Deck can be screwed to structural steel, bar joists, or light gage steel framing. The lowest strength was used to produce the tabulated values. For bar joists and structural steel, a tensile strength \(F_u \) of 58 ksi was used which is the lowest value for A36 steel. For gage supports, \(F_u = 45 \) ksi was used which is the lowest provided in ASTM A653 Structural Quality grade 33. Deck materials furnished in gages 24, 26 and 28 are usually grade 80 steels which use a tensile strength \(F_u \) of 60 ksi as limited by the AISI specifications. Either pull out of the screw or pullover of the deck will normally control.

The values are based on the equations provided by the AISI Specifications (1986 with addenda). These specifications call for a safety factor of 3 to be applied to the table values. However, for temporary wind loads, a one third load increase is appropriate.

If it is known that the tensile strength of the support steel or the sheet steel is greater than the values used for the tables, the tabulated ultimate strengths may be increased by a straight line ratio.

Uplift Values for SCREWED DECK

<table>
<thead>
<tr>
<th>Screw Size</th>
<th>d dia.</th>
<th>dW nom. head dia.</th>
<th>Average tested tensile strength, kips</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10</td>
<td>0.190</td>
<td>0.415 or 0.400</td>
<td>2.56</td>
</tr>
<tr>
<td>#12</td>
<td>0.210</td>
<td>0.430 or 0.400</td>
<td>3.62</td>
</tr>
<tr>
<td>1/4</td>
<td>0.250</td>
<td>0.480 or 0.520</td>
<td>4.81</td>
</tr>
</tbody>
</table>

Pull Over Strength, kips

\[
P_{rov} = 1.5 t d W F_u; \quad d W < 0.50" \]

<table>
<thead>
<tr>
<th>Washer or head, (d_w)</th>
<th>16 ga.</th>
<th>18 ga.</th>
<th>20 ga.</th>
<th>22 ga.</th>
<th>24 ga.</th>
<th>26 ga.</th>
<th>28 ga.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.400</td>
<td>1.66</td>
<td>1.28</td>
<td>0.97</td>
<td>0.80</td>
<td>0.76</td>
<td>0.64</td>
<td>0.54</td>
</tr>
<tr>
<td>0.450</td>
<td>1.66</td>
<td>1.28</td>
<td>1.00</td>
<td>0.82</td>
<td>0.79</td>
<td>0.67</td>
<td>0.56</td>
</tr>
<tr>
<td>0.500</td>
<td>1.54</td>
<td>1.06</td>
<td>0.96</td>
<td>0.89</td>
<td>0.84</td>
<td>0.72</td>
<td>0.64</td>
</tr>
<tr>
<td>0.500(0.500)</td>
<td>2.02</td>
<td>1.60</td>
<td>1.20</td>
<td>1.10</td>
<td>1.06</td>
<td>0.81</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Key

- \(F_u = 60 \) ksi
- \(F_u = 45 \) ksi
- \(F_u = 58 \) ksi

Pull Out Strength, kips

\[
P_{not} = 0.85 t_2 d W F_u; \quad \text{Metal thickness} = t_2 \]

<table>
<thead>
<tr>
<th>Screw Size</th>
<th>1/4"</th>
<th>3/8"</th>
<th>10 ga.</th>
<th>12 ga.</th>
<th>10 ga.</th>
<th>12 ga.</th>
<th>16 ga.</th>
<th>18 ga.</th>
<th>20 ga.</th>
<th>22 ga.</th>
</tr>
</thead>
<tbody>
<tr>
<td>#10</td>
<td>2.34</td>
<td>1.76</td>
<td>0.96</td>
<td>1.17</td>
<td>0.76</td>
<td>0.56</td>
<td>0.44</td>
<td>0.35</td>
<td>0.26</td>
<td>0.22</td>
</tr>
<tr>
<td>#12</td>
<td>2.66</td>
<td>2.00</td>
<td>1.29</td>
<td>1.33</td>
<td>0.67</td>
<td>0.62</td>
<td>0.50</td>
<td>0.38</td>
<td>0.29</td>
<td>0.24</td>
</tr>
<tr>
<td>1/4</td>
<td>3.05</td>
<td>2.31</td>
<td>1.29</td>
<td>1.54</td>
<td>1.00</td>
<td>0.72</td>
<td>0.57</td>
<td>0.45</td>
<td>0.34</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Note: In our Metric catalog "Steel Decks for Floors and Roofs", the tables on pages 33 and 35 are in the wrong place. Contact us for the needed corrections or contact us for a copy of the corrected publication.
Grades 50 and 65.

WIDE FLANGE & TAILOR-MADE BEAMS

- High Strength, Low Carbon, Fine Grain, Weldable Without Preheating & Good Ductility.
- Reduces Material, Handling, Transportation, Erection & Welding Costs.
- Sectional properties are available on a free floppy disc (Lotus 1-2-3, Quattro Pro and ASCII versions for IBM, Excel for Macintosh) and the complete ARBED database is ready to use in the design softwares GTSTRUDL, ETABS, SAP90 AND STAAD-III.

TRUSS APPLICATIONS

- Sports Arenas/Stadiums
- Airports (Hangars/Terminals)
- Convention Centers
- Gymnasiums
- Shopping Malls
- Casinos

COLUMN APPLICATIONS

All of the above PLUS:

- High-Rise Buildings
- Hospitals
- Heavy Industrial Plants
- Power Plants

HISTAR® is a registered trade-mark of ARBED.

For complete information, availability, literature and floppy disc, contact one of our Trade ARBED offices at the following locations:

- 60 E. Sir Francis Drake Blvd., Larkspur, CA 94939. (415) 925-0100, FAX (415) 461-1624/8257.
- 390 Brant Street, Suite 300, Burlington, Ontario, Canada L7R 4J4. (905) 634-1400, Fax (905) 634-3536.

Please circle # 35
FEATURES

1995 NATIONAL STEEL CONSTRUCTION CONFERENCE

16 DESIGNING PETROCHEMICAL FACILITIES IN STEEL
Ease and speed of construction are important factors in the emergence of steel for petrochemical plants.

