylord & Gaylord</td>
<td>L/960 for light, slow cranes</td>
</tr>
<tr>
<td>AISE Tech Report #13</td>
<td>L/1200 for heavy, fast cranes</td>
</tr>
<tr>
<td>AISC Design Guide #7</td>
<td>L/1000</td>
</tr>
<tr>
<td></td>
<td>L/600 for light & medium cranes (CMAA classes A, B, C, and D)</td>
</tr>
<tr>
<td></td>
<td>L/1000 for mill cranes (CMAA classes E and F)</td>
</tr>
</tbody>
</table>

Since the benefits of crane beam stiffness far outweigh the costs of attainment this writer suggests using L/1000 for CMAA classes A, B, and C and L/1200 for CMAA classes D, E, and F. For all cranes lateral deflection should be limited to L/400.

As a word of caution, never use multi-span crane or knee braces as a means to reduce deflection. Crane beams should be designed as single spans.

David T. Ricker, P.E.
Payson, AZ

In a structure that has tubular columns, should weep holes be added at the bottom of the columns in order to drain any water in the column?

If water is present inside tubular columns, internal corrosion is likely. An ultrasonic thickness examination can be performed without removing the water. The Engineer can then determine the structural adequacy of the columns based on the amount of metal loss. From electrochemistry,

\[4\text{Fe} + 3\text{O}_2 + 2\text{H}_2\text{O} \rightarrow 2\text{Fe}_2\text{O}_3 \cdot \text{H}_2\text{O} \]

\text{(iron)} \quad \text{(air)} \quad \text{(moisture)} \quad \text{(hydrated red iron rust)}

In the above expression, moisture (water or humidity) is required for steel to rust in the presence of oxygen (air). If one of the above elements or compounds is removed, the reaction will stop. For example, steel will not rust in dry air.

If a column is structurally adequate, it should be drained and seal welded airtight. Equilibrium between the air, moisture and rust will be reached and rust formation will stop. The exterior of the column can then be protected with an approved coating. If seal welding is not possible, vents should be added for drainage and the column protected with a properly designed cathodic protection system.

If a column is judged inadequate, there are two fabrication options available. A new column seal welded airtight and painted or a column with vents and hot dip galvanized for adequate interior corrosion protection. Special vent details and recommendations for proper drainage during the galvanizing process are available from the American Galvanizers Association. Vents in the base plate are undesirable when dry packing is specified.

Ron E. Campos, S.E.
La Habra, CA

New Question

Listed below is a question that we would like the readers to answer or discuss.

If you have an answer or suggestion please send it to the Steel Interchange Editor, Modern Steel Construction, One East Wacker Dr., Suite 3100, Chicago, IL 60601-2001.

Questions and responses will be printed in future editions of Steel Interchange. Also, if you have a question or problem that readers might help solve, send these to the Steel Interchange Editor.

What is the best location for providing cover plates to strengthen a W section if the beam compression flange is fully braced:

a) At top flange before erection.
b) At top flange after erection.
c) At bottom flange before erection.
d) At bottom flange after erection.
e) Does not matter.

A.Z. Piracha
Miami
Join The Wasser Revolution!

Stop using 2-part epoxies, 2-part urethanes and inorganic zincs. After 40 years, it's time to move to a coating system that's far better. Wasser has revolutionized the industry. Join Us!

BRIDGES AND LEAD OVERCOAT

ASTORIA BRIDGE, OREGON COAST - Hundreds of bridge projects in environments like Oregon's coast, prove Wasser outperforms all other coatings.

WATER AND WASTEWATER

NORTH POLE ALASKA - Painting continues on these sludge beds, while standing in snow. Wasser outperforms epoxy coatings on these demanding projects.

1. Industry's BEST Corrosion Resistance
3. No Application Restrictions for Humidity, Dewpoint or Temperature (20°F)
5. North America's Largest Manufacturer of Micaceous Iron Oxide Coatings.

UTILITIES, DAMS AND LOCKS

PRIEST RAPIDS DAM, COLUMBIA RIVER - Wasser has been chosen for their superior performance by agencies throughout the world.

PULP AND PAPER

CHIP CRANE, ROSEBURG LUMBER - Wasser Coatings allow perfect results in outdoor winter painting or indoor painting on paper machinery, for virtually every paper company. Imagine, immersion after only minutes, and superior performance.

Wasser, the Leader of the Coating Revolution!

Call 800-MC-PAYNT
For Information About Wasser
Circle Reader Response #50
Wasser Coatings Aren't Just Better...They're A Lot Better
Look What Experts Are Saying....

"Wasser's system outperformed every high performance coating system even when applied on poorly prepared surfaces. It has solved our state's bridge painting problems."
- State Highway Report

"This is Alaska paint. It would be crazy to use anything else but Wasser in this environment."
- Alaska Coating Inspector

"Our tank painting project was delayed for months because of the humidity. With Wasser, we finished in three days."
- Hawaiian Contractor

"We can't say enough about the MC-Tar. It saved our tail on our clarifier tanks. We would still be painting with the epoxy."
- Paper Mill Engineer

"We are very pleased with Wasser for lead overcoating. Everyone is calling it 'steel on steel'. Wasser solved our overcoat problems."
- Highway Official

"We used the ice as scaffolding in 22' tide and painted down to within four inches of low tide. Four years later, the coating is still perfect on these pilings."
- Alaska Contractor

"We coated the interior areas in 99% humidity and the performance is perfect after five years. We'll never use anything else."
- Army Corps Locks

"If it wasn't for Wasser, we would still be out there trying to get that darn inorganic zinc to work."
- Bridge Engineer

"Wasser is the answer to all our field painting problems. We'll never use epoxy again."
- Waste Water Engineer

"Wasser beat every other coating in our tests, and contractors love them."
- Paper Mill Engineer

World Leader in Single-Component, Moisture-Cure Urethane

TACOMA NARROWS BRIDGE. Washington's largest bridge. Wasser's coatings are being used on a five year contract to overcoat the old lead coating. Every controlled test shows Wasser's coatings best for lead overcoating and full painting. Over 400 bridge projects make Wasser the industry leader.

WASSER
HIGH-TECH COATINGS

Call 800-MC-PAYNT

The Best Coatings in the Industry are also the Easiest to Apply!

CIRCLE #50 ON SERVICE CARD
Steel Seminars

A N INTRODUCTION TO THE NEW MANUAL OF STEEL CONSTRUCTION, LRFD, 2ND EDITION, highlights AISC Marketing's continuing four-part seminar series, "Innovative Practices In Structural Steel."

The lecture includes a discussion and explanation of the changes, including such items as the stability of unbraced frames, web crippling equations, and slip critical joints at factored loads.

The seminar also includes a session on steel design software, the latest NEHRP Seismic Regulations, and a review of semi-rigid composite connections. The seven-hour seminar costs $90 ($75 for AISC members), including dinner. The lecture has a CEU value of 0.4. For more information, call 312/670-2400 or circle no. 3 on the reader service card.

Dates & Locations

WEST
Phoenix Oct. 20
Portland, OR Nov. 15
Las Vegas Nov. 17

MIDWEST
Detroit Oct. 11
Indianapolis Oct. 13
Cleveland Oct. 25
Columbus Oct. 26
Cincinnati Oct. 27

NORTHEAST
Albany Sept. 13
Rochester Sept. 14

SOUTHWEST
Oklahoma City Sept. 8

SOUTH
Atlanta Sept. 20
Richmond Sept. 22
Memphis Oct. 18
Miami Nov. 1
Orlando Nov. 3

MID-ATLANTIC
Edison, NJ Oct. 4
Philadelphia Oct. 6

Quick Steel Survey

BEGINNING THIS MONTH, MODERN STEEL CONSTRUCTION will print a monthly survey. To make it easier for you to respond, you can use the postage-paid Reader Service Card in the back of this magazine (between pages 42 & 43). Simply circle the appropriate numbers on the Card, cut it out of the magazine, and drop it in the mail.

FOR MANY YEARS, AISC has offered an inexpensive annual seminar series dealing with such topics as eccentrically braced frames and seismic design. Which topics would you be interested in if they were included in next year’s seminar series (circle all that interest you):

1. Actual project examples...
2. Bracing...
3. Computer software...
4. Connections...
5. Industrial bldg. design...
6. Inspection...
7. LRFD...
8. Load analysis...
9. Metric conversions...
10. New design methods...
11. Retrofit of old buildings...
12. Seismic design...
13. Semi-rigid connections...
14. Torsional analysis...

A Quick Quiz

For Structural Engineers

The more a computer program costs, the better it is.
A program that solves complex, difficult problems must be complex and difficult to use.
Structural engineering software can never be fun to use.

If you answered TRUE to any of the above, or you would like to know more about a truly innovative software program, call us!

RISA-2D

Your complete solution for frames, trusses, beams, shear walls and much more!

RISA TECHNOLOGIES

26212 Dimension Drive, Suite 200
Lake Forest, CA 92630
1-800-332-7472

Please circle # 40
Detailing of the future is now available.

Procedural Detailing Systems
The true test of any automated system is not the detailing of merely columns and beams, it is its ability to address the complex, highly detailed engineering requirements of such things as stairs, girts and bracing.

Only Dogwood Technologies offers the solution to these complexities.

DTI
Dogwood Technologies, Inc.

Call or Write Today...
P.O. Box 52831 • Knoxville, TN 37950-2831 • 800-467-0096

Improving Structural Design

A workshop on the “Improvem ent of Structural Design and Construction Practices in the U.S. and Japan” will be held September 19-21 in Victoria, British Columbia. Sponsored jointly by the Applied Technology Council and the Japan Structural Consultants Association, the biannual workshop will include panel discussions and presentations on the following topics:

- Recorded ground motions (Northridge and Hokkaido Earthquakes)
- Performance of building structural and nonstructural systems and elements during the Northridge and Hokkaido Earthquakes
- Comparisons and updates of U.S. and Japan building codes
- Current practical dynamic analysis methods and drift limits in both countries
- Current developments in foundation seismic design, response control systems, and passive energy dissipation
- Quality control and education

For more information, contact: Applied Technology Council, 555 Twin Dolphin Dr., Suite 550, Redwood, CA 94065; phone: 415/595-1542; fax: 415/593-2320.

Steel Coatings

The Steel Structures Paint Council’s Annual International Conference and Exhibition will be held November 11-17 in Atlanta. The seven-day conference will include 50 papers and 14 seminars exploring the theme of “Managing Costs and Risks for Effective and Durable Protection.” In addition to the semi-
The program will include 15 tutorials and an exhibit of approximately 250 indoor booths and 30 outdoor booths.

Other upcoming SSPC meetings include:
- July 28-29 “Industrial Lead Paint Removal and Abatement” tutorial in Denver
- Sept. 17-18 “Industrial Lead Paint Removal and Abatement” tutorial in Los Angeles
- Sept. 19-23 “Specifying and Managing Protective Coatings” Projects in Los Angeles
- Oct. 4-5 “Industrial Lead Paint Removal and Abatement” tutorial in Dallas
- Oct. 18-19 “Industrial Lead Paint Removal and Abatement” tutorial in Baltimore

For more information, contact: Steel Structure Painting Council, 4516 Henry St., Ste. 301, Pittsburgh, PA 15213-3728; phone: 412/687-1113; fax: 412/687-1153.

Movable Bridges

The Fifth Biennial Symposium on “Heavy Movable Structures/Movable Bridges” will be held Nov. 2-4 in Clearwater Beach, FL. For information, contact: HMS, Inc., P.O. Box 398, Middletown, NJ 07748; phone/fax: 908/957-9753.

Advanced Technology

The 109-page book, the first in a planned trilogy, addresses such topics as vibration control, environmental control, building enclosure, disaster prevention, construction team techniques & technology, building use & maintenance, and research & development.

A section on construction automation touches on such diverse topics as construction robots for steel-welding and concrete finishing and Fujita Corp.'s well-reported “automated vertical transport system” for material delivery within a construction project. An entire chapter is devoted to future R&D projects, including intelligent office systems, tensegrity structures and nonstructural vibration control.

To purchase a copy of the $26 book, contact: ASCE, Publications Dept., 345 East 47th St., New York, NY 10017. For more information, circle no. 95 on the reader service card.

offers a full line of computer programs specifically for the steel fabrication industry. Wouldn’t you like to realize the benefits that our existing 400 customers have been enjoying over the past 10 years?

SSC’s integrated family of computer programs includes:
- Estimating
- Production Control
- Inventory
- Purchase Orders
- Combining
- Automated Beam & Column Detailing

New Automated Drawing Log
Tracks drawings, revisions, and transmittals
Only $299.99
Ask for a free demo disk

(800)776-9118 Call for a FREE demo disk!

Please circle # 42
Bicycle Racks
and other recreational products
may be fabricated from mechanical tubing.

Outdoor Furniture
a popular end-use application for mechanical tubing.

Exercise Equipment
tubing is an integral part of this product’s framework.

Transmission Towers
assembled with UNR-Leavitt Hi-Y 50 structural pipe.

Our people
make the
difference

Products Made From Tubing are Unlimited...
From agricultural equipment to commercial construction, the end use applications for structural and mechanical tubing are dramatically increasing. Our large size range...variety of products...sales and technical support, make UNR-Leavitt, the “Tube People”, the preferred “one-stop” supplier for a growing number of companies. Add to that, the convenience of buying any UNR-Leavitt product through your local steel service center and you'll know why we're an Industry Leader...At UNR-Leavitt we put our customers first.
Principal Producers Of Structural Shapes

<table>
<thead>
<tr>
<th>Section</th>
<th>Producer Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>W44 x 230-335</td>
<td>T</td>
</tr>
<tr>
<td>W40 x 431</td>
<td>T</td>
</tr>
<tr>
<td>W40 x 397</td>
<td>N</td>
</tr>
<tr>
<td>W40 x 371*</td>
<td>T</td>
</tr>
<tr>
<td>W40 x 362*, 324*</td>
<td>N</td>
</tr>
<tr>
<td>W40 x 321</td>
<td>T</td>
</tr>
<tr>
<td>W40 x 297</td>
<td>N</td>
</tr>
<tr>
<td>W40 x 199-277</td>
<td>N, T</td>
</tr>
<tr>
<td>W40 x 174</td>
<td>T</td>
</tr>
<tr>
<td>W40 x 278, 331</td>
<td>T</td>
</tr>
<tr>
<td>W40 x 211-264</td>
<td>B, I, T</td>
</tr>
<tr>
<td>W40 x 183</td>
<td>B, I, N, T</td>
</tr>
<tr>
<td>W40 x 149, 167</td>
<td>B, I, N, T</td>
</tr>
<tr>
<td>W36 x 439-798</td>
<td>T</td>
</tr>
<tr>
<td>W36 x 393</td>
<td>B, N, T</td>
</tr>
<tr>
<td>W36 x 230-359</td>
<td>B, I, N, T</td>
</tr>
<tr>
<td>W36 x 256</td>
<td>B, I, N</td>
</tr>
<tr>
<td>W36 x 232</td>
<td>B, I, N, T</td>
</tr>
<tr>
<td>W36 x 135-210</td>
<td>B, I, N, T</td>
</tr>
<tr>
<td>W33 x 318, 354</td>
<td>B, T</td>
</tr>
<tr>
<td>W33 x 201-291</td>
<td>B, N, T</td>
</tr>
<tr>
<td>W33 x 118-169</td>
<td>B, I, N, T</td>
</tr>
<tr>
<td>W30 x 261-326</td>
<td>B, I, N, T</td>
</tr>
<tr>
<td>W30 x 284*</td>
<td>I</td>
</tr>
<tr>
<td>W30 x 173-235</td>
<td>B, I, N, T</td>
</tr>
<tr>
<td>W30 x 99-148</td>
<td>B, I, N, T</td>
</tr>
<tr>
<td>W30 x 90</td>
<td>B, N</td>
</tr>
<tr>
<td>W27 x 368-539</td>
<td>I</td>
</tr>
<tr>
<td>W27 x 307</td>
<td>I, T</td>
</tr>
<tr>
<td>W27 x 258</td>
<td>I, N, T</td>
</tr>
<tr>
<td>W27 x 235</td>
<td>I, N</td>
</tr>
<tr>
<td>W27 x 146-217</td>
<td>B, I, N, T</td>
</tr>
<tr>
<td>W27 x 132*</td>
<td>I</td>
</tr>
<tr>
<td>W27 x 84-129</td>
<td>B, I, N, T, W</td>
</tr>
<tr>
<td>W24 x 335-492</td>
<td>T</td>
</tr>
<tr>
<td>W24 x 279</td>
<td>I, T</td>
</tr>
<tr>
<td>W24 x 250</td>
<td>B, I, N</td>
</tr>
<tr>
<td>W24 x 229</td>
<td>B, I, N, T, W</td>
</tr>
<tr>
<td>W24 x 207</td>
<td>B, N, W</td>
</tr>
<tr>
<td>W24 x 104-192</td>
<td>B, I, N, T, W</td>
</tr>
</tbody>
</table>

Notes:
- Maximum lengths of shapes obtained vary with producer, but typically range from 60 ft to 75 ft. Lengths up to 100 ft are available for certain shapes. Please consult individual producers for length requirements.
- * Shapes not currently listed in *Manual of Steel Construction*
Principal Producers Of Structural Shapes

<table>
<thead>
<tr>
<th>Section</th>
<th>Weight Per Ft.</th>
<th>Producer Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>W14 x 38</td>
<td>B, I, N, W</td>
<td></td>
</tr>
<tr>
<td>W14 x 30, 34</td>
<td>B, C, I, N, W</td>
<td></td>
</tr>
<tr>
<td>W14 x 22, 26</td>
<td>B, C, I, N, W</td>
<td></td>
</tr>
<tr>
<td>W12 x 252-336</td>
<td>B, I</td>
<td></td>
</tr>
<tr>
<td>W12 x 210, 230</td>
<td>B, I</td>
<td></td>
</tr>
<tr>
<td>W12 x 170, 190</td>
<td>B, I, T, W</td>
<td></td>
</tr>
<tr>
<td>W12 x 65-182</td>
<td>B, I, N, T, W</td>
<td></td>
</tr>
<tr>
<td>W12 x 53, 58</td>
<td>B, C, N, I, W</td>
<td></td>
</tr>
<tr>
<td>W12 x 50</td>
<td>B, C, N, I, W</td>
<td></td>
</tr>
<tr>
<td>W12 x 40, 45</td>
<td>B, C, N, W</td>
<td></td>
</tr>
<tr>
<td>W12 x 26-35</td>
<td>B, C, N, W</td>
<td></td>
</tr>
<tr>
<td>W12 x 16-22</td>
<td>B, C, N, W</td>
<td></td>
</tr>
<tr>
<td>W12 x 14</td>
<td>B, C, W</td>
<td></td>
</tr>
<tr>
<td>W10 x 88-112</td>
<td>B, I, N, W</td>
<td></td>
</tr>
<tr>
<td>W10 x 49-77</td>
<td>B, C, I, N, W</td>
<td></td>
</tr>
<tr>
<td>W10 x 33-45</td>
<td>B, C, N, W</td>
<td></td>
</tr>
<tr>
<td>W10 x 22-30</td>
<td>B, C, I, N, W</td>
<td></td>
</tr>
<tr>
<td>W10 x 15-19</td>
<td>B, C, I, U, W</td>
<td></td>
</tr>
<tr>
<td>W10 x 12</td>
<td>B, C, U, W</td>
<td></td>
</tr>
<tr>
<td>W8 x 31-67</td>
<td>B, C, I, N, W</td>
<td></td>
</tr>
<tr>
<td>W8 x 24, 28</td>
<td>B, C, N, W</td>
<td></td>
</tr>
<tr>
<td>W8 x 18, 21</td>
<td>B, C, N, W, Y</td>
<td></td>
</tr>
<tr>
<td>W8 x 15</td>
<td>B, C, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>W8 x 10-13</td>
<td>B, C, M, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>W6 x 12, 16</td>
<td>B, C, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>W6 x 9</td>
<td>B, C, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>W6 x 8.5*</td>
<td>C, J, M, U, Y</td>
<td></td>
</tr>
<tr>
<td>W5 x 16, 19</td>
<td>B, U</td>
<td></td>
</tr>
<tr>
<td>W4 x 13</td>
<td>B, C, M, U, Y</td>
<td></td>
</tr>
<tr>
<td>M12 x 10.8, 11.8</td>
<td>C, J</td>
<td></td>
</tr>
<tr>
<td>M12 x 10.0*</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>M10 x 8, 9</td>
<td>C, J, U</td>
<td></td>
</tr>
<tr>
<td>M10 x 7.5*</td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Weight Per Ft.</th>
<th>Producer Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>M8 x 8.2*</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>M8 x 6.5</td>
<td>C, J, U</td>
<td></td>
</tr>
<tr>
<td>M5 x 18.9</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>M4 x 6*</td>
<td>C, U</td>
<td></td>
</tr>
<tr>
<td>S24 x 106, 121</td>
<td>B, W</td>
<td></td>
</tr>
<tr>
<td>S24 x 80-100</td>
<td>B, W</td>
<td></td>
</tr>
<tr>
<td>S20 x 86, 96</td>
<td>B, W</td>
<td></td>
</tr>
<tr>
<td>S20x 66, 75</td>
<td>B, W</td>
<td></td>
</tr>
<tr>
<td>S18 x 54.7, 70</td>
<td>B, W</td>
<td></td>
</tr>
<tr>
<td>S16 x 42.9, 50</td>
<td>B, W</td>
<td></td>
</tr>
<tr>
<td>S12 x 40.8, 50</td>
<td>B, W</td>
<td></td>
</tr>
<tr>
<td>S12 x 35</td>
<td>B, W</td>
<td></td>
</tr>
<tr>
<td>S12 x 31.8</td>
<td>B, C, W</td>
<td></td>
</tr>
<tr>
<td>S10 x 35</td>
<td>B, S</td>
<td></td>
</tr>
<tr>
<td>S10 x 25.4</td>
<td>B, C, S</td>
<td></td>
</tr>
<tr>
<td>S8 x 18.4, 23</td>
<td>C, S</td>
<td></td>
</tr>
<tr>
<td>S6 x 12.5, 17.25</td>
<td>C, S, Y</td>
<td></td>
</tr>
<tr>
<td>S5 x 10</td>
<td>C, Y</td>
<td></td>
</tr>
<tr>
<td>S4 x 9.5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>S4 x 7.7</td>
<td>C, Y</td>
<td></td>
</tr>
<tr>
<td>S3 x 7.5</td>
<td>C, J, Y</td>
<td></td>
</tr>
<tr>
<td>S3 x 5.7</td>
<td>C, J, M, Y</td>
<td></td>
</tr>
<tr>
<td>HP14 x 73-117</td>
<td>B, I, N, W</td>
<td></td>
</tr>
<tr>
<td>HP12 x 53-84</td>
<td>B, I, N, W</td>
<td></td>
</tr>
<tr>
<td>HP10 x 42.57</td>
<td>B, C, I, N, W</td>
<td></td>
</tr>
<tr>
<td>HP8 x 36</td>
<td>B, C, I, N, W</td>
<td></td>
</tr>
<tr>
<td>C15 x 33.9-50</td>
<td>B, N, W</td>
<td></td>
</tr>
<tr>
<td>C12 x 30</td>
<td>B, W</td>
<td></td>
</tr>
<tr>
<td>C10 x 25, 30</td>
<td>B, S, W</td>
<td></td>
</tr>
<tr>
<td>C10 x 15.3, 20</td>
<td>B, C, S, U, W</td>
<td></td>
</tr>
<tr>
<td>C9 x 20</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C9 x 13.4, 15</td>
<td>B, S</td>
<td></td>
</tr>
<tr>
<td>C8 x 18.75</td>
<td>S, W, Y</td>
<td></td>
</tr>
<tr>
<td>C8 x 11.5, 13.75</td>
<td>C, M, S, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>C7 x 12.25</td>
<td>S, U, W</td>
<td></td>
</tr>
<tr>
<td>C7 x 9.8</td>
<td>M, S, U, W</td>
<td></td>
</tr>
<tr>
<td>C6 x 13</td>
<td>M, S, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>C6 x 10.5</td>
<td>C, M, S, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>C6 x 8.2</td>
<td>C, F, M, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>C5 x 9</td>
<td>M, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>C5 x 6.7</td>
<td>M, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>C4 x 5.4, 7.25</td>
<td>F, M, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>C3 x 6</td>
<td>M, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>C3 x 4.1, 5</td>
<td>F, M, R, U, W, Y</td>
<td></td>
</tr>
<tr>
<td>C3 x 3.5*</td>
<td>R, U</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Maximum lengths of shapes obtained vary with producer, but typically range from 60 ft to 75 ft. Lengths up to 100 ft are available for certain shapes. Please consult individual producers for length requirements.

* Shapes not currently listed in Manual of Steel Construction
Principal Producers Of Structural Shapes

<table>
<thead>
<tr>
<th>Section Weight Per Ft.</th>
<th>Producer Code</th>
<th>Section by Leg Lengths & Thickness</th>
<th>Producer Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Bethlehem Steel Corp.</td>
<td>J. J&L Structural Inc.</td>
<td>R. Roanoke Steel</td>
<td>U. Nucor Steel</td>
</tr>
<tr>
<td>C. Chaparral Steel</td>
<td>M. SMI Steel Inc.</td>
<td>S. North Star Steel</td>
<td>W. Northwestern Steel & Wire</td>
</tr>
<tr>
<td>F. Florida Steel Corp.</td>
<td>N. Nucor-Yamato Steel</td>
<td>T. TradeARBED</td>
<td>Y. Bayou Steel Corp.</td>
</tr>
<tr>
<td>British Steel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Producer Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC18 x 42.7-58</td>
<td>B, N</td>
</tr>
<tr>
<td>MC13 x 31.8-50</td>
<td>B, N</td>
</tr>
<tr>
<td>MC12 x 31-50</td>
<td>B, N</td>
</tr>
<tr>
<td>MC12 x 10.6</td>
<td>J, S</td>
</tr>
<tr>
<td>MC10 x 28.5-41.1</td>
<td>B</td>
</tr>
<tr>
<td>MC10 x 22, 25</td>
<td>B</td>
</tr>
<tr>
<td>MC10 x 8.4</td>
<td>J, S</td>
</tr>
<tr>
<td>MC9 x 6.5</td>
<td>J</td>
</tr>
<tr>
<td>MC8 x 21.4, 22.8</td>
<td>B, S</td>
</tr>
<tr>
<td>MC8 x 18.7, 20</td>
<td>B, S</td>
</tr>
<tr>
<td>MC8 x 8.5</td>
<td>J, M</td>
</tr>
<tr>
<td>MC6 x 19.1, 22.7</td>
<td>B</td>
</tr>
<tr>
<td>MC6 x 18</td>
<td>B</td>
</tr>
<tr>
<td>MC6 x 15.1, 16.3</td>
<td>B, S</td>
</tr>
<tr>
<td>MC6 x 12</td>
<td>B, S</td>
</tr>
<tr>
<td>MC4 x 13.8</td>
<td>S</td>
</tr>
<tr>
<td>MC3 x 7.1</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section by Leg Lengths & Thickness</th>
<th>Producer Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>L8 x 8 x</td>
<td>B, T</td>
</tr>
<tr>
<td>1</td>
<td>B, S, T</td>
</tr>
<tr>
<td>7/8</td>
<td>B, S, T</td>
</tr>
<tr>
<td>5/8</td>
<td>B, S, T</td>
</tr>
<tr>
<td>3/8</td>
<td>B, S, T</td>
</tr>
<tr>
<td>1/2</td>
<td>S</td>
</tr>
<tr>
<td>1/4</td>
<td>B, S</td>
</tr>
</tbody>
</table>

L6 x 6 x	B, U, Y
1	B, U, Y
7/8	B, M, U, Y
5/8	B, M, U, Y
1/2	M, U, Y
1/4	B, M, S, U, Y
1/8	B, M, U, Y
1/16	B, M, S, U, Y
1/32	M, U, Y
1/64	U

L5 x 5 x	U, Y
7/8	U, Y
5/8	U, Y
1/2	U, Y
1/4	U

L4 x 4 x	M, U, Y
3/4	M, U, Y
1/2	M, U, W, Y
1/4	M, U, W, Y
1/8	U

<table>
<thead>
<tr>
<th>Notes:</th>
<th>Maximum lengths of shapes obtained vary with producer, but typically range from 60 ft to 75 ft. Lengths up to 100 ft are available for certain shapes. Please consult individual producers for length requirements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Shapes not currently listed in Manual of Steel Construction</td>
<td></td>
</tr>
</tbody>
</table>
Principal Producers Of Structural Shapes

<table>
<thead>
<tr>
<th>Section by Leg</th>
<th>Producer Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>L6 x 4 x</td>
<td>B</td>
</tr>
<tr>
<td>L6 x 3 1/2 x</td>
<td>M, U, W, Y</td>
</tr>
<tr>
<td>L5 x 3 x</td>
<td>F, M, U, W, Y</td>
</tr>
<tr>
<td>L4 x 3 x</td>
<td>M, U, W, Y</td>
</tr>
<tr>
<td>L3 1/2 x 3 x</td>
<td>U, W</td>
</tr>
<tr>
<td>L3 1/4 x 2 1/4 x</td>
<td>U, W</td>
</tr>
<tr>
<td>L3 1/2 x 2 1/2 x</td>
<td>U, W</td>
</tr>
<tr>
<td>L3 x 2 1/2 x</td>
<td>U, W, Y</td>
</tr>
<tr>
<td>L3 x 2 x</td>
<td>F</td>
</tr>
<tr>
<td>L2 1/2 x 2 x</td>
<td>R, S, U</td>
</tr>
</tbody>
</table>

Designations, Dimensions & Properties

W shapes have essentially parallel flange surfaces. The profile of a W shape of a given nominal depth and weight available from different producers is essentially the same except for the size of fillets between the web and flange.