22 SIMPLE FRAMING CONNECTIONS TO HSS COLUMNS
A wide variety of connections can be used with HSS columns that are not classified as thin-walled.

30 STEEL ERECTION AWARENESS
Simple steps a design engineer can take to make an erector's life safer and simpler.

36 TESTING CONNECTIONS
An overview of the AISC Northridge Moment Connection Test Program.

46 STEEL MOMENT RESISTING FRAMES AFTER NORTHRIDGE
Statistics on Northridge damage point to the need for probabilistic approaches to evaluation and design.

DEPARTMENTS

6 EDITORIAL

9 STEEL INTERCHANGE
- Limitations on span-to-depth ratios of beams
- Criteria for designing "Not Structural Steel"
- Dimensioning of cotter pins
- Analyzing columns for governing i/r ratios to calculate F_n

12 STEEL NEWS
- 1995 Structural Steel Seminars

56 NATIONAL STEEL CONSTRUCTION EXHIBITORS

65 STEEL MARKETPLACE

66 ADVERTISERS INDEX
Welcome to tomorrow in Computerized Structural Engineering. The latest release of STAAD-III, based on the principles of "Concurrent Engineering", is redefining the way you engineer your structure. Whether you are on DOS, WINDOW, UNIX, or NT, STAAD-III is guaranteed to enhance the performance and productivity to a whole new level.

Today's STAAD-III brings you the latest in modern Computer Aided Engineering. Based on the principles of "concurrent engineering", it unifies leading-edge graphics and visualization techniques with proven and time tested analysis/design. A live and unified associative data base provides seamless integration across all mission critical applications, from concept design and analysis to detail design, simulation and visualizations. Today's STAAD-III - a productivity concept for tomorrow.

With over 10,000 installations, more than 30,000 engineers worldwide rely on STAAD-III for the state-of-the-art in technology.

Experience tomorrow today - experience STAAD-III
Check The Mill Reports

If you’re an engineer who regularly designs with A36 steel, you should be aware that not all Grade 36 steels are created equal. The technology used today to produce structural steel shapes is developing strengths similar to that found in A572 Grade 50, even in A36 steels. Due to these yield strengths, the industry is moving toward a new steel standard for building design that will have a 50 ksi yield rather than today’s 36 ksi yield.

While this may be somewhat confusing, help is on the way. AISC’s 1995 lecture series, “Advances In Structural Steel”, will discuss the new 50 ksi yield strength steel designed to replace ASTM A36 as the industry base standard. The seminar will answer engineer’s questions about this new material’s effect on design and construction, including minimum and maximum material strength, ductility and economic considerations.

In addition, the seminar will provide practical information on designing in LRFD. Yes, I know a lot of you are probably tired of reading about how wonderful LRFD is. But regardless of how hesitant you are to switch from ASD, LRFD is the preferred steel specification. This seminar is designed to present straightforward, basic procedures for designing members and connections in LRFD.

Perhaps the best part of the seminar, however, will be a presentation on the most commonly asked questions to AISC’s staff engineers. There’ll be lots of good information on bolting, bracing, coatings, and connection design in general. Discussion will be encouraged, so show up with some questions in mind.

Finally, the seminar will include the latest information gleaned from research after the Northridge Earthquake. Seismic design is not for the west coast only; the Northeast has strict seismic guidelines and much of the midwest sits all-too-close to the New Madrid fault.

For information on when the seminar series will be in your area, see pages 12-13. SM
How to get from here to here.

Design Data's SDS/2 Steel Fabrication System.

SDS/2 gives you the flexibility to integrate all aspects of your business with one software system. That concept is called Information Management. Each module by itself will save you time and money and by combining products to implement Information Management you receive more than twice the benefit in savings and productivity. So whether you need one SDS/2 software module or all these tools working together, Design Data can provide the most productive system for you.

For more information about SDS/2, information management in the steel industry or future product demonstrations call 800-443-0782.

Please circle # 32
Creating a masterpiece requires more talent than just welding commodity products!

At Canam Steel Corporation, everything is possible, even carving a masterpiece. This commitment to supply joists, joist girders and specialty products to projects like the Boston Garden or Target requires more talent than just welding commodity products. Our engineering team can propose different solutions to reduce your erection costs.

By acting as a partner or by performing subcontract work, Canam Steel Corporation can assist you at any stage of a project. We have the capability and experience to do everything to guarantee you complete satisfaction and on-time delivery. That’s why Canam Steel Corporation is the Fabricators’ fabricator.

Boston Garden, Boston (Mass)

Target, Oconomowoc (WI)
Steel Interchange is an open forum for Modern Steel Construction readers to exchange useful and practical professional ideas and information on all phases of steel building and bridge construction. Opinions and suggestions are welcome on any subject covered in this magazine. If you have a question or problem that your fellow readers might help you to solve, please forward it to Modern Steel Construction. At the same time, feel free to respond to any of the questions that you have read here. Please send them to:

Steel Interchange
Modern Steel Construction
One East Wacker Dr., Suite 3100
Chicago, IL 60601-2001

The following responses from previous Steel Interchange columns have been received:

Are there any limitations on the span to depth ratio of beams required by AISC Specification for Structural Steel Buildings?

One guideline that is given by AISC can be found in the Allowable Stress Design Specification Commentary for Section L3.1, which deals with serviceability design considerations. The commentary states the following:

"Although deflection, rather than stress, is sometimes the criterion of satisfactory designs, there is no single scale by which the limit of tolerable deflection can be defined. Where limitations on flexibility are desirable, they are often dictated by the nature of collateral building components, such as plastered walls and ceilings, rather than by considerations of human comfort and safety. The admissible amount of movement varies with the type of component. The most satisfactory solution must rest upon the sound judgement of qualified engineers. As a guide, the following rules are suggested:

1. The depth of fully stressed beams and girders in floors should, if practicable, be not less than (F/800) times the span. If members of less depth are used, the unit stress in bending should be decreased in the same ratio as the depth is decreased from that recommended above.

2. The depth of fully stressed roof purlins should, if practicable, be not less than (F/1000) times the span, except in the case of flat roofs."

Although these are only suggested guidelines and not strict limitations, they offer some useful assistance to the question.

Mark D. Hartle, P.E.
Pruitt Eberly Stone, Inc.
Atlanta, GA

Answers and/or questions should be typewritten and double-spaced. Submittals that have been prepared by word-processing are appreciated on computer diskette (either as a Wordperfect file or in ASCII format).

The opinions expressed in Steel Interchange do not necessarily represent an official position of the American Institute of Steel Construction, Inc. and have not been reviewed. It is recognized that the design of structures is within the scope and expertise of a competent licensed structural engineer, architect or other licensed professional for the application of principals to a particular structure.

Information on ordering AISC publications mentioned in this article can be obtained by calling AISC at 312/670-2400 ext. 433.

What criteria is used to design "NOT STRUCTURAL STEEL" members such as stairs, catwalks, handrail, and toeplates?

For those "NOT STRUCTURAL STEEL" member design concerns, the designer can use either the certified engineering data and material specifications from the individual metal manufacturer/supplier or the Metal Stairs Manual, Pipe railing Manual, Catwalks Manual, and so on, published by the National Association of Architectural Metal Manufacturers (NAAMM) in addition to the local building codes.

As regard to the load criteria, the building code shall cover the minimum design loads for each subject item, for example 1991 Uniform Building Code, Table 23-A and 23-B.

Kunning Guo, P.E.
HCI Steel Building Systems, Inc.
Arlington, WA

The Manual of Steel Construction includes many items that are used along with structural steel frames, this is very convenient for structural engineers. However, some of the tables do not provide all of the information needed by engineers. One of the tables that AISC includes covers the dimensioning of cotter pins. What is the strength of cotter pins listed in the Manual of Steel Construction? Where can these items be obtained?

Cotter pins are commonly constructed of type AISI 1010 low carbon steel or type 302 stainless steel. Dimensions of the pins and the recommended hole size are covered by ANSI Standard B18.8.1. Dimensions are also tabulated in various machine design books such as Machinery's Handbook. Knowing the dimensions and the material (low carbon steel or stainless
Steel Interchange

steel) one can calculate the shear strength of cotter pins. Cotter pins are manufactured and sold by numerous companies. Local distributors are usually found in the Yellow pages under "Fasteners" or "Bolts and Nuts". Usually distributors of slotted nuts, clevises and similar hardware sell cotter pins even though their Yellow page advertisement may not say so. Manufacturers are listed in the Thomas Register under "Cotter Pins" and "Pins: Cotter". Machinery's Handbook and the Thomas Register can be found in many public or college libraries.

Doug Werner
Douglas Engineering
Westminster, CO

In a partially cover-plated column, how would you analyze the column for governing l/r ratio to calculate F? In the 1st Quarter 1979 AISC Engineering Journal, an article with an approximate method is put forward dealing with this question. It requires the calculation of the Euler buckling load of the entire column by some process, typically numerical, and the identification of the most highly stressed segment due to the axial load. Although the column will buckle as a whole, the most highly stressed segment can be used to find an effective K/I/r leading to an allowable axial load for the entire column. Allowable stresses for all segments will follow.

C. P. Mangelsdorf
University of Pittsburgh
Pittsburgh, PA

New Questions

Listed below are questions that we would like the readers to answer or discuss.

If you have an answer or suggestion please send it to the Steel Interchange Editor, Modern Steel Construction, One East Wacker Dr., Suite 3100, Chicago, IL 60601-2001.

Questions and responses will be printed in future editions of Steel Interchange. Also, if you have a question or problem that readers might help solve, send these to the Steel Interchange Editor.

For a continuous trolley beam with multi-
If you think zinc is only a vitamin supplement, think again.

Much more zinc is used to protect steel structures against corrosion.

"Today" hot dip galvanizing is a proven, cost effective reliable application to provide cathodic protection for decades on structural steel, fasteners, rail, material handling, bridges, scaffolding...

Always a step ahead, we installed the first 8'6" deep galvanizing kettle in the United States. This allows us to produce a high quality product, and to galvanize fabricated structures up to 16' high by 45' long.

What about a hot dip galvanized 1/4" bolt. We can do it because we operate the only "High Temperature" kettle for centrifuge work.

Count on our experience with painting over galvanizing. We offer the one source "Duplex System".

Our freight service operates company-owned trucks and trailers, and if needed, will arrange shipping with reliable haulers.

With over 100 years experience, 4 U.S. locations, and over 30 plants worldwide, the group of Voigt & Schweitzer is your BEST source for hot dip galvanizing.

Voigt & Schweitzer means experience. We like sharing our experience with you, and are presenting educational seminars to professionals and fabricators on hot dip galvanizing.

Columbus Galvanizing
Voigt & Schweitzer, Inc.
Columbus, OH
(614) 443-4621

Voigt & Schweitzer
Galvanizers, Inc.
Redford, MI
(313) 535-2600

V&S Pilot Galvanizing
Poca, WV
(304) 755-2949

V&S Progalv
Muskogee, OK
(918) 683-5005

Member American Galvanizers Association, CSI, AIA, AISC, ASA. ASTM Spec/Military Spec 45208A qualified.
Finally, a 3-D detailing solution that will produce 100% of your work.

The future of steel fabrication is here. Steel Solutions introduces STRUCAD 2000—3-D detailing software that dispenses with manual drafting operations and results in productivity gains up to 5-to-1.

Developed specifically for steelwork, STRUCAD 2000 allows the user to interactively construct a 3-D wireframe model of a steel structure using a PC workstation. Connection types can be designated from an extensive library of standard connections or the user can easily create any non-standard detail at any location in the structure and save it to a library for reuse. Automatic clash detection eliminates error.

From the solid model, it is possible to produce all drawings and material lists completely automatically. STRUCAD 2000 automatically creates field erection drawings, shop detail drawings, fitting details, full-size templates, 3-D erection drawings, and CNC manufacturing data for a wide range of workshop machinery. Data downloads from STRUCAD 2000 directly to CNC machinery to ensure accurate and consistent results.