HP bearing pile shapes have essentially parallel flange surfaces and equal web and flange thickness. The profile of an HP shape of a given nominal depth and weight available from different producers is essentially the same.

American Standard Beams (S) and American Standard Channels (C) have a slope of approximately 17 percent (2 in 12 in.) on the inner flange surfaces. The profiles of S and C shapes of a given nominal depth and weight available from different producers is essentially the same.

The letter M designates shapes that cannot be classified as W, HP, or S shapes; MC designates channels that cannot be designated as C shapes. M and MC shapes may or may not have slopes on their inner flange surfaces, dimensions for which can be obtained from the respective producing mills.

Because some shapes are only produced by a limited number of producers, or are infrequently rolled, specifiers should consult rolling schedules from the respective mills for availability information.

Information about dimensions and properties of individual shapes is contained in the AISC Manual of Steel Construction (both LRFD and ASD).
Rolls a 36-Inch Beam
Largest Angle Roll
in the Western Hemisphere

CAPACITIES TYPE A-36 STEEL
10" x 10" x 1" Angle Iron Leg Out and Leg In
9" Solid Round Bar
8" Solid Square Bar
4" x 14" Flat Bar on Flat (the easy way)
2 1/4" x 12" Flat Bar on Edge (the hard way)
16" Pipe and Tubing (square, round and rectangular)
36" Beams and Channels
12" Tees Stern In and Stern Out

CHICAGO METAL ROLLED PRODUCTS COMPANY
3715 South Rockwell, Chicago, Illinois 60632

FOR INQUIRIES & ORDERS
CALL 312-523-5757
FAX 312-650-1439
Principal Producers Of Structural Tubing

<table>
<thead>
<tr>
<th>Nominal Size and Thickness</th>
<th>Producer Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>12x10x1/2', 3/16', 1/4'</td>
<td>B, S, U, V*</td>
</tr>
<tr>
<td>12x8x1/2', 3/16', 1/4'</td>
<td>C, S, W</td>
</tr>
<tr>
<td>12x8x1/2', 3/16', 1/4'</td>
<td>B, C, S, T, W</td>
</tr>
<tr>
<td>12x8x1/2', 3/16', 1/4'</td>
<td>B, C, S, U</td>
</tr>
<tr>
<td>12x6x1/2'</td>
<td>S</td>
</tr>
<tr>
<td>12x6x1/2', 3/16', 1/4'</td>
<td>B, C, S, U, W</td>
</tr>
<tr>
<td>12x6x1/2', 3/16', 1/4'</td>
<td>B, C, S, U</td>
</tr>
<tr>
<td>12x4x1/2'</td>
<td>S</td>
</tr>
<tr>
<td>12x4x1/2', 3/16', 1/4'</td>
<td>B, C, S, U, W, Z</td>
</tr>
<tr>
<td>12x4x1/2', 3/16', 1/4'</td>
<td>B, S, U, Z</td>
</tr>
<tr>
<td>10x8x1/2', 3/16', 1/4'</td>
<td>B, C, S, U, W</td>
</tr>
<tr>
<td>10x6x1/2'</td>
<td>B, C, S, T, U, W, Z</td>
</tr>
<tr>
<td>10x6x1/2', 3/16', 1/4'</td>
<td>B, C, D, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>10x5x1/2'</td>
<td>B, C, D, S</td>
</tr>
<tr>
<td>10x4x1/2'</td>
<td>B, C, D, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>10x2x1/2'</td>
<td>B, D, I, P, S, Z</td>
</tr>
<tr>
<td>10x2x1/2', 3/16', 1/4'</td>
<td>B, D, I, J, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>9x7x1/2'</td>
<td>C, W</td>
</tr>
<tr>
<td>9x5x1/2', 3/16', 1/4'</td>
<td>C, W</td>
</tr>
<tr>
<td>9x3x1/2', 3/16', 1/4'</td>
<td>C</td>
</tr>
<tr>
<td>8x6x1/2'</td>
<td>B, C, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>8x6x1/2', 3/16', 1/4'</td>
<td>B, C, D, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>8x4x1/2'</td>
<td>B, S</td>
</tr>
<tr>
<td>8x4x1/2'</td>
<td>B, C, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>8x4x1/2', 1/16', 1/8'</td>
<td>B, D, H, P, S, W, X</td>
</tr>
<tr>
<td>8x4x1/2', 1/16', 1/8'</td>
<td>B, D, I, J, P, S, Z</td>
</tr>
<tr>
<td>8x3x1/2', 1/16', 1/8'</td>
<td>C, P, T, U</td>
</tr>
<tr>
<td>8x3x1/2', 1/16', 1/8'</td>
<td>B, C, D, H, I, P, U, W, Z</td>
</tr>
<tr>
<td>8x3x1/2', 1/16', 1/8'</td>
<td>B, C, D, H, I, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>8x3x1/2', 1/16', 1/8'</td>
<td>B, C, D, I, P, S, Z</td>
</tr>
<tr>
<td>8x2x1/2'</td>
<td>H, J, S, T, U, Z</td>
</tr>
<tr>
<td>8x2x1/2', 1/16', 1/8'</td>
<td>H, I, J, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>8x2x1/2', 1/16', 1/8'</td>
<td>B, D, H, I, J, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>8x2x1/2', 1/16', 1/8'</td>
<td>B, D, I, J, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>7x5x1/2'</td>
<td>B, C, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>7x5x1/4', 1/16', 1/8'</td>
<td>B, I, P, S, T, X, Z</td>
</tr>
<tr>
<td>7x4x1/2', 1/16', 1/8'</td>
<td>C, D, H, I, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>7x4x1/2', 1/16', 1/8'</td>
<td>C, I, P, S, Z</td>
</tr>
<tr>
<td>7x3x1/2', 1/16', 1/8'</td>
<td>B, C, D, H, I, P, S, T, U, W, Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nominal Size and Thickness</th>
<th>Producer Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>7x3x1/2', 3/16', 1/4'</td>
<td>B, C, D, H, I, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>7x3x1/2', 3/16', 1/4'</td>
<td>B, C, D, H, I, P, S, T, U, W, Z</td>
</tr>
<tr>
<td>7x3x1/2', 3/16', 1/4'</td>
<td>C, W</td>
</tr>
<tr>
<td>21/2' x 11/4'</td>
<td>A, B, C, E, I, S, U, X</td>
</tr>
<tr>
<td>13/16' x 11/4'</td>
<td>L</td>
</tr>
</tbody>
</table>

Notes:
- *Size is manufactured by Submerged Arc Welding (SAW) process and are not stocked by steel service centers (contact producer for specific requirements). All other sizes are manufactured by Electric Resistance Welding and most are available from steel service centers.
- *LaCléde does not produce the 1/4' size; instead, it produces a .120 size.
Principal Producers Of Structural Tubing (Round)

<table>
<thead>
<tr>
<th>Nominal Size and Thickness</th>
<th>Producer Code</th>
<th>Nominal Size and Thickness</th>
<th>Producer Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>20x.500, .375</td>
<td>P*, W</td>
<td>6.125x.500, .375, .312, .250, .188</td>
<td>C</td>
</tr>
<tr>
<td>20x.250</td>
<td>P*</td>
<td>6x.500</td>
<td>S, Z</td>
</tr>
<tr>
<td>18x.500, .375</td>
<td>P*, W</td>
<td>6x.375, .312</td>
<td>R, S, Z</td>
</tr>
<tr>
<td>18x.250</td>
<td>P*</td>
<td>6x.280</td>
<td>S, X, Z</td>
</tr>
<tr>
<td>16x.500</td>
<td>P*, W</td>
<td>6x.250, .188</td>
<td>R, S, Z</td>
</tr>
<tr>
<td>16x.375</td>
<td>P*</td>
<td>6x .125</td>
<td>Z</td>
</tr>
<tr>
<td>16x.250</td>
<td>P*</td>
<td>5.563x.375</td>
<td>P</td>
</tr>
<tr>
<td>16x.188</td>
<td>P*</td>
<td>5.563x.258</td>
<td>P, R, W, X, Z</td>
</tr>
<tr>
<td>14x.188</td>
<td>P*</td>
<td>5.5x.375, .258</td>
<td>U</td>
</tr>
<tr>
<td>12.75x.500, .406, .375</td>
<td>P, W</td>
<td>5x.500</td>
<td>C, P, T, Z</td>
</tr>
<tr>
<td>12.75x.188</td>
<td>P, W</td>
<td>5x.258</td>
<td>P, R, T, U, X, Z</td>
</tr>
<tr>
<td>12.75x.125</td>
<td>P*</td>
<td>5x.250, .188</td>
<td>C, L, P, R, S, T, U, Z</td>
</tr>
<tr>
<td>12.5x.625, 500, .375, .312, .250, .188</td>
<td>P, W</td>
<td>5x .125</td>
<td>C, L*, P, R, S, T, U, Z</td>
</tr>
<tr>
<td>10x.625, .500, .375, .312</td>
<td>C*</td>
<td>4.5x.125</td>
<td>L*, P, R, S, U, Z</td>
</tr>
<tr>
<td>10x.250, .188</td>
<td>C*</td>
<td>4x.337</td>
<td>R, S, U</td>
</tr>
<tr>
<td>10x.125</td>
<td>V*</td>
<td>4x.250, .188</td>
<td>C, R, S, U, W, Z</td>
</tr>
<tr>
<td>8.75x.500, .375, .312, .250, .188</td>
<td>C*</td>
<td>3.5x.300</td>
<td>P, S, X, Z</td>
</tr>
<tr>
<td>8.625x.500</td>
<td>P, S, U, Z</td>
<td>3.5x.250, .203, .188, .125</td>
<td>P, S, S, W, X</td>
</tr>
<tr>
<td>8.625x.375</td>
<td>P, S, U, Z</td>
<td>3.5x.216</td>
<td>P, S, W, X</td>
</tr>
<tr>
<td>8.625x.250</td>
<td>P, S, U, Z</td>
<td>3x.300</td>
<td>S, X</td>
</tr>
<tr>
<td>8.625x.125</td>
<td>P, S</td>
<td>3x.216</td>
<td>R, S, U, W, X</td>
</tr>
<tr>
<td>7.5x.500, .375, .312, .250, .188</td>
<td>C*</td>
<td>2.875x.250</td>
<td>L*, P, U, Z</td>
</tr>
<tr>
<td>7x.500</td>
<td>C, P, U, Z</td>
<td>2.875x.203, .188</td>
<td>L*, P, U, W, Z</td>
</tr>
<tr>
<td>7x.188</td>
<td>C, P, R, S, U, Z</td>
<td>2.375x.250, .218, .188</td>
<td>L, P, S, Z</td>
</tr>
<tr>
<td>7x.125</td>
<td>C, P, Z</td>
<td>2.375x.154</td>
<td>L, P, S, U, W, X, Z</td>
</tr>
<tr>
<td>6.875x.500, .375, .312, .250, .188</td>
<td>C*</td>
<td>2.375x.125</td>
<td>P, R, S, U, W, Z</td>
</tr>
<tr>
<td>6.625x.500</td>
<td>P, U, Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.625x.375</td>
<td>P, R, U, Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.625x.125</td>
<td>P, Z</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- *Size is manufactured by Submerged Arc Welding (SAW) process and are not stocked by steel service centers (contact producer for specific requirements). All other sizes are manufactured by Electric Resistance Welding and most are available from steel service centers.
- **LaClede does not produce the \(\frac{1}{8}\); instead, it produces a \(\frac{3}{16}\) size.
Structural Steel Shape Producers

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayou Steel Corp.</td>
<td>P.O. Box 5000, Laplace, LA 70068</td>
<td>(800) 535-7692</td>
</tr>
<tr>
<td>Bethlehem Steel Corp.</td>
<td>P.O. Box 5000, Laplace, LA 70068</td>
<td>(800) 535-7692</td>
</tr>
<tr>
<td>British Steel Inc.</td>
<td>475 N. Martingale Rd., Schaumburg, IL 60173</td>
<td>(800) 542-6244</td>
</tr>
<tr>
<td>Chaparral Steel Co.</td>
<td>300 Ward Road, Midlothian, TX 76065-9501</td>
<td>(800) 529-7979</td>
</tr>
<tr>
<td>Florida Steel Corp.</td>
<td>P.O. Box 31235, Tampa, FL 33631</td>
<td>(800) 237-0230</td>
</tr>
<tr>
<td>J&L Structural Inc.</td>
<td>11 Station St., Aliquippa, PA 15001</td>
<td>(412) 578-6490</td>
</tr>
<tr>
<td>North Western Steel & Wire Co.</td>
<td>121 Wallace St., P.O. Box 618, Sterling, IL 60181-0618</td>
<td>(800) 793-2200</td>
</tr>
<tr>
<td>North Star Steel Co.</td>
<td>1380 Corporate Ctr. Curve, P.O. Box 21820, Eagan, MN 55121-0620</td>
<td>(800) 593-2200</td>
</tr>
<tr>
<td>Nucor Steel</td>
<td>P.O. Box 126, Jewett, TX 75846</td>
<td>(800) 527-6445</td>
</tr>
<tr>
<td>Northwestern Steel & Wire Co.</td>
<td>121 Wallace St., P.O. Box 618, Sterling, IL 60181-0618</td>
<td>(800) 793-2200</td>
</tr>
<tr>
<td>Nucor-Yamato Steel</td>
<td>P.O. Box 1228, Blytheville, AR 72316</td>
<td>(800) 289-6977</td>
</tr>
<tr>
<td>Pale Electric Steel Corp.</td>
<td>P.O. Box 13948, Roanoke, VA 24038</td>
<td>(800) 753-3532</td>
</tr>
<tr>
<td>SMI Steel, Inc.</td>
<td>101 South 50th St., Birmingham, AL 35232</td>
<td>(800) 621-0262</td>
</tr>
<tr>
<td>TradARBED</td>
<td>825 Third Ave., New York, NY 10022</td>
<td>(212) 486-9990</td>
</tr>
</tbody>
</table>

Structural Tube Producers

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACME Roll Forming Co.*</td>
<td>812 North Beck St., Sebewaing, MI 48775-1120</td>
<td>(800) 937-8823</td>
</tr>
<tr>
<td>Atlas Tube*</td>
<td>200 Clark St., Harrow, Ontario, NO 1G0</td>
<td>(519) 738-3541</td>
</tr>
<tr>
<td>Bull Moose Tube Company*</td>
<td>1819 Clarkson Road, Suite 100, Chesterfield, MO 63017-5040</td>
<td>(800) 325-4467</td>
</tr>
<tr>
<td>Copperweld Corporation*</td>
<td>4 Gateway Center, Ste. 2200, Pittsburgh, PA 15222</td>
<td>(412) 263-3200</td>
</tr>
<tr>
<td>Dallas Tube & Rollform</td>
<td>P.O. Box 540873, Dallas, TX 75354-0873</td>
<td>(214) 556-0234</td>
</tr>
<tr>
<td>Eugene Welding Co.*</td>
<td>P.O. Box 249, Marysville, MI 48040</td>
<td>(800) 336-3926</td>
</tr>
<tr>
<td>EXLTUBE</td>
<td>905 Atlantic, N. Kansas City, MO 64116</td>
<td>(800) 892-8823</td>
</tr>
<tr>
<td>Hanna Steel Corp.*</td>
<td>3812 Commerce Ave., P.O. Box 558, Fairfield, AL 35064</td>
<td>(800) 683-8202</td>
</tr>
<tr>
<td>Hannibal Industries, Inc.*</td>
<td>P.O. Box 58814, Los Angeles, CA 90058</td>
<td>(213) 588-4261</td>
</tr>
<tr>
<td>Independence Tube Corp.*</td>
<td>6226 W. 74th St., Chicago, IL 60638-6196</td>
<td>(708) 496-0380</td>
</tr>
<tr>
<td>IPSCO Steel, Inc.</td>
<td>P.O. Box 1670, Armour Rd., Regina, Saskatchewan S4P 3C7</td>
<td>(416) 271-2312</td>
</tr>
<tr>
<td>LaClede Steel Co.*</td>
<td>One Metropolitan Square, St. Louis, MO 63102-2739</td>
<td>(314) 425-1461</td>
</tr>
<tr>
<td>Maruichi American Corp.*</td>
<td>11529 S. Greenstone Ave., Santa Fe Springs, CA 90670</td>
<td>(310) 946-1881</td>
</tr>
<tr>
<td>Standard Tube Company*</td>
<td>P.O. Box 430, Woodstock, Ontario N4S 7Y6</td>
<td>(519) 537-6671</td>
</tr>
<tr>
<td>Valmont Industries, Inc.*</td>
<td>261 North Xanthus, P.O. Box 2620, Tulsa, OK 74101</td>
<td>(918) 583-5818</td>
</tr>
<tr>
<td>Vest Incorporated*</td>
<td>6023 Alva Ave., Los Angeles, CA 90058</td>
<td>(213) 581-8823</td>
</tr>
<tr>
<td>Welded Tube Co. of America*</td>
<td>301 North Xanthus, P.O. Box 2620, Tulsa, OK 74101</td>
<td>(918) 583-5818</td>
</tr>
<tr>
<td>Welded Tube Co. of Canada, Ltd.*</td>
<td>1111 Rayette Rd, Concord, Ontario L4K 2E9</td>
<td>(800) 837-3616</td>
</tr>
</tbody>
</table>

* Member of the Steel Tube Institute of North America, 8500 Station St., Suite 270, Mentor, OH 44060 (216) 974-6990
For more than 20 years, many state DOTs and consultants have utilized U.S. Steel's SIMON mainframe program for the design of straight steel plate-girder bridges. Now, the American Institute of Steel Construction is offering this powerful program on a PC platform.

SIMON designs I-shaped and multiple single-cell box-shaped, girders, with up to 12 continuous spans. SIMON produces complete designs in accordance with the latest AASHTO Standard Specification for Highway Bridges. This enhanced and updated version of SIMON has undergone extensive verification by several state DOTs and consultants.

SIMON is easy to use because the engineer follows the same logic and process as when designing a bridge manually. The entire system runs in MS-DOS and occupies less than 1 MB of hard-disk space.

Output from the SIMON program includes:

- Dead-load and maximum and minimum live-load moments and shears for variable-axle H or HS truck loading or for variable-wheel loading with up to 20 axles.
- An optimum design of the girder elements based on control parameters selected by the user.
- Performance ratios computed for each limit state at the critical cross sections of the girder along with a complete printout of all AASHTO specification checks.
- A complete bill of materials including locations, yield strengths, weights, lengths, widths and thicknesses of all webs, flanges and stiffeners.

Licensing of SIMON Systems for use on a personal computer is available for an annual subscription fee of $300. During the subscription period, AISC will furnish program updates and enhancements along with telephone support on the use of the software at no additional charge.

To order or for more information:
Phone: 312-670-2400 or Information fax line: 800-644-2400
A nearly constant need for more room complicated on-going construction projects

By Steve Punch, P.E., and Sidney S. Wall

THE CITY OF MILWAUKEE HAS A LONG HISTORY OF PROVIDING HEALTH CARE FACILITIES specifically for children. It began a century ago with one nurse and a 10-bed hospital established in a small house. Decades of steady growth and expansion have culminated in today's Children's Hospital of Wisconsin, which is located on the Milwaukee Regional Medical Center Campus in Wauwatosa, eight miles west of downtown Milwaukee. In addition to providing state-of-the-art health care services for the young, the hospital is part of a prestigious cooperative teaching program known as the Medical College of Wisconsin.

When Children's Hospital relocated in late 1988 from its downtown hospital site to Wauwatosa, it quickly became evident that even more room would be needed. The hospital had moved into a 300,000-sq.-ft. facility designed by Henningson, Durham, and Richardson, Inc. (HDR), Dallas, which served as both architect and engineer on the project. Construction manager was McCarthy of St. Louis. The structural steel building had composite floor deck and lightweight concrete fill with exterior cladding consisting of architectural precast panels with punched window openings.

Although provisions were made in the original design for one additional floor, it was soon obvious that even more would be needed. Within two weeks after occupancy of the new building, the hospital census was running at nearly 100 percent. By early

Pictured at top is the new sixth floor framing with the columns spliced to the existing columns from below. The mechanical unit remained in place to allow the operating rooms below to continue functioning during the construction. When the building is nearly complete, the unit will be demolished and removed. Floor framing will be added to complete the floor. Shown above is a plate girder at each floor spanning 105 ft. over the existing four-story main hospital section.
1989, Children's Hospital determined that additional space was needed due to the rapid growth and would, therefore, embark on a building program to expand the recently opened facility with two additional floors.

Additional Growth

The expansion plans resulted in HDR designing a ninth level floor, which was called for in the original plans, as well as starting design on a new east tower building to be located adjacent to the four-story ancillary portion of the main building and above the completed loading dock service area. While up to 17 stories is ultimately planned for the site, during the first phase only one floor of this new structure was to be built. What makes this project unique is that, because of programmatic requirements, only the fourth floor would be constructed during the first phase. This would allow the existing surgery and recovery floor of the existing building to expand by almost 23,000 sq. ft. Since the first, second and third levels would be built at an unknown future date, provisions were necessary for attaching the future floor framing to the columns supporting the new fourth floor.

It became readily apparent that a steel structure was the most appropriate and efficient choice to accomplish the hospital's requirements. Its lighter weight compared to concrete construction would result in smaller drilled pier costs. And even more importantly, connection of future framing would be vastly simpler. Also, since neither forming nor shoring are required, steel erection would be faster than concrete and unhindered by obstructions.

The east tower fourth floor and roof (future fifth floor) were designed with A36 composite beams supporting 2-in. composite deck and 4'/2 in. of lightweight concrete fill. Concrete shearwalls formed by the elevator core and stairwell shafts were designed to provide overall stability and resistance to wind loads. Column loading was based upon the accumulated loads due to a maximum of 17 floors. During the first phase and until the lower three levels are built, columns would be unbraced for three stories. To provide fire protection and reduce the column slenderness, W14x398 and W14x257 sections were encased in concrete. The concrete encasements included blockouts to allow access for beam erection and connection of the future lower framing. The tops of the columns extended above the roof and were prepared to easily accept a column splice for the next construction phase.

Filled To Capacity

Construction for the expansion program began in the summer of 1989. However, before completion in late 1992, Children's Hospital again realized they were running out of space, a remarkable growth rate attributable to the tremendous regional and national exposure.
Over 200 bridges in Ohio are constructed of weathering steel. Most of it produced by Bethlehem.

They use it for the same compelling reasons the New Jersey Turnpike Authority, Maine, Maryland, and numerous other states do.

That’s because weathering steel cuts costs both initially and over the life of the structure. Plus, it’s attractive and offers engineers broad design flexibility.

Ohio is particularly enthusiastic about the use of weathering steel for appropriate locations in conjunction with their jointless bridges.

They began the jointless concept in the 1930’s. Since then, they’ve refined their jointless designs to the point where joints have been eliminated not just over the piers, but at the abutments, as well.

As a result, drainage problems associated with jointed bridges, such as failure of joint seals, or clogged drains overflowing onto structural members, have been eliminated.

Bridge lengths have also increased. Initially, the limit was 200 ft. Today, it’s been increased to 300 ft., and even greater lengths are being constructed.

Engineers in the Buckeye state began using weathering
Ohio save a lot of money.
of paint.

Steel in the early 1960's.

Low initial cost and minimum maintenance requirements make it highly competitive with other grades of steel. Also, it's attractive and blends in with its natural surroundings.

Strength is another strong factor. Weathering steel is comparable to ASTM A572 Grade 50 high-strength steel. And with a yield strength that's 38% higher than ASTM A36 steel, weathering steel permits the design of lighter, slimmer, more graceful sections.

What's more, since it's self-healing, the need for painting is virtually eliminated.

For a copy of our Product Booklet No. 3790, and our latest Technical Bulletin TB-307 on “Uncoated Weathering Steel Structures,” contact the Bethlehem Steel sales office, Construction Marketing Division, Bethlehem PA 18016-7699. Or call: (215) 694-5906.

You'll discover how we can save you a lot of money. Not to mention a lot of paint.

Bethlehem

Please circle # 60
resulting from their move into the new facility at the regional medical center campus. Patients were coming to Children’s Hospital in greater numbers than ever expected, and it was apparent that the hospital could not continue to effectively handle the patient census and provide required services without significant expansion of the medical support departments and an increase in the number of patient beds.

In early 1992, HDR was authorized to proceed with plans to renovate 70,000 sq. ft. of the existing hospital, construct 260,000 sq. ft. on nine new floors in the east tower, and add a connector link passageway between the main building and the new tower floors.

Continuous Operation

One of the biggest challenges confronted by HDR and McCarthy was the requirement

WHEN YOU BUY ST. LOUIS, YOU BUY AMERICAN!

AND YOU GET: • FULL TRACEABILITY
• LOT CONTROL
• CERTIFICATIONS

Registered Head Markings on all structural and machine bolts:

- A-325 Type 1
- A-325 Type 3
- SL 307A
- A-307-A
- A-449
- A-307-B

Products from ½”—3” diameter include:

- COUNTERSUNK
- SQUARE MACHINE
- BUTTON HEAD

ST. LOUIS SCREW & BOLT COMPANY

6900 N. Broadway • St. Louis, MO 63147
(314) 389-7500 • 1-800-237-7059 • Fax (314) 389-7510
for the hospital to remain completely operational during virtually all of the construction work. The use of structural steel played a major role in minimizing disruption and maintaining schedules.

Conventional steel erection using cranes was not possible for the east tower second and third levels since equipment access at the first level was severely restricted by basement walls and loading dock height and accessibility from above was blocked off by the existing fourth level surgery floor. Instead, scissor-lifts were utilized to erect the steel framing and deck in a planned sequence that allowed the hospital uninterrupted use of the loading dock area. The construction manager chose to place the steel for the east tower’s sixth through 11th floor with a self-climbing tower crane placed inside one of the central core elevator shafts.

The second and third floor framing was erected to existing columns that supported the fourth floor. Erection was planned to allow the first floor loading dock to maintain its operation.

ATTENTION TO DETAIL

Computer Detailing Systems, Inc. introduces a state of the art structural steel detailing system which allows fabricators and detailers to meet the demands of the future with the ability to generate connection calculations, download to CNC equipment and interface with major design firms through the Steel Detailing Neutral File.