Integration between STRUCAD 2000's design and detailing data and the production control and management data of STEEL 2000 is seamless. Structures designed in STRUCAD 2000 will flow through all aspects of estimating, detailing, cutting, purchasing, receiving, production, shipping and erection with complete traceability. The estimated labor to produce any structure that is designed or detailed in STRUCAD 2000 can be printed from STEEL 2000 Estimate with a few keystrokes.

STRUCAD 2000 is interfaced to a large variety of other software packages including AutoCAD applications, STAAD-III from Research Engineers, Intergraph's Mica Plus Analysis and PDS, PDMS from Cadcentre, and PASCE from CE Automation, to name only a few.

Proven in production for six years, there are more than 400 STRUCAD systems installed throughout 22 countries. Now available in imperial units, Steel Solutions is pleased to market and support STRUCAD 2000 in the United States.

To facilitate use of this powerful tool in your plant, Steel Solutions offers a low-cost, five-day training course for your employees at our Training Center in Jackson, Mississippi. In addition, regular user group meetings at the Training Center will ensure that on-going requirements are constantly being integrated into STRUCAD 2000.

Call today to find out more about how STRUCAD 2000 can reduce your detailing costs and eliminate expensive manufacturing and site errors.
We designed our mill with the same convenience in mind.

When you’re in the market for steel, and you need it fast, you know there’s nothing convenient about waiting for a rolling schedule. Maybe it’s time you switched from a rolling mill to a stocking mill: Chaparral.

Our $50-million on-site steel inventory is one of the largest in the world. It’s so large, in fact, that we can fill over 80% of our steel orders from stock — in two weeks or less. Special orders? Fast track jobs? We’ll process those within 72 hours. Even if your order changes, we’ll work with you to fill it as quickly as possible.

So what are you waiting for? Next time you’re shopping for steel, call Chaparral. You’ll always get the right steel...right away.

Toll Free (800) 527-7979 U.S. and Canada • Local (214) 775-8241
Fax (214) 775-6120 • 300 Ward Road, Midlothian, Texas 76065-9651
The future of your bridge rides on the bearings you select.

When you think multi-rotational structural bearings, think Lubrite®. Lubrite self-lubricating bearings accommodate expansion, contraction and rotation of structural members without maintenance or supplementary lubrication. They also offer the highest degree of rotation available. The low profile design minimizes the need for elevation adjustments, a common problem with many bearings. And all bearings (Spherilube®, Radialube®, and flat plate) can be supplied in either standard Lubrite or Lubrite F, a 100% teflon-fiber mat offering a very low .03 coefficient of friction.

If you need design assistance, Lubrite's engineering staff is backed by more than 80 years experience in the self-lubricating bearing field as well as a 200,000 square foot manufacturing facility that facilitates production of completed assemblies and assures quick turnarounds. For additional information please call or write Merriman, 100 Industrial Park Road, Hingham, MA 02043.

(617) 749-5100 Telex 94-0246
FAX (617) 749-3560.

Please circle # 29

STEEL NEWS

FOCUSING ON PRACTICAL STEEL DESIGN

FROM DISCUSSIONS OF BOLT INSTALLATION TO THE DEVELOPMENT OF A NEW HIGH-STRENGTH STEEL, AISC's 1995 Seminar Series is designed to provide practical information for structural engineers, fabricators, and others involved in the steel construction industry.

"Fast moving developments in structural steel may have been difficult to absorb in the past, but now events are focusing and clarifying the issues," according to Robert F. Lorenz, P.E., AISC director of education and training. Accordingly, the 1995 seminar series will be divided into four areas: The New 50 ksi Steel; LRFD for the Practicing Engineer; Learning from Northridge; and Answers to the Most Commonly Asked Questions.

Work is currently underway for the development of a new 50 ksi yield strength steel specification that will replace ASTM A36 as the industry base standard. This new steel will be designed to improve performance with better defined strength and material limits. Part One of the AISC 1995 Steel Seminar is designed to answer engineers' and fabricators' questions about this new material's effect on design and construction. Included will be a discussion of minimum and maximum material strength, ductility and economies. "The shift to the 50 ksi base material as the preferred material is intended to simplify and improve design practice," according to Lorenz.

Part Two of the 1995 Steel Seminar will focus on simple, straightforward procedures for designing members and connections with the 1994, 2nd Edition LRFD Manual of Steel Construction. A recent Gallup survey commissioned by AISC revealed that most engineers acknowledge that LRFD is the Specifi-
cation of the future and that it is only a matter of time before most engineers switch from ASD to LRFD. Additionally, AISC has recently issued a position statement unequivocally reaffirming that LRFD is the preferred Specification for the fabricated structural steel industry. As an added bonus, attendees at the seminar will receive a copy of an LRFD design-aid software program.

Next up is a discussion of the lessons learned from steel performance during the Northridge Earthquake. Preliminary studies indicate that alternatives are available to avoid moment frame damage during a seismic event. This portion of the seminar will focus on these alternatives, as well as the latest research and code changes. In addition, a discussion of overstrength/redundancy in steel design will be presented. “Newly created research is aimed at sorting out the complexities of actual seismic performance,” Lorenz stressed.

Finally, the seminar concludes with a 45-minute presentation of answers to the most commonly asked questions received by AISC’s engineering staff. AISC’s staff engineers, in addition to their work on manuals, Specifications and other design aids, routinely field calls from practicing engineers, fabricators and erectors. The most common of these questions—dealing with such topics as bolt installation, painting, and tolerances—have been compiled. The seminar series is currently scheduled to reach 34 cities, beginning with Charlotte on June 20 and concluding with Orlando on November 30. Each seminar begins at 2:00 p.m. and ends at 8:15 p.m. Cost for the seminar, which has a CEU value of 0.45, is $120 ($90 for AISC members). The fee includes the lectures, numerous handouts, LRFD educational software, and dinner.