A practical, flexible system requiring minimal training, CDS is capable of producing intelligent 3D models, floor plans and elevations as well as shop drawings of unsurpassed quality using your standards and paper. CDS is currently used by fabricators and detailers throughout the US and in Canada.

CONTACT COMPUTER DETAILING SYSTEMS today FOR A FREE INFORMATION PACK.

Computer Detailing Systems, Inc. • 7280 Pepperdham Avenue • Charleston, South Carolina 29418 • (803)552-7055
A connector link was constructed to allow passage between the main building and the new east tower. Pictured opposite is one of the three existing footings which was enlarged in order to support a new connector link between the main building and the east tower.

Prior to the commencement of erection, HDR was notified of an interference condition at the existing roof. An air-handling unit serving the surgery floor below and located on the roof was physically higher than the next level of structural framing. The top would extend into several beams and delay construction progress of a sizeable floor area. The unit was intended to be in service only for the interim period until a mechanical penthouse level could be completed. Meanwhile, though, the air-handling unit had to remain operational.

Fortunately, a simple solution was found. The affected area was directly accessible along the north side perimeter. The steel beams and deck in the two bays of the sixth floor above the unit were planned to be left out until the new mechanical system was finished. At such time, the interim unit could be disassembled, removed and the remaining framing, precast wall panels and floor would be put in place.

Fabricator and erector on the project is AISC-member Construction Supply & Erection, Inc.

Connections

VITAL TO THE EAST TOWER VERTICAL EXPANSION SCHEME WAS A CONNECTOR LINK to the main hospital building at the fifth, sixth, eighth and ninth floors. The lower floor would be connected because of a larger footprint plan. Complicating the design was the need to support the connector structure on existing columns of the main hospital building that were not designed for any additional future floors or increased loading.

Framing for the 12-ft.-wide by 80-ft.-long connector link was accomplished using W12x14 beams, W24x68 composite girders and 2-in.-deep composite deck with 3 in. of lightweight concrete fill. In addition, each floor slab functions as a simple span horizontal diaphragm for transferring wind loads from the connector to the main hospital.
building and east tower. Intermediate support was achieved by adding W14x132 columns to the top of existing W14x90 columns.

However, calculations showed that the existing W14x90 sections would be overstressed from the connector link loads. Furthermore, soil pressures under these existing footings would exceed allowable recommendations given by the geotechnical engineer. The most reasonable option was to reinforce the existing columns by welding coverplates to the flanges and web. This created greater cross-sectional area and reduced the column stresses caused by the new loading conditions. It also was necessary to enlarge three existing footings in order that soil bearing pressures not exceed permissible values.

Dynamic Design

The project at Children's Hospital of Wisconsin illustrates the complexity and difficulty of hospital strategic planning and design. In response to the hospital's dynamic changes and growth, it has been demonstrated that structural steel provided the strength and versatility needed to solve simple and complex problems for both new and renovation work. Construction is currently ongoing and is expected to be complete in early 1995.

Steve Punch, P.E., is the structural section manager and Sidney S. Wall is vice president and senior project manager for the Dallas office of Henningson, Durham, and Richardson, Inc.
A vertical addition to a Milwaukee hospital needed to match floor-to-floor heights with an adjacent building while accommodating massive mechanical ducts

By Steven J. Roloff, P.E.

Unlike other types of owners, when hospitals need more room, they can't just pick up and move to a new building. Instead, they expand—both horizontally and vertically—their existing facilities. And even while they're planning one expansion, they're already anticipating another.

When Columbia Hospital in Milwaukee started construction on an Ancillary Building Addition (now part of The Clinical Building) back in 1982, they knew they'd one day outgrow the new space. So while they built a two-story structure, their engineers planned for a future four-story addition to the steel-framed building. By the early 1990s, their plan blossomed beyond expectations. Programming projections established that a new building was required in addition to a seven level vertical expansion of the existing Ancillary Building. However, due to uncertainty about the future of health care led the hospital to build only three of these floors now, while planning for four more floors in the future.

In addition, initial project planning directed that clinical and mechanical areas be incorporated in the new levels, thereby increasing structural floor loading requirements. The original two-story building featured a 13-ft.-high lower-level-to-ground elevation and a 14-ft.-high ground-to-first-level elevation to align with an adjoining building. Likewise, the floors of the vertical expansion also had to match...
those of an adjacent building. Unfortunately, this meant floor-to-floor heights as tight as 11-ft.-6-in.

Architectural requirements, including floor layouts with large open spaces and maximum future flexibility, did not permit vertical expansion of any of the original building's lateral load resisting K-braces or the use of any other similar diagonal member braces at any of the typical non-mechanical occupied floors. The large size of the required HVAC distribution system necessary to address the intense internal heat gains associated with high-tech medical equipment and stringent air exchange rates also played a significant role in the selection of the building's structural system.

Design Challenges

The challenges inherent in the program were not that uncommon by themselves, but in combination they demanded a unique engineering solution. The approach was two-fold. First, the existing two-level structure had to be evaluated and reinforced for additional gravity and lateral loads from the levels not anticipated in the original design. Secondly, alternatives for the design of the new floors needed to be explored.

The foundation system for the original Ancillary Building construction consisted of concrete piers on 3-ksi concrete spread footings founded on 8-ksf allowable soil bearing pressure materials. One of the initial steps taken in the evaluation of the existing building was to determine the support characteristics of the insitu soils beneath the existing footings. The procedure used to complete this task was performed at two separate locations. The process consisted of coring through the existing footing pads and conducting pressuremeter testing. In addition, the cores collected from the footings were tested to evaluate their compressive strength. As a result of these tests, a net allow-
able soil bearing capacity of 10.35 ksf was recommended with insitu concrete compressive strengths of about 5 ksi for the footing concrete. Using this information and the new anticipated footing loads, it was determined that all of the affected existing footings were structurally adequate.

Structural Design Alternatives

DURING THE CONCEPTUAL DESIGN OF THE NEW LEVELS, it quickly became apparent that there would be a conflict between the structural and
The detail at right shows the vertical reaction and moment connection between orthogonal inframing Vierendeel joist girders and a supporting column.

mechanical systems if the original structural system was simply duplicated. Because of the tight floor-to-floor heights, mechanical requirements and the 9-ft. ceiling heights desired by the architect in many locations, a new design solution was required.

In an effort to satisfy all of the design criteria, a cast-in-place concrete slab and column moment frame system was investigated and quickly eliminated. This approach would have required extensive foundation work to accommodate the additional structure dead weight. Also, too much work would have been required within the existing occupied spaces to make the transition from a steel frame to a concrete frame.

The next alternative considered was a stub-girder system. In this system, short lengths of rolled steel sections (stubs) are welded to the top of a steel beam and connected to the underside of a concrete slab by shear connectors. This system results in open areas between the stubs that can accommodate mechanical and distribution equipment. After preliminary study, however, it was determined that the stub-girder system would not provide large enough openings. Also, the magnitude of the negative moments produced by the lateral loads could not be easily accommodated by the system.

Another alternative considered was the use of deep beam sections with cut web openings to accommodate mechanical requirements. However, discussions with McCarthy Bros. Co., the project’s construction manager, and with steel fabricators regarding preliminary pricing for this type of system revealed that it would be too expensive. However, it was determined that costs could be reduced by using a truss with a Vierendeel panel. Using this system meant the main mechanical duct chases would have to be provided in orthogonal directions and ducts would have had to be designed to...
The photo above shows ductwork passing through the Vierendeel panel opening in a typical joist girder, as well as smaller ductwork passing through a variety of additional panel openings.

span across the Vierendeel panels. This system was chosen for two of the floors, with the third vertical expansion floor utilizing a conventional composite steel beam system to maximize head height at the floor containing the mechanical equipment room.

Since the project now consisted of only 108 custom fabricated trusses, it was decided that costs could be minimized by designing the trusses to meet Steel Joist Institute (SJI) specifications and typical manufacturing practices in order to facilitate fabrication by any SJI member manufacturer.

Type 1 Construction

Since the building's lateral load resistance could not be accomplished using diagonal members, it was decided to go to a Type 1 rigid frame construction. Type 1 was chosen due to concerns the bottom chord of the truss may buckle under actual loads if only lateral loads were considered. But in an effort to reduce the negative moments to be designed for at the ends of the trusses, the final moment connection weldment was designed and detailed to be completed only after the slab's selfweight had been applied.

At some locations where wide flange beam sections cantilevered 10 ft. out from the column and had a truss member for the backspan, the end of the cantilever was required to be shored until the truss' end moment connection could be completed. To distinguish between trusses on a column line as part of a rigid frame and those trusses designed as simple span members framing between non-column supports, the terms Vierendeel girder and Vierendeel joist were adopted respectively.

A typical new unshored building bay consisted of 4 1/4 in. of lightweight concrete on 2 in. composite metal deck spanning between joists and girders typically at 10 ft. on-center. As the mechanical design advanced, it was established that a Vierendeel panel opening 1-ft.-10-in.-high by 3-ft.-2-in.-wide would be of sufficient size to accommodate the rectangular ducts and the required three-hour sprayed-on fireproofing material. It also was determined that on each side of the Vierendeel panel the system had to also allow for the passage of a 17-in.-diameter duct. Large scale layouts of the joists and girders with anticipated member sizes confirmed this additional opening could be satisfied between truss web members and would not require additional special provisions within the truss profile. Initial design loadings indicated trusses with double 5 x 5 angle top and bottom chords would satisfy structural requirements. With this information, initial girder section properties were estimated for the rigid frame analysis.

To properly model the relationship of the girder to the column, fictitious members having a high cross sectional area, a high moment of inertia and a length to match the depth of the girder were conceptualized at the ends of the girders. The ends of these fictitious members were then connected to the column at their respective heights with a simple pin connection at the top and a simple vertical slip connection at the bottom. Modeling the truss to column connection in this manner more accurately reflects the stiffness of the system and disbursement of the connection forces. To faithfully imitate the behavior of the new column to the top of the existing column, springs having a stiffness representative of the existing columns were modeled at the base of the new columns. The 2D and 3D models were generated and analyzed and sections designed by utilizing the STAAD-III program from Research Engineers.

The highest girder loadings were extracted from the output and forwarded to AISC associate member Vulcraft for their review and preliminary component design. Because of the relative stiffness of the girders and columns, the size of the top and bottom chords of the girders were increased to double 6 x 6 angles resulting in a final typical joist and girder depth of 34-in. In
order to establish an architectural relationship between the new floor elevations with the elevations of the existing adjacent building, the top of many of the exterior wall openings extend above the bottom of the Vierendeel trusses. A sloped ceiling makes the transition from this point back to the typical ceiling height. To accommodate this architectural detail, special joists and girders with an end tapering from 34 in. to 24 in. at the end were employed within sloped ceiling spaces. In fact, space requirements within and below the trusses dictated horizontal bridging be placed within the depth of the truss top and bottom chord angles.

Connection Design

Connections between joists and girders were accomplished using 1 in. plate that also acted as a spacer between the truss section's top and bottom double chord angles. Although a similar connection was called for between joists and supporting wide flange beams, during shop drawing review this detail was modified at some locations to be a field bolted butt joint between a WT-section welded to the beam web and a pair of angles on the joist end in order to address erection considerations.

Connections between girders and columns were designed to transfer vertical end reactions of up to 64 kips and end moment connections varying from 0 to 380 kip ft. Typical vertical reaction connection to the face of a column flange was accomplished using a T-shaped haunch constructed of plates while a similar connection into the web of the column was achieved using a fitted seat plate welded to the column with a support bar placed directly underneath the seat plate extending past and welded to the tips of the column flanges. Moment connections were completed using a plate welded to the column and the top of the girder's top chord and welding the bottom chord to a specially designed stabilizer plate welded to the column. Special detailing provisions were made and consideration given to erection requirements from orthogonal in-framing girders at column locations.

Schedules containing joist and girder design loadings and minimum moment of inertia values to be met were supplied to the girder fabricator, AISC-member Zalk Josephs Fabricators, Inc. Minimum moment of inertia values were provided to assure parity between models upon which the design of the columns and other members were based and final fabricated members provided. Contrary to typical SJ1 member manufacturer procedures, contract documents required the submittal and approval of all calculations prior to any section fabrication. Typically, these calculations were performed just days prior to fabrication. Actual girder moment of inertia values were obtained from these calculations and used in the models originally generated. New girder end moment schedules were produced from the output of these revised models and were forwarded to the fabricator for integration into final girder design. Typically, the girder end moments increased due to a higher girder moment of inertia value then had originally been assumed. Final analysis of the models also permitted a code check on the column sizes specified. No adjustments of any of the column sizes was required as a result of the final model runs.

Zalk Josephs provided 250 tons of A36 and A572 Grade 50 steel for the project, while Vulcraft provided 90 tons of Vierendeel paneled steel joists and girders.

Steven J. Roloff, P.E., served as the structural engineer on this project and is director of structural engineering for Arnold & O'Sheridan, Inc., in Brookfield WI.
STRUCTURAL ENGINEERING SOFTWARE

To receive information about any product listed in this section, please circle the appropriate numbers on the reader service in the back of this magazine.

To receive information on all of the building software programs, circle number 100. To receive information on all of the bridge programs, circle number 101.

PROGRAM: SODA—STRENGTHENING OPTIMIZATION DESIGN & ANALYSIS
Type: Design/verify/analyze structural steel frames
Company: Acronym Software Inc.
Address: 22 King St. S. #302 Waterloo, Ontario N2J1N8 Canada
Phone: 519/885-2454
Fax: 519/746-7931
Info: SODA automatically and completely designs a least-weight 2D or 3D steel frame or truss from a library of commercial steel sections. The program designs for both strength and deflection requirements in accordance with ASD (1978 & 1989), LRFD (1986), and CISC CAN3-S16.1 M84 and includes First Order or P-Delta design and analysis. A design verification mode permits quick evaluation or revision of designs against codes and points out areas of over and/or under design. Also, the program is able to perform structural analysis as a separate operation. Version 3.2.5 was released in May 1994. A free demo disk is available.
Price: $495 (single user); $1,485 (multiple user)

For information, circle no. 81

PROGRAM: DISPAR
Type: Postprocessor for ETABS and SAP90
Company: Advanced Structure Concepts
Address: 1580 Lincoln, Ste. 550 Denver, CO 80203
Phone: 303/860-9021
Fax: 303/860-9537
Info: Using simple virtual work techniques, DISPAR works with ETABS or SAP90 to provide the user with detailed information on the sources of excess stiffness or flexibility, including: a frame-by-frame breakdown of each members' contribution to global flexibility in terms of axial, flexural, shear and torsional deformation sources as well as column, beam, diagonal and panel classifications; various options for assessing the effects of beam-column joint deformation; information on the overall efficiency of the structure; accurate structural steel tonnage; and an approximate but very accurate method of reanalysis that is 10 to 20 times faster than ETABS reanalysis. The program, which utilizes LRFD, was last upgraded in 1994. A free demonstration package is available.
Price: $495
For information, circle no. 82

PROGRAM: AISC SOFTWARE
Type: Ranges from floor framing to connections to bridge design
Company: American Institute of Steel Construction, Inc.
Address: One East Wacker Dr. Ste. 3100 Chicago, IL 60601
Phone: 312/670-2400
Fax: 312/670-5403
Info: The Composite Column Computer Program (CMPOL) is a companion computer disk to AISC Design Guide D806 (Load and Resistance Factor Design of W-Shapes Encased in Concrete) to generate supplementary composite column design tables in ASD or LRFD format. The Parametric Bay Studies disk gives design guidance for composite and non-composite floor framing alternatives in the early planning stage of a project. Included are 2,400 composite beam and girder designs for quick estimating of the most economical floor design. The AISC Database contains the properties and dimensions of structural steel shapes, corresponding to Part 1 of the LRFD and ASD Manuals of Steel Construction. LRFD-related properties such as X1 and X2, as well as torsional properties, are included. Both English and metric versions are available.
CONXPRT is based on the LRFD and ASD Manuals of Steel Construction and also combines the engineering knowledge and experience of respected fabricators and design engineers. The program provides the complete design of shear and moment connections, and column stiffeners and doublers. The software comes with preset guidelines, but can be modified to meet individual shop standards.
WEBOPEN designs unreinforced or reinforced, rectangular or round openings, concentrically or eccentrically located, in both composite and non-composite steel beams.
AISC for AutoCAD saves time by drawing the end, elevation and plan views of W, S, M and HP shapes, American standard channels (C), miscellaneous channels (MC), structural tees cut from W, M and S shapes, single and double angles, and structural tubing and pipe.
STEMFIRE is based on rational procedures developed by AISC for safe and economical fire protection for steel beams, columns and trusses.
SIMON Systems is a PC software system for the design of straight steel plate-girder bridges in accordance with AASHTO's Standard Specifications for Highway Bridges. The program will design I-shaped or multiple single-cell box-shaped girders with up to 12 continuous spans that may contain hinges.
Price: CMPOL costs $80; Parametric Bay Studies costs $50; AISC Database costs
$60; CONXPRT costs $110 - $720; WEBOPEN costs $495; AISC for AutoCAD costs $120; STEMFIRE costs $96; SIMON Systems costs $300 per year (lease only)

For information, circle no. 1

PROGRAM: MERLIN-DASH
Type: Design & analysis of straight steel girder bridge systems
Company: BEST Center
Address: University of Maryland
College Park, MD 20742
Phone: 301/405-2011
Fax: 301/314-9129
Info: Merlin-Dash V6.0 gives the user the choice of using WSD or LFD (or even LRFD DL+LL analysis) in either English or metric units. Flow control options include: DL analysis; DL+LL analysis; code check; rating; design; design+recycle-code check; DL staging: and DL staging + LL. Boundary modification includes fixed ends, elastic support (rotation and/or vertical springs) and support settlement. Both tapered and parabolic members can be used and the developers are working with MDSA to include the automated design of a haunched girder. Latest upgrade was issued April 1994.

Price: $3,000

For information, circle no. 83

PROGRAM: STEELPLUS
Type: Structural shapes drafting/detailing
Company: Barry Bowen Associates
Address: 3394 Coleman Road
Memphis, TN 38128
Phone: 901/373-6468
Fax: 901/373-6468
Info: SteelPlus contains all of the shapes listed in the Manual of Steel Construction, ASD—9th Edition. The shapes are parametrically drawn and include W-shapes, channels, single/double angles, square & rectangular tubing, pipes, M, S, HP shapes, and tees. The program offers automatic toggles and is highly customizable. The program is compatible with AutoCAD R10/11/12 and both DOS and Windows. User can draw in plan, section, elevation, or single line and can generate both simple or complex shapes. Shapes are created as AutoCAD blocks.

Price: $89.95 + free bonus module

For information, circle no. 84

PROGRAM: WINSTRUDL
Type: Finite element program
Company: Computer Aided Structural Technology
Address: P.O. Box 14674
Freemont, CA 94539-4676
Phone: 510/226-8857
Fax: 510/226-7328
Info: WinSTRUDL is a general purpose finite element program that runs inside Microsoft Windows. The program includes: static, P-Delta and dynamic analysis and AISC (ASD & LRFD) code checks. Loads include: joint; member; linearly varied; temperature; moving; pressure; and pre-stress. Boundary conditions can be fixed, released or spring. Graphical output can be accepted by AutoCAD. The program's chief advantage is that it is a true Windows program written in 32 bit C and C++ languages and can therefore take advantage of Windows virtual memory system for almost unlimited capacity. The program was upgraded in June 1994. From $390

For information, circle no. 94

PROGRAM: SAP90; ETABS; AUTOFLOOR
Type: 3D static and dynamic finite element analysis/design; 3D structural analysis and design; structural floor framing
Company: Computers & Structures, Inc.
Address: 1995 University Ave., Ste. 210
Berkeley, CA 94704
Phone: 510/845-2177
Fax: 510/845-4096
Info: SAP90 is an efficient large capacity structural analysis PC program intended for use on projects such as bridges, dams, stadiums and industrial plants. Finite element based, this program offers both static and dynamic analysis (either response spectrum or time-history) and a wide range of element types. Additional modules are available to generate moving loads and influence lines for bridge analysis and perform AISC steel stress checks using either ASD or LRFD. Included are graphical pre- and post-processing programs, including a Windows interface.

ETABS provides sophisticated 3D analysis of multi-story buildings using either ASD or LRFD. The program is designed specifically for building design and includes AutoETABS, an integrated analysis and drafting program operating inside of AutoCAD.

AutoFLOOR is an AutoCAD-based drafting, analysis and design optimization program for steel floor framing systems. It expedites the layout of framing schemes by automatically calculating the tributary load to each member, determining the design forces in each member, and then performing a member selection based on optimization techniques for either composite or non-composite, ASD or LRFD code recommendations. Last upgrade was April 1994.

Price: SAP90 costs $2,000; ETABS costs $3,000; and AutoFLOOR costs $1,500

For information, circle no. 31
GT STRUDL®

on a PC—it’s all there!

Quality Performance Customer Support

The premier structural software engineers have been using since 1978 on mainframes and workstations is now available on PCs.

GT STRUDL provides the top quality, versatile, and accurate structural engineering and design software for utility, transportation, offshore, industrial, and civil works facilities.

GT STRUDL features include:

- interactive graphics
- links to popular CAD systems
- library of over 100 element types
- steel and reinforced concrete design
- static, nonlinear, and dynamic analyses
- graphical frame and finite element modeling
- compliance with NRC and ISO 9000 quality requirements
- operates on PCs, UNIX workstations, and mainframe computers
- voted #1 in user support

30-day trial available

For more information, please contact:

(404) 894-2260
FAX: (404) 894-8014

Georgia Tech Research Corp.
Computer-Aided Structural Engineering Center
Atlanta, Georgia 30332-0355

Please circle # 71
A limited-number-of-executions version of the program is available at no charge. The program was last updated in April 1994. Two linear analysis versions of AVANSE are available (in both English and Spanish), one of which offers 1,360 nodes and the other 150 nodes. All versions: solve 2D and 3D structures; incorporate trusses, beams, plates and shell elements; provide self-weight calculations; allow elastic supports; permit 50 load cases and 20 load combinations; provide optimization of the stiffness matrix; allow prescribed displacements; and contain a complete AISC-1989 structural steel database. Frame members feature: concentrated forces and moments applied along the span; distributed loads with uniform and variable intensities; uniform and differential changes in temperature; shear deformation; rigid zone offsets; and end releases. The program was last updated in March 1994.

Price: $75 for COMSTRESS; $250 - $1,195 for AVANSE

For information on COMSTRESS, circle no. 49 & for AVANSE circle no. 48

RISA-3D

For the last 5 years our RISA-2D program has been setting the standard for 2 dimensional structural analysis and design. RISA-2D is, in fact, rated higher than most of the 3 dimensional programs currently available! See the Jan., '94 issue of Modern Steel Construction.

We are pleased to announce that RISA-2D has finally been surpassed!

Introducing RISA-3D, the new standard for structural analysis and design software. Statics, dynamics, P-Delta effects, steel design and many other features are incorporated into this powerful new program.

RISA-3D provides a fast, intuitive problem solving environment absolutely unmatched by any other program.

Give RISA-3D a try and see for yourself!

RISA TECHNOLOGIES
26212 Dimension Dr.
Suite 200
Lake Forest, CA 92630
Voice: 800-332-7472
FAX: 714-951-8648

Call or FAX us for a free demo!

Modern Steel Construction / July 1994 / 41
PROGRAM: GT STRUDL
Type: Finite element analysis and structural design CAE system
Company: Georgia Tech Research Corp.
Address: 790 Atlantic Dr., Atlanta, GA 30332-0355
Phone: 404/894-2260
Fax: 404/894-8014
Info: GT STRUDL's features for steel frame design include: member design and code checking (ASD, British Standard, ASCE Tower, ASME/NF17, API and AWS); a large number of prestored tables; user definable tables; special processing (design parameter specifications, geometric and relational constraints, and design smoothing); and detailed summary output. The program offers automatic data generation, frame and finite element analysis (more than 100 finite element shapes), nonlinear static analysis, linear dynamic analysis, and a graphics modeler, as well as extensive offshore structures analysis and exchange. It was last upgraded in April 1994; a scheduled fourth quarter 1994 upgrade will add LRFD.

Price: Starting at $2,500

For information, circle no. 71

PROGRAM: MULTIFRAME 3D & 4D; SECTION MAKER; STEEL DESIGNER
Type: Multiframe 3D provides 3D analysis of frames & trusses; Multiframe 4D offers 3D and dynamic analysis of frames & trusses; Section Maker provides section properties calculations; Steel Designer provides steel code checking and design optimization of frames

Company: Graphic Magic
Address: 180 Seventh Ave., Ste 201
Santa Cruz, CA 95062
Phone: 408/464-1949
Fax: 408/464-0731
Info: All of the programs are Macintosh-based and support ASD.

Multiframe 3D models all types of structures and can include special structural features such as springs, prescribed displacements, member releases and pinned joints. The program provides: rescaling, generating and duplication features; user defined layout of results; display of moments, shear, deflection and axial forces; spring supports; prescribed displacements; moment releases in members; uniform, triangular or trapezoidal loads; factored combinations of load cases; built-in library of common structural sections; and English or metric units. The program was last upgraded in May 1994.

New! Single-angle connections, individual prices

CONXPRT
Fast, accurate and fully documented connection design

The complete design of shear and moment connections and column stiffeners and doublers with the following features:

- Based on the AISC Manual of Steel Construction and Volume II-Connections
- Combines the engineering knowledge and experience of respected fabricators and design engineers
- Menu driven with built-in shapes database
- Complete documentation of all design checks

To order or for more information:

Phone: 312-670-2400
Information Fax Line: 800-644-2400

Module I ASD, v2.0 (complete) .. $410
- Double-Angle Connections .. $110
- Single-Plate Connections .. $110
- End-Plate Connections .. $110
- Single-Angle Connections .. $110

Module I LRFD, v1.0 (complete) $310
- Double-Angle Connections, Single-Plate Connections, and Shear End-Plate Connections

Module II ASD, v1.0 (complete) $410
- Directly Welded Flange Connections $110
- Flange-Plated Connections .. $110
- Column Stiffening Design .. $210

Please circle # 1
Use these cards to request information from manufacturers and other companies mentioned in this issue. Simply circle the numbers referenced in the advertisement or article, fill out the rest of the information requested on the card, and either mail it to: Modern Steel Construction, Creative Data Center, 650 South Clark St., Chicago, IL 60605-9960 or fax it to: 312/922-3165.
Use these cards to request information from manufacturers and other companies mentioned in this issue. Simply circle the numbers referenced in the advertisement or article, fill out the rest of the information requested on the card, and either mail it to: Modern Steel Construction, Creative Data Center, 650 South Clark St., Chicago, IL 60605-9960 or fax it to: 312/922-3165.
Multiframe 4D provides a completely graphical approach to structural modeling, analysis and interpretation of results. CAD tools like automatic generation, duplication and rotation of structural elements simplify the process of constructing a frame model. Multiframe utilizes rendering, animation and color overlays to highlight critical areas of the structure after analysis. Dynamic modes of vibration can be visualized using a combination of color rendering and QuickTime compatible animation. Analysis options include springs, prescribed displacements, factored load cases, automatic self weight and thermal loading. Comes complete with a database of common U.S. and international structural shapes. The program was introduced this year.

Section Maker helps an engineer to quickly design and calculate the properties of custom shapes. It supports circular, rectangular or polygonal shapes and solid or hollow sections. The program allows voids and composite sections and provides automatic generation of I,C,T,L, box, tubular and circular shapes. The program was upgraded in May 1994.

Steel Designer optimizes a structure in accordance with the applicable codes and standards. It displays moments, shear, deflection and axial forces and allows the use of forces or stresses. Either English or metric units can be specified and ASD, CISC, AS1250 & BS449 code checks are available, with LRFD planned for the future. The program was last upgraded in May 1994.