For more information, call AISC at 312/670-5420 or fax 312/670-5403.
Nucor-Yamato Steel is reshaping the way America sees construction. With an expanded mill that can supply more structural steel than any mill in the Western Hemisphere.

The Biggest Mill And not only more steel, but a broader product line with beams up to 40 inches deep. Perhaps best of all, we are a low cost producer. It all adds up to just one thing: talk to Nucor-Yamato before you decide to build your next project.

Availability With 1.6 million tons behind us, nothing can stop our availability and on-time delivery by rail or truck or barge on a wide range of products. In fact, we can offer high strength steel at little or no more cost than standard ASTM A36 beams.

Quality Nucor-Yamato is a state-of-the-art mill, including electric arc and ladle metallurgy furnaces, continuous beam blank casting and high performance rolling mills designed to produce stock and other lengths for all our customers. All our steel is low carbon and fine grain with superior toughness and surface quality that offers both weldability and improved corrosion resistance.

Low Cost Producer Perhaps best of all, it's produced cost effectively for some of the most competitive prices you'll ever see. And if you're in the construction business these days, that's a sight for sore eyes.

Contact Nucor-Yamato Steel early in your next project at 800/289-6977, FAX 501/763-9107; or write to us at PO Box 1228, Blytheville, Arkansas, 72316.

Structural shapes from W6 X 15 to W40 X 397

Standard sections including C15 X 33.9-50, MC 12 X 31-50, MC 13 X 31.8-50 and MC 18 X 42.7-58

H-Piling ranging from HP 8 X 36 to HP 14 X 117

Grades include ABS Grades A, B, AH32, AH36; ASTM A36; ASTM A572 Grade 50; ASTM A588 ("weathering steel"); ASTM A709 (AASHTO M270 equivalents); as well as CSA 40.21 Grade 44W

NUCOR-YAMATO STEEL COMPANY

Please circle # 39
Ease and speed of construction are important factors in the emergence of steel for petrochemical plants.

By Mehmet Tan, S.E.

Due to short schedules that increasingly include contractual incentives to finish work ahead of schedule, steel—with its faster speed of erection—is rapidly becoming the material of choice for petrochemical facility design. Depending on the construction schedule, labor costs, and site locations, petrochemical plant design typically utilizes one of two types of steel construction: conventional (or stick building) or modular.

Conventional Construction

Using conventional construction techniques, steel structures are erected and installed from the base to the top, supported on concrete foundations. Because of its versatility and design simplicity, conventional stick construction is the most common type of construction for petrochemical projects.

A typical refinery or petrochemical plant is comprised of one or more units. Each unit consists of several structures. In a plant, the steel structures commonly range from simple single-column pipe supports to more complex heavy structures supporting large reactors and vertical/horizontal vessels. The structures supporting reactors may be as tall as 200 ft.

Engineering of structures in refineries often requires consideration of non-traditional loading or operating conditions. In pipe support structures, for example, additional loads associated with the anchorage of pipes against thermal growth and friction forces have to be studied. Vibration limitations of structural systems supporting vibratory equipment (e.g., pumps, compressors, etc.) may also be a design consideration. To minimize overstress in the piping that runs from the structures to various equipment, a detailed study of the expected actual deflection of the structures due to the wind and seismic forces may be required. For seismic design purposes, the majority of the petrochemical and refinery structures are classified as non-building structures. The Uniform Building Code (UBC) provides special provisions for the design of these structures.

For comparison purposes, the cost of a typical refinery or petrochemical unit is in the range of one to two hundred million dollars. The amount of steel in such a facility can be on the order of 1,500 to 2,500 tons.

Modular Construction

Although the term "modular construction" has long been familiar in offshore construction (i.e., oil and gas production and process plants constructed in shallow and deep water ocean locations), this technique has become increasingly attractive for many projects involving construction of onshore, land-based facilities.

Modular construction is used when requested by the client in an effort to reduce field, manpower or construction time. The feasibility of using modular construction also can be evaluated by the engineer/contractor when looking at the potential benefits of modularization:
• cost savings
• schedule reduction
• reduced social and environmental impact
• improved labor relations
• reduced project risk
• improved quality control

Additionally, it may not always be economical or feasible to use conventional construction techniques. For example, the construction window for plants built on the Alaska North Slope is approximately three months. In such cases, it is advantageous to have most of the structures designed, fabricated and pre-assembled as modules prior to jobsite delivery.

In addition to reducing field construction time, modular construction will reduce the field manpower requirements. This is a benefit for projects facing either high labor costs or the unavailability of skilled craft labor near the construction site. Another means of reducing field labor is by utilizing a subassembly technique, whereby equipment, structure and piping can be prefabricated into larger blocks for final assembly at the jobsite. Modularization can be either full or partial, and it is important to recognize how much modularization will best benefit a particular project.

On a modular project, the first step is to determine the methods of transportation (land and sea), handling and placement of the modules. The location of the fabrication yard and the shipping routes can then be established. Typically, it is most economical if the fabricator is close to water to allow for shop assembly and immediate loading of sections onto barges. Inland fabricators, however, can still be utilized for modular construction. In that case, members are fabricated and shipped to a modularization yard where the steel members are assembled. It is common to have several fabricators working in conjunction in a modularized construction project to further speed deliveries.

The next step is to identify design loads, taking into account environmental conditions that affect the modules during shipment, handling and transportation to their final location. Because of the special loading conditions imposed on the modules, modularized structures generally require more steel than on-site stick construction. The additional steel usually is in the form of additional bracing members or stiffened/larger members that help maintain the integrity of the structure during transportation and installation. As a result, a heavier base frame may also be required.

Structural Framing Systems

The structures in refinery and petrochemical projects usually are designed as moment frames, braced frames or a combination of the two. Moment frames are mainly used in areas where access to the underside of the structure is required. Examples are structures with equipment underneath that require periodic maintenance inspection/ removal and structures built over access roads. In areas where access is not a problem, braced frames are commonly used.
Most refinery structures are open frame types (no siding). In platforms, the walking surfaces are either checkered plates or grating. Safety handrails are provided around the platform areas. Stairways or ladders, with or without cages, are used to access various platforms.