Price: Multiframe 3D costs $1,495; Multiframe 4D costs $1,995; Section Maker costs $395; Steel Designer costs $695

For information, circle no. 87

PROGRAM: VISUALANALYSIS & ANALYSISGROUP
Type: VisualAnalysis is a finite element analysis program; AnalysisGroup is a suite of structural analysis tools
Company: Integrated Engineering Software
Address: 8840 Chapman Road
Bozeman, MT 59715
Phone: 406/586-8988
Fax: 406/586-9151
Info: VisualAnalysis V1.0 is a full featured finite element analysis package designed specifically for structural engineers. It supports a complete array of structure types including 2D and 3D trusses and frames. A compact set of element types provides for a wide range of modeling problems: 1 node spring elements; 2 node

2D and 3D Finite Element Structural Analysis Program

A new generation of engineering software is now available for structural engineers. Avansse V2.0 is an intuitive and TRULY interactive program with its strengths in simplicity and ease of use. All functions for editing, analysis, graphics, post-processing, etc., have been integrated into one single program that allows you to enter the data, solve your structure, see the results graphically and numerically, change the data and solve again without ever leaving the Avansse program. Spreadsheets for data entry and full featured graphics are combined in a way that is unmatched by any other program.

At $250 Avansse is not only an unbelievable bargain, but it also gives you a flexibility that you won’t find elsewhere. Advanced structural design features are available in Avansse modules at prices up to $850. In addition, Avansse not only writes but also reads .DXF-files for/from CAD systems.

Request you FREE Avansse demo diskette plus brochure by calling a toll-free number: 800-200-6565 and test drive Avansse.

For program information call technical support at 805-259-6902 or FAX your questions to 805-255-7432. North American Distributor: EBBS, 25439 Via Nautica, Valencia, California 91355.

Please circle # 48
beam or truss elements; and 3 or 4 node plate/shell elements. There are no fixed limits on model size or loads. Loadings include both static and dynamic. Analysis includes static linear, dynamic mode shape, and response spectrum. The program, which utilizes LRFD load factors, was introduced in May 1994.

AnalysisGroup is a set of six tools for the solution of most common structural analysis problems. These tools are built on finite element methods and include the following analyses: rectangular plates; continuous beams; beams on elastic foundations; rectangular mat footings; circular tanks; and shear walls. The program was upgraded in May 1994.

Price: $295 introductory price for each

For information, circle no. 88

PROGRAM: (WIDE VARIETY OFFERED—SEE BELOW)
Type: 2D/3D steel frame—beams, columns, base plates, trusses, etc.
Company: Intrasoft, Inc.
Address: 555 South Federal Hwy., Ste. 220
Boca Raton, FL 33432
Phone: 800/783-6285
Fax: 407/391-8614
Info: This successor firm to Structural Analysis, Inc. (SAI) offers a large number of programs for structural analysis and steel design (utilizing ASD—9th Edition). Programs include: BASEPL (base plates); BEAM; BEAMANAL (single span beam analysis); BEAMCOL (combined compression and bending design); BOLTGRP (bolt group analysis); COLOAD (column loading analysis); COMPBM (composite steel beam design); CONTBEAM (continuous beam analysis); DYNAM (fundamental frequency of structures); IDTRUSS (indeterminate truss analysis); MICROSPACE (space frame and truss design); MODREACT (steel beam reaction database manager); P-DELTA (steel frame/shearwall interaction analysis); PIPE (steel pipe column section design); PIPECOL (multistory steel pipe column design); PLANE (plane frame analysis); PLANEST (steel plane frame/truss analysis and design); SEISMIC (seismic loading computation); SPACE (space frame and truss analysis); STEEL (steel frame analysis and design); STEELBM (steel beam analysis and design); STEELCOL (steel WF column design); STLCOLEX (multistory steel WF column design); STLCOLX (steel member investigation or design); SUPERPLANE (planar frame and truss analysis); TRUSS (steel truss

FLOORVIB

an expert system for FLOOR VIBRATION ANALYSIS

Developed by
Thomas M. Murray, Phd, PE
Souhaïl Elhouria, Phd

*PC-Based. On line expert advice.
*Joist, beam or built-up member framing.
*Choose from six tolerance including one for rhythmic activities.
*Complete user's manual with examples and tutorial.
*Far exceeds the capability of other floor vibration software.

To order send P.O. check, or credit card info. for $250 plus $10 S&H to:
Structural Engineers, Inc.
637 Wisteria Drive
Radford, VA 24141
Fax 703-639-0713
Voice 703-731-3330

Name: ____________________________
Company: ________________________
Address: _________________________
Phone: ___________________________
Credit Card: Visa Mastercard
No. ____________________________ Expiration ______

Please circle # 93

INTEGRATED ANALYSIS, DESIGN AND DRAFTING OF STEEL BUILDINGS

Ram Analysis
5315 Avenida Encinas,
Suite M, Carlsbad, CA 92008
Tel 800-726-7789
Fax 619-431-5214

Please circle # 41
analysis and design; TUBE (steel tube column section design); TUBECOL (multistory steel tube column design); WIND (wind forces on structures); and a variety of graphics utilities for its other programs.

Price: $60 - $800

For information, circle no. 89

PROGRAM: COMPBM
Type: Composite steel beam design & investigation
Company: Johnson Engineering Systems
Address: 43 East Ohio St., Ste. 906
Chicago, IL 60611-2744
Phone: 312/467-4700
Fax: 312/467-4771
Info: COMPBM is an interactive, DOS-based program for the design and investigation of simple span composite steel beams in accordance with AISI (1978, 1989 ASD and 1986 LRFD) Specifications. In Design Mode, the program finds several acceptable sections within specified depth limits and displays them in a list sorted by cost, or depth and weight. In Investigation Mode, the program investigates a beam span with a specific steel section and specified shear connector quantity and spacing, including non-uniform spacing on girders. It also can investigate sections with a bottom flange cover plate, which may be installed initially or “retrofitted” as reinforcing. In Section Property Mode, the program will compute composite section properties at 25, 50, 75, or 100% composite (it also can design or investigate simple span, fully braced, non-composite beams). Beams may be standard rolled shapes or custom non-symmetric hybrid plate girders. Beam span analysis is performed for up to 20 loads. Loads categories consist of initial dead load, composite dead load and live load. Load types include uniform, partial uniform, concentrated and trapezoidal. Deflection criteria may be specified as a dimension and/or as a fraction of the span length. The program was last updated in November 1993. A free demonstration is available (limited to 32.5-ft. span lengths).

Price: $495

For information, circle no. 90

PROGRAM: MDX CURVED AND STRAIGHT STEEL BRIDGE GIRDER DESIGN
Type: Curved and straight steel girder design
Company: MDX Software
Address: 1412 Ridgemont Court

For the BEST in Bridge Software...

DESCUS-PLUS

Design of Curved Girder Bridges
NEW FEATURES:
- Live Load Distribution - Automatic (Longitudinal & Transverse)
- Mesh Generation - Automatic
- Rating - Auto Rating Factors
- Influence Line Output
 (From Influence Surfaces)
- Metric Conversion
- Uses AASHTO 15th Edition
- Lease or License
- Timesharing

MERLIN DASH

Design & Analysis of Steel Girder Bridges
- AASHTO - Uses New 15th Ed.
- FHWA - Endorsed and Used by
- DOT's - Used by 30 States
- Design - Cost Optimized
- Friendly - Menu-Driven Input
- Graphics Display of Output
- Output Report Selection
- Quality and Performance

TRAP

Tress Rating and Analysis Program
- Continuous to 6-spans
- Prestressed Trusses
- Cable Members
- Design & Rehab.
- AASHTO and LL
- Vehicles to 20 Axles
- Auto. computation Inv.
- Operating & Posting Load

Available Exclusively Thru:

OPTI-MATE, INC.
P.O. Box 9097, Dept A, Bethlehem, PA 18018
(610) 867-4077

Curved and Straight Steel Bridge Girder Design and Analysis

Integrated Grid Analysis & Girder Design
in English or Metric on your PC
- Complex grid and roadway geometries, plate and box girders, rolled shapes
- Influence surface (grid or influence line approach (grid or line girder))
- Powerful nonprismatic girder optimization processing (curved and straight)

Available by lease or license
For more information, or a 30-day trial, contact:

MDX software
Phone (314) 446-3221
Fax (314) 446-3278

Demo version available. Call for details!

Please circle # 53

For the BEST in Bridge Software...

DESCUS-PLUS

Design of Curved Girder Bridges
NEW FEATURES:
- Live Load Distribution - Automatic (Longitudinal & Transverse)
- Mesh Generation - Automatic
- Rating - Auto Rating Factors
- Influence Line Output
 (From Influence Surfaces)
- Metric Conversion
- Uses AASHTO 15th Edition
- Lease or License
- Timesharing

MERLIN DASH

Design & Analysis of Steel Girder Bridges
- AASHTO - Uses New 15th Ed.
- FHWA - Endorsed and Used by
- DOT's - Used by 30 States
- Design - Cost Optimized
- Friendly - Menu-Driven Input
- Graphics Display of Output
- Output Report Selection
- Quality and Performance

TRAP

Tress Rating and Analysis Program
- Continuous to 6-spans
- Prestressed Trusses
- Cable Members
- Design & Rehab.
- AASHTO and LL
- Vehicles to 20 Axles
- Auto. computation Inv.
- Operating & Posting Load

Available Exclusively Thru:

OPTI-MATE, INC.
P.O. Box 9097, Dept A, Bethlehem, PA 18018
(610) 867-4077

Curved and Straight Steel Bridge Girder Design and Analysis

Integrated Grid Analysis & Girder Design
in English or Metric on your PC
- Complex grid and roadway geometries, plate and box girders, rolled shapes
- Influence surface (grid or influence line approach (grid or line girder))
- Powerful nonprismatic girder optimization processing (curved and straight)

Available by lease or license
For more information, or a 30-day trial, contact:

MDX software
Phone (314) 446-3221
Fax (314) 446-3278

Demo version available. Call for details!

Please circle # 53
MDX features: curved and straight steel bridge girder design and analysis; complex grid and roadway geometry; compliance with 1992 AASHTO Specification, including 1993 Interims and 1993 Curved Girder Guide Specification; I girders, box girders, and rolled shape, including web haunches, stiffeners and cover plates; composite action control and fatigue control; influence surface generation and lane loading (grid) or influence line approach (grid and line girder); allowable stress design or load factor design; and construction staging. The program was upgraded in March 1994 and now includes metric units, including a conversion capability.

Price: $2,000 - $6,000
For information, circle no. 47

ROBOT V6 is a fully integrated graphical system for structural analysis and design using both ASD and LRFD. It features a fully integrated, efficient work environment using switchable icon or text type menus. The program provides: linear and nonlinear static analysis; linear and nonlinear buckling; P-delta and dynamic analysis; and sophisticated moving load generation. The program can handle up to 32,500 nodes (196,000 degrees of freedom). Display includes: geometry; structural shapes; loading; deflected shape; force diagrams; and global charts. It interfaces with CAD programs through DXF files. A new feature is a built-in interface to AISC's connection design program, CONXPRT. The program was last updated in May 1994.

Price: $495 - $8,070
For information, circle no. 51

ROBOT V6 and AnalysisGroup™—two valuable tools from IES.

Introducing VisualAnalysis™ and AnalysisGroup™—two valuable tools from IES.

VisualAnalysis for those daily analysis jobs. 3D Finite Element Analysis, Interactive MS-Windows Interface, Static, Modal, Response Spectrum Analyses.

AnalysisGroup for those specialized analysis tasks. Rectangular Plates, Continuous Beams, Beams on Elastic Foundations, Mat Footings, Circular Tanks, Shear Wall Rigidity Analyses.

VisualAnalysis for Windows® - $295
AnalysisGroup for DOS® or Windows - $295
Call today for free brochure and demo disk.

1-800-707-0816
Integrated Engineering Software
8840 Chapman Rd • Bozeman, MT 59715
All trademarks are the property of their owners.

Get Your Details In Shape(s)!

Save time doing detail drawings and have AISC shapes drawn at your command.

AISC for AutoCAD will draw the end, elevation, and plan views of W, S, M, and HP shapes, American Standard Channels (C), Miscellaneous Channels (MC), Structural Tees cut from W, M, and S shapes (WT, MT, ST), Single and Double Angles, Structural Tubing, and Pipe. Shapes are drawn to full scale corresponding to data published in Part 1 of the AISC Manuals of Steel Construction. U.S. or Metric units may be selected.

AISC for AutoCAD V. 2.0 runs in AutoCAD R.12 only; V1.0 runs in AutoCAD R10 & R11.

$120

Contact: AISC Software
Phone —312/670-2400
Fax—312/670-5403
CIRCLE NO. 1
RAMSTEEL is special-purpose structural engineering software for the analysis, design and drafting of steel-framed buildings. It provides an advanced level of design capability for the gravity load-resisting elements within a structure. New for V4.0 are numerous modeling features, including enhancements for beam layout and point load layout. Scaleable text on floor maps showing beam sizes, composite studs, camber and reactions is now available. The size limitations have been doubled and the DXF format CAD drawing capabilities have been enhanced to include even more user control over the drawing parameters. Also, new enhancements facilitate connection design, including an interface to the AISC CONXPR software.

RAMSBEAM software is a single steel/steel composite beam program utilizing a Windows graphical interface. Features include: ASD or LRFD; permits virtually any loading condition; checks existing framing or optimizes new framing in any steel grade; interactive trial designs; cantilever beams; partial or full composite; shore or unshored construction; shear, moment and deflection diagrams with numeric output at any point; composite stud spacing accounts for concentrated loads; depth restrictions are permitted; and a library of AISC shapes and a metal deck data base.

Price: RAMSTEEL: $3,500 & $750; RAMSBEAM: $100

For information, circle no. 34

STAAD-III/ISDS; AUTOSTAAD/MAX; STAAD-MATE

Type: Integrated structural analysis and design; analysis and design within AutoCAD; and design and analysis of structural components.

Company: Research Engineers, Inc.
Address: 22700 Savi Ranch Parkway
Phone: 714/974-2500
Fax: 714/974-4771

STAAD-III/ISDS addresses all aspects of structural engineering within a single software system. Analysis includes linear and non-linear 2D/3D static/dynamic/seismic/P-Delta, frame/plate/shell elements and all loading and support conditions. Design is per current American and international codes and specifications, including both ASD and LRFD. Extensive generation facilities are available, including moving loads (AASHTO and user provided), enhanced UBC seismic loads, wind loads, floor loads, response spectrum and time history loads. Graphics facilities include interactive model generation and elaborate verification capabilities.

AutoSTAAD/MAX offers all the features of STAAD-III/ISDS but runs entirely within AutoCAD. Interactive model generation capabilities include: copy, mirror, repeat commands, built-in steel shape libraries, and specification of loads, supports, shapes and section properties.

STAAD-MATE is a graphically interactive, fully menu-driven software for the design and analysis of structural components, including cantilever and continuous beams, single/multiple-bay portal frames, columns, retaining walls, footings, and slabs.

Price: $895 - $4,295

For information, circle no. 40

SDI FLOOR

Type: Design
Company: Steel Deck Institute
Address: P.O. Box 9506
Phone: 216/493-7886

For information, circle no. 44
SDI Floor is a set of expert system knowledge bases for the design of composite and non-composite bays, beams and girders using LRFD. Required input consists of bay size, material properties, uniform loadings, applicable building code for live load reductions, cost, deflection limitations and parameter ranges. Beam orientation in both bay directions along with beam spacing are considered in determining the most economical solution (typically, 10 designs are generated for each set of input data).

Price: $295

For information, circle no. 77

PROGRAM: FLOORVIB—FLOOR VIBRATION ANALYSIS

Type: Analysis of serviceability

Company: Structural Engineers Inc.

Address: 537 Wisteria Dr.

Phone: 315/471-0113

Fax: 315/471-8231

Info: FLOORVIB is a knowledge base for use with DESIGN ADVISOR, an expert system shell for structural engineers. The program provides vibration tolerance evaluation of steel member-concrete slab floor systems using the following six criteria: Murray (office/residential environments); Modified Reihner-Meister (office/residential); Wiss-Parmelee (office/residential); Canadian Standards Association (walking vibrations); Ellingwood & Tallin (commercial environments); and Allen (rhythmic). A complete final report is generated for each evaluation, including notes and warnings. The program was first introduced in December 1993.

Price: $250

For information, circle no. 93

PROGRAM: CBRIDGE/CB-DESIGN

Type: Straight or curved girder analysis and design

Company: Telos Technologies, Inc.

Address: 1201 E. Fayette St.

Phone: 315/471-0113

Fax: 315/471-8231

Info: The program performs a rigorous 3D analysis that determines all the forces and moments in every member of the structural system, including diaphragms and bracing. CBRIDGE's 3D modeling accurately determines the effects of skewed supports and complex geometry. A mouse-driven graphical interface allows rapid building and editing of a design model. The user is allowed to define any standard or specialized vehicle for the live load and the analysis automatically locates and applies loads at critical locations on a 3D surface. Dead loads are computed automatically from dimensional and unit weight data. The analysis incorporates context-sensitive on-line help, extensive input error trapping and customized reports. The design module generates iterative comparisons to AASHTO allowances for working stress or load factor design. A May 1993 update added: an analysis feature that allows simultaneous placement of multiple vehicle types; placement of specialized vehicles in critical lanes while standard vehicles occupy additional lanes; and user defined vehicles up to 30 axles are automatically positioned on an influence surface. Currently under development is a metric version.

Price: Lease for $450/month; purchase for $8,400

For information, circle no. 91

PROGRAM: STRUCAD*3D

Type: Structural analysis and design program

Company: Zentech

Address: 8582 Katy Freeway, Ste. 205

Phone: 713/984-9171

Fax: 713/984-9175

Info: STRUCAD*3D offers capacities of 6,000 joints, 12,000 members, 36,000 degrees of freedom, 200 basic and 200 combined load cases. The program features graphics preprocessing and postprocessing, a plotting module, static wave loading, soil structure interaction, wave dynamic response, joint analysis and design, detailed fatigue analysis, floatation and upending, and floating stability. The program generates the complete model geometry and loads in a 3D, CAD-style environment with: automatic joint mesh generation; joint X-brace, shifts, mirroring and scaling; line-plane intersection joints; projection of joints to a plane along selected direction; automatic generation of tubular intersection joints; wrapping and unwrapping of tubular sections and display of footprints; automatic joint renumbering; beam and plate generation, shifts, mirroring and scaling; partial, distributed and concentrated beam load generation; and computer generated wind loads in accordance with ASCE-7, API, and ABS. In addition, it calculates and displays: reactions, deflections and eigen vectors; member and plate forces and moments; member and plate stresses and unity checks; shear, moment, deflection, and unity check diagrams; and hidden line plots. The program was last updated in March 1994.

Price: $249 - $70,000

For information, circle no. 92
very easy to learn and use, become a productive user in just one day
extremely fast, shortens the concept through design cycle
most powerful on PC platform - 3D FEM, buckling, nonlinear, P-delta, dynamic,
3D moving loads, parametric structures, phase constructions, US and foreign codes
buy the power you need, starts from $495 version - 150 node/3D plus plate elements
easy payment plans for 1500 and 3250 node versions
no risk, 30 day money back guarantee
See for yourself. Have fun. Any questions? Call us. 1-800-60-ROBOT

Name: ____________________________ Company: ____________________________
Address: __________________________ State _______ Zip: ________________________
Tel.: ______________________________ Fax: ______________________________

I am: ☐ structural engineer, ☐ architect, ☐ educator, ☐ dealer, ☐ other:
☐ Please have a product specialist call me ☐ Please send more information
☐ Please send working demo version (limited to 20 elements and 30 nodes), with recorded macros of real design examples. Enclosed is a check for $25 (plus applicable Tax in NJ and NY). I have a system equal to or better than 386SX with math coprocessor, ☐ 4 MB ☐ 8 MB RAM, 25 MB of free disk space, VGA monitor.

Metrosoft, 332 Paterson Avenue, E. Rutherford, NJ 07073. Tel 201 438-4915, Fax 201 438-7058.
Help Wanted
Progressive and rapidly expanding Structural Steel Fabricator in Midwest is seeking motivated, aggressive individuals for Project Management. Minimum of 10 years structural steel industry experience required. Duties include comprehensive, hands-on project coordination, cost allocation, and problem resolution. Proficient oral and written communication skills essential. Commensurate compensation and excellent benefits. Send resume with salary history to: Construction Manager, P.O. Box 1066, Salina, KS 67402-1066.

AutoCAD Structural Menu System
AutoCAD structural screen/icon/table-menu system with quick access to hundreds of blocks and AutoLISP routines. Written for consulting engineers and CADD operators. ($395.00) You can spend more money, but for a price you can afford, StruCADD gives you productive tools you will use each and every day.

For free information, contact:
StruCADD
9250 Cypress Green Dr., Suite 202f, Jacksonville, FL 32256
Phone: (904) 636-5644 or Fax: (904) 636-6770

HEWLETT-PACKARD
Computers/Peripherals
A complete line of used and refurbished HP Equipment to fill all your computer needs. Laser printers, scanners, disk drives, plotters (Draftpro, Draftmaster & Designjet), PCs and 9000 series workstations are available for immediate delivery. Call our toll free number for additional information and pricing.

Ted Dasher & Associates
4117 2nd Avenue South
Birmingham, AL 35222
800-638-4832 fax (205) 591-1108

Computerized Structural Steel Detailing
Experienced Staff including licensed Professional Engineers with many years of detailing experience.
30 years of service to steel fabricators and contractors.

R.A. GRESS & ASSOCIATES
176 Planebrook Road, Frazier, PA 19355
(610) 644-3250
FAX (610) 889-4836

Structural Steel Detailing Service Inc.
P.O. Box 1004, Jacksonville, FL 32201
Providing fabricators throughout the U.S. with quality shop detail drawings for the past 29 years.
• Full computer detailing capabilities.
• Large staff of detailers for quick turnarounds.
• Competitive prices on any size structure.
• Specialist in heavy industrial work.
For information, references and/or quotations, call: 1-904-396-7921 or FAX 1-904-396-1066
Ask for Jim Bennett, President, or Santo Reda, Vice President

Expert Steel Photography
See our photos on pages 38 & 39 of the April 1994 issue
• 18 years architectural experience
• Parallel elevations rendered parallel
• 4" x 5" negatives used - no 35 mm
• Reasonable helicopter & aerial rates
Bill Schuemann Photography FAX (216) 321-7842
1591 S. Belvoir Blvd., Cleveland, OH (216) 382-4409

ROLLING
Beam-Angle-Tube-Pipe-Channel-Plate
Easy/Hardway Heavy Capacities
Up to 36" W.F. Beam
209-466-9707
N.J. McCutchen, Inc.
123 W. Sonora St., Stockton, CA 95203

Images—3D
2D-3D Structural/Finite Element Analysis
Easy to learn and use
Shear & Moment Diagrams
AISC Code Check
Large Problems to 3,000 Joints

Complete Static Package - Only $795
Celestial Software, 2150 Shattuck Ave., Suite 1200,
Berkeley, CA 94704
Tel: 510-843-0977 / Fax: 510-848-9849
Fifty-node fully function evaluation package for only $49.95

Structural & Miscellaneous Steel Detailing CAD Programs
AutoCAD parametric Lisp programs for preparing structural AND misc. steel shop drawings. Anchor bolts to roof opening frames and "everything between". Imperial and metric versions with USA, Canadian and European sections. 30 DAY MONEY BACK GUARANTEE. Discounts up to 30%. Buy only what you need. Used in the field for 6 years. Programs written by a detailer with 38 years experience. Extremely "flexible" programs. FREE telephone support. No maintenance fee. Reasonable yearly update fee. EXCELLENT PROGRAMS at a REASONABLE PRICE. Call for a FREE demo disk, list of programs, and prices.

SSDCP
110 Shady Oak Circle, Florence, MS 39073
Tel: 601/845-2146 (fax same)

Advertisers' Index

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page Number</th>
<th>Circle No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISC for AutoCAD</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>Bethlehem Steel Corp.</td>
<td>26-27</td>
<td>60</td>
</tr>
<tr>
<td>Nicholas J. Bouras</td>
<td>CII</td>
<td>63</td>
</tr>
<tr>
<td>CDS</td>
<td>29</td>
<td>63</td>
</tr>
<tr>
<td>CadVantage</td>
<td>34</td>
<td>45</td>
</tr>
<tr>
<td>Chaparral Steel</td>
<td>CBI</td>
<td>43</td>
</tr>
<tr>
<td>Chicago Metal Rolled</td>
<td>Insert</td>
<td>30</td>
</tr>
<tr>
<td>Computers & Structures, Inc.</td>
<td>CIV</td>
<td>31</td>
</tr>
<tr>
<td>Computer Detailing</td>
<td>31</td>
<td>69</td>
</tr>
<tr>
<td>CONXPR</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>Design Data</td>
<td>57</td>
<td>32</td>
</tr>
<tr>
<td>Dogwood Technologies</td>
<td>12</td>
<td>96</td>
</tr>
<tr>
<td>EBBS</td>
<td>43</td>
<td>49</td>
</tr>
<tr>
<td>EJE Industries</td>
<td>55</td>
<td>46</td>
</tr>
<tr>
<td>GT Strudl</td>
<td>40</td>
<td>71</td>
</tr>
<tr>
<td>Integrated Engineering Software</td>
<td>46</td>
<td>88</td>
</tr>
<tr>
<td>LRFD Manual of Steel Construction</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>MDS Software</td>
<td>45</td>
<td>47</td>
</tr>
<tr>
<td>Metrosift</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>Mound Architectural</td>
<td>12</td>
<td>97</td>
</tr>
<tr>
<td>Omnitech</td>
<td>43</td>
<td>52</td>
</tr>
<tr>
<td>Optimate</td>
<td>45</td>
<td>53</td>
</tr>
<tr>
<td>PC Simon</td>
<td>23</td>
<td>66</td>
</tr>
<tr>
<td>RAM Analysis</td>
<td>44</td>
<td>41</td>
</tr>
<tr>
<td>Research Engineers</td>
<td>5</td>
<td>34</td>
</tr>
<tr>
<td>RISA</td>
<td>11 & 41</td>
<td>40</td>
</tr>
<tr>
<td>St. Louis Screw & Bolt</td>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>Structural Engineers</td>
<td>44</td>
<td>93</td>
</tr>
<tr>
<td>Structural Software</td>
<td>13</td>
<td>42</td>
</tr>
<tr>
<td>TradeARBED</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>UNR Leavitt</td>
<td>14</td>
<td>79</td>
</tr>
<tr>
<td>Wasson High Tech Coatings</td>
<td>Insert</td>
<td>56</td>
</tr>
<tr>
<td>Max Weiss</td>
<td>37</td>
<td>50</td>
</tr>
<tr>
<td>Whitelab</td>
<td>31</td>
<td>55</td>
</tr>
</tbody>
</table>
We designed our mill with the same convenience in mind.

When you’re in the market for steel, and you need it fast, you know there’s nothing convenient about waiting for a rolling schedule. Maybe it's time you switched from a rolling mill to a stocking mill: Chaparral.

Our $50-million on-site steel inventory is one of the largest in the world. It's so large, in fact, that we can fill over 80% of our steel orders from stock — in two weeks or less. Special orders? Fast track jobs? We’ll process those within 72 hours. Even if your order changes, we’ll work with you to fill it as quickly as possible.

So what are you waiting for? Next time you’re shopping for steel, call Chaparral. You’ll always get the right steel...right away.

CHAPARRAL STEEL.

Toll Free (800) 527-7979 U.S. and Canada • Local (214) 775-8241
Fax (214) 775-6120 • 300 Ward Road, Midlothian, Texas 76065-9651
STATE OF THE ART

Structural Engineering Software

INTEGRATED ANALYSIS AND DESIGN SOFTWARE FOR TALL BUILDINGS

Developed by Ashraf Habibullah & Edward L. Wilson

CSI

For further information:
Computers & Structures, Inc.
1995 University Avenue
Berkeley, California 94704
TEL: 510/845-2177
FAX: 510/845-4096

ETABS®
Building Analysis & Design

SAP90®
General Analysis & Design

ETABS is a registered trademark of Computers & Structures, Inc.
SAP90 is a registered trademark of Computers & Structures, Inc.
© 1993 Computers & Structures, Inc.

Please circle # 31