Connections

Beam-column moment connections are either bolted end plate type or full penetration welded. Shear tabs are commonly used for connection of the floor beams. For the heavy load-carrying members and members subjected to significant axial loads, double-angle standard AISC connections are used. High-strength bolts (bearing type) with washers are used throughout the structures (snug tightened). At the bolted beam-column moment connections and at the joints with bolts subjected to tension forces, bolts are fully tensioned.

Corrosion Control

Due to severe corrosive conditions in refineries and petrochemical facilities, all steel members in such plants—including connection bolts, checkered plates, grating, ladders, stairways and handrails—are either galvanized or painted. Until recently, it has been common to use painted steel in most refineries. The latest pricing comparisons, however, indicate that galvanizing is the relatively less expensive alternative, especially when considering the higher maintenance cost for painted steel compared with galvanized steel. Other factors that are taken into account when determining whether to galvanize or paint include the galvanizing capabilities of the fabricators in regards to the size of the steel members and the proximity of the galvanizer to the fabrication yard.

Fireproofing

In process areas of the refineries and petrochemical plants, most of the piping and equip-
Typical equipment access bridge

ment contains hydrocarbons, which are highly flammable. To limit damage due to fires in such areas, the structures supporting these pipes and equipment generally are fireproofed. For this purpose, concrete is commonly used as a fireproofing material. There also are some pre-mixed cementitious light-weight fireproofing materials, such as Fendolite and Pyrocrete, which may be used based on economic considerations. On the one hand, concrete permits attachment of small bore pipes and electrical cables to the fireproofing. On the other hand, Fendolite and Pyrocrete are lighter than concrete and their usage will result in the size and weight reductions for the steel members (an especially important consideration in high seismic zones).

In typical petrochemical applications, the fireproofing is not covered with wallboard or other architectural coverings, so the fireproofing must be of an exterior grade and consistent appearance becomes important.

STEEL PRICING

Because much of the work in petrochemical construction is executed in a design/build mode, the entire scope of the work is not known in the bidding process. When going out for bid, fabricators are typically provided with standard steel details, examples of typical structures and an estimated steel tonnage. However, the actual drawings are not available.

At the beginning of the project, when pricing is obtained, the fabricator is usually asked to bid a unit price for steel based on the items that have been supplied. The request for unit pricing is broken down into very specific detail, in several different categories of structural steel. These categories are then typically broken down into specific member weights. For example:

General — Structural steel with most detailing required for ladders, stairs, platforming, handrails, etc. Most equipment support structures are in this category. Also included are miscellaneous components and labor charges.

- light steel (0-20 lb./ft.), painted/galvanized
- medium steel (20.1-40 lb./ft.), painted/galvanized
- heavy steel (40.1-60 lb./ft.), painted/galvanized
- extra heavy steel (over 60 lb./ft.), painted/galvanized
- built-up sections, painted/galvanized
- ladders with cages & without

New Low Price!

LRFD on CD

for only **$375**

($500 for non-AISC members)

LRFD on CD is the entire 2nd Edition *LRFD Manual of Steel Construction* in an easily accessible electronic form. It uses the latest Hypertext technology to seamlessly link related sections of the manual together—click on "connections" in one part of the manual and quickly and easily find other sections dealing with that same subject.

As an added bonus, the CD also includes nearly 100 drawings (.dxf files) taken right from the manual that can be quickly copied into your AutoCAD or other CAD program.

To order your copy, call: 800/644-2400 or fax 312/733-3107

Modern Steel Construction / May 1995 / 19
Steel Bridge Design

Integrated Girder and Bracing Design
Complex grid and roadway geometries, I girders, box girders, rolled shapes
Influence surface (grid) or influence line approach (grid or line girder)
Powerful nonprismatic girder optimization processing (curved and straight)
1992 AASHTO SPEC, 1994 interim, 1993 CURVED GIRDER GUIDE SPEC

Demos and 30-day trials available

MDX software

Phone (314) 446-3221
Fax (314) 446-3278

MNH-SMRF™ Systems
A New Column and Beam Connection System For New
and Retrofit Construction

ADVANTAGES:
• Full scale test results far exceed
industry standards
• Uses fillet welds with no special
welding procedures specifications
• Reduces dependency on material
toughness properties

ELIMINATES:
• Full penetration welds and associated
UT testing and inspection
• Through thickness problems of column
flange and restrained pre-stressed
welds

"A Total Solution to the Steel Moment
Resisting Frame Connection Crisis"

FOR INFORMATION CALL:
1-800-475-2077

See us at NSCC

This article was condensed
from a paper to be delivered at
the National Steel Construction
Conference. Mehmet Tan, S.E., is
technical director for Fluor
Daniel, Inc., in Irvine, CA.
You do the thinking . . .
SteelModeler does the rest.

At last! A truly interactive modeling system designed for structural steel detailers.

SteelModeler is efficient, accurate, and highly productive.

SteelModeler lets you concentrate on producing a single 3D model, while it takes care of everything else.

You define your structure by selecting steel shapes from a comprehensive built-in database and make connections using your own custom library of macros. And as you work, SteelModeler ensures that all components fit.

There's no need to juggle drawings of plans, sections or components. SteelModeler automatically generates any view you want on the multi-window screen, and whenever you're ready, drawings, shop details and materials lists for the whole model or any section or part you require — all in a form customized by you to your specific standards.

Revisions or modifications? Simple. You change the model, and SteelModeler automatically revises all related drawings and lists to ensure total accuracy.

SteelModeler automatically generates the views, shop drawings and material lists you require.

You create a single model.

SteelModeler runs on standard PCs and Unix workstations. Versions available: MS-DOS; OS/2; Autocad; Windows 95 (summer)

For more information, contact: dcCAD; Tel: (416) 253-4848; Fax: (416) 253-4315; Toll-free: 1-800-776-4840

Please circle # 107

See us at Booths 408/410 at the National Steel Construction Conference in San Antonio
By Donald R. Sherman, Ph.D.

The use of square and rectangular hollow structural sections (HSS) as columns in buildings is booming. In addition to their aesthetic benefits, the shapes are extremely efficient as compression members. Connecting wide flange girders and beams to tubular columns, however, has presented some difficulties. Typically, designers have adapted many of the standard simple connections typically used with wide-flange columns, even though little data is available regarding their use with HSS columns. Two concerns with this approach are whether there is a limit state in the HSS that could govern the connection design or if local distortion of the HSS wall could reduce the column capacity.

Fortunately, recent research has examined the limit states considered in the AISC Manual of Steel Construction for connections and compared them with experimental capacities. This article discusses nine different types of simple framing connections: shear tabs; through-plates; double angles; tees with vertical fillet welds; tees with flare bevel groove welds; unstiffened seated connections; single angles with L-shaped fillet welds; single angles with two vertical fillet welds; and web end plates. In all but the web end plate, the connecting elements are welded to the HSS column and bolted to the web of the wide-flange beam, with the exception of the seat angle where the flange bears on the outstanding leg. For the web end plate, the plate is welded to the beam and bolted to the HSS column using a flow-drill process that produces a tapped hole that replaces a nut in blind connections.

For each connection potential limit states are discussed and evaluated. Strain measurements indicated the relative degree of distortion in the HSS wall and data is presented to verify that the connection producing the highest strain levels in compact HSS columns does not reduce the axial load capacity. Finally, the relative economics of the various types of connections are discussed.

Test Program

All of the connection tests used the same basic setup as shown in Figure 1. A short segment of HSS column is held vertical and the connected wide-flange beam that is simply supported at the far end is
loaded with a concentrated load at a distance b from the face of the HSS. By equating the relations for shear and end rotation between a uniformly loaded beam and the test beam with concentrated load, the length of a simulated uniformly loaded beam is obtained.

$$L_u = \sqrt{\frac{2}{\pi}} \sqrt{L_{beam}^2 - (L_{beam} - b)^2}$$

Two different beam sizes were used to provide information on both stiff and flexible beams. The flexible W12x87 had a length/depth ratio L_d of 23 while the W18x71 had L_d of 9.8. The former was used with three bolts in the web connection, while the latter used either three or five bolts.

Tension coupons were removed from all the various types and sizes of connecting elements. (The comprehensive report includes data on yield strength, ultimate strength and actual thickness of all connecting elements and HSS columns tested.) The stress-strain curves showed a flat yield except for Tee elements and HSS.

The symbols used to designate the specimens convey a great deal of information. The first digit in the symbols is used to designate the b/t of the HSS. The following letters indicate the type of connection (e.g., EP for end plate and DL for double angle). Next, a digit gives the number of bolts (three or five). Finally, a the F or S designates a Flexible or Stiff beam.

In several cases, the connecting material had a higher yield strength than expected in the planning stages. Therefore, most tests were terminated when the yield strength of the beam was reached. The relative vertical displacement between the face of the HSS column and the end of the beam was measured with a displacement transducer. This displacement was essentially shear and bearing distortion of the connecting element. For test loads reported in the tables that are followed by a + sign, the shear-distortion curves were still essentially linear at the maximum load, indicating that a ductile failure was not imminent. For other loads, the curves had flattened in a manner typical of approaching a ductile ultimate load. It should be noted, however, that all tests showed some sign of distress in the whitewash coating on the connection.

DOUBLE ANGLES

For the double angle connections, no eccentricity was considered in the nominal strength of the bolts or angles and the eccentricity for the welds was the in-plane type proposed by Omer Blodgett and used in the AISC connection manuals for many years. Except for the end plate, the double angle was the strongest connecting element tested. This was due to the combined thickness of the beam web legs of the angles. Theoretically, the welds dictated the connection strength and the test loads approached or exceeded the nominal weld strengths.

Slight cracking was observed in the whitewash at the ends of the webs in both tests. For the three bolt connection, the crack was on the weld, but for the five bolt connection, it was at the toe of the weld on the HSS face. In both tests, the most extensive yielding was on the HSS legs of the angles. In the three bolt connection, the top of the angles had separated about $\frac{3}{16}$ in. from the HSS, while the separation was on the order of $\frac{1}{16}$ in. for the five bolt connection. No gross distortion or other indication of failure in the HSS was observed.

TEE CONNECTIONS

The nominal capacity for all the Tee connections was determined by the shear strength of the bolts. These connections with welding at the edges of the Tee flanges are considered flexible in the AISC Manual of Steel Construction and eccentricity is considered in the bolts and direct shear in the welds. The test loads exceeded the nominal bolt capacities and were at the direct shear yield or shear fracture capacities of the stem. This corresponded with the extensive pattern of whitewash cracking observed on the stems. In tests 36TV3S and 16TV5S, a crack was observed at the bottom of the stem in line with the bolts as well as at the bottoms of the bolt holes, indicated the beginning of a shear rupture failure. Major cracks also were observed in the bolt holes of specimen 36TV3S.

The Tee connections were tested with the most variation in the HSS columns and beam stiffness. However, neither of these factors affected either the nominal strengths nor the condition of the HSS at the maximum test load. No distress was observed in any of the HSS faces. Separation from the HSS at the top of Tee was on the order of $\frac{1}{16}$ in., but there was more pushing in of the

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Bolt Shear</th>
<th>Bolt Bear.</th>
<th>Connection Elements Yield</th>
<th>Rupt.</th>
<th>Block</th>
<th>Weld</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>36DL3F</td>
<td>127</td>
<td>236</td>
<td>142</td>
<td>154</td>
<td>181</td>
<td>71</td>
<td>80+</td>
</tr>
<tr>
<td>16DL5S</td>
<td>212</td>
<td>393</td>
<td>242</td>
<td>266</td>
<td>293</td>
<td>163</td>
<td>147+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Bolt Shear</th>
<th>Bolt Bear.</th>
<th>Connection Elements Yield</th>
<th>Rupt.</th>
<th>Block</th>
<th>Flex. Yield</th>
<th>Flex. Rupt.</th>
<th>Weld</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>36TV3F</td>
<td>46</td>
<td>70</td>
<td>79</td>
<td>78</td>
<td>127</td>
<td>187</td>
<td>186</td>
<td>126</td>
<td>62</td>
</tr>
<tr>
<td>36TV3S</td>
<td>46</td>
<td>66</td>
<td>74</td>
<td>73</td>
<td>119</td>
<td>174</td>
<td>174</td>
<td>126</td>
<td>77</td>
</tr>
<tr>
<td>16TV3S</td>
<td>46</td>
<td>66</td>
<td>74</td>
<td>73</td>
<td>119</td>
<td>174</td>
<td>174</td>
<td>126</td>
<td>79</td>
</tr>
<tr>
<td>16TV5S</td>
<td>103</td>
<td>157</td>
<td>136</td>
<td>136</td>
<td>185</td>
<td>547</td>
<td>542</td>
<td>215</td>
<td>124</td>
</tr>
<tr>
<td>16TF3F</td>
<td>46</td>
<td>81</td>
<td>78</td>
<td>91</td>
<td>139</td>
<td>185</td>
<td>215</td>
<td>126</td>
<td>76</td>
</tr>
<tr>
<td>16TF5S</td>
<td>103</td>
<td>181</td>
<td>133</td>
<td>157</td>
<td>205</td>
<td>537</td>
<td>623</td>
<td>269</td>
<td>136</td>
</tr>
</tbody>
</table>
IRREGULAR CURVES, VERTICAL OFFSETS, ELLIPTICAL SHAPES, CIRCLES OR SEGMENTS WITH OR WITHOUT TANGENTS

If you need structural steel bending for major architectural projects or other steel fabricating applications, fax or call Max Weiss. We will give you competitive quotations, close tolerance specifications, on time delivery and dependable solutions.

ROLLING AND FORMING, WELDING, FORGING AND HOT BENDING

HSS wall at the bottoms of the Tee. Flare bevel welds did not show any difference in behavior from the Tee connection with vertical welds on the HSS frame. However, slight whitewash flaking at the ends of welds were observed in 36TV3S and 36TF3F with the thinner HSS.

SEAT ANGLES

The nominal weld resistance for the seat angle connections considered the eccentricity based on a 1/2-in. setback that was actually used in the tests. Following the procedure established by Garrett and Brockenbrough as recommended by AISC, the bearing length (N) was less than 2.5 times the distance from the flange face of the beam to the toe of the web fillet (k), so that the reaction was assumed to act at (N + 2.5k)/4 from the end of the beam. Since the procedure resulted in a negative value of N, N was taken as zero in the flexural yield calculation.

Both tests were terminated when yielding in the beam web was observed. At this load, some yielding was observed in the vertical leg of the seat, but there was no evidence of distress in the HSS or the welds. The outstanding leg was bent so that the observed bearing length to the beam was less than 1 1/2-in., which was the position of the erection bolts through the flange.

SINGLE ANGLES

The nominal resistance for the single angles ignore any eccentricity for the bolts. For the L-
shaped AISC weld, the in-plane eccentricity was included. Since
the connections with vertical welds are not an AISC standard,
the weld capacities were based on an out-of-plane eccentricity to
the bolt line and half the value from the AISC ultimate strength
eccentric load table is reported. Using half the value conserva-
tively assumes that only the weld at the heel of the angle is
effective, since it is in line with the outstanding leg.

The two connections with the
AISC-shaped weld had extensive yielding in both the outstanding
and the HSS legs of the angle and small cracks were found at
the bottom of the lower two bolt holes. The three-bolt connection
had slight whitewash cracking at the ends of the welds, but the
five-bolt connection indicated yielding along most of the length
of the vertical weld. The vertical distortion of the connections was
\(\frac{3}{16} \)-in. and the separation of the top of the angle from the HSS
was evident at the very early stages of loading. Flexural yield-
ing of the HSS leg is a limit state that should be considered and
probably controlled the capacity.

The connections with vertical
welds also had extensive yielding in both legs and the five-bolt con-
nection had an initiation of shear rupture at the bottom of the bolt
line. Both specimens had small cracks at the bottom of the bolt
holes. The five-bolt connection had whitewash cracking at the
top of the center weld, while the three-bolt connection had slight
whitewash cracking in the HSS wall at the ends of both welds.
Vertical distortions were again
on the order of \(\frac{3}{16} \)-in. but separation
was restricted by the weld.

END PLATE

The end plate connection had
the highest nominal strength. The bolt and connecting element
strengths were similar to the double angle but the weld
strength was higher due to the lack of eccentricity.

The test was terminated due
to the beam capacity, although
WinSTRUDL
The Only 32 bit Structural Engineering Program written in C/C++ and 100% Windows

Includes 10 Windows Programs

Ask for a Free Demo Today!
Computer Aided Structural Technology, P.O.Box 14676, Fremont, CA Tel: (510) 226 8857 Fax: 226 7328

The Internet
The Construction Industry's Solution to Local and International Marketing & Communication (Trade Show Special - 3 months free with this ad!!)

We at InterPRO are bringing the construction industry together on the Information Superhighway. Our system will permit general and sub contractors, architects, engineers, designers, developers, owners, etc. to locate needed services at specific locations in the world. Entire project development, shortlisting, product and subcontractor selection, purchasing and communication can be performed locally or world wide on the Internet. We plan to remain at the forefront of technology and will continue to provide the very best service available. To get started, simply call, write, fax or circle the response card to request additional information.

InterPRO Resources, Inc.
7901 Baymeadows Way, Suite 13
Jacksonville, Florida 32256
Call: 800.737.8819 or Fax: 800.636.0185

Shear yield lines were extensive, especially in the lines of the bolts.

Shear Tabs
The nominal bolt resistances are based on the eccentricities for the rigid (rather than the flexible) support in the AISC Manual of Steel Construction, since these gave results closer to the test values. Tests 5TB3F and 16TB3F are reported twice, since the specimens for snug and fully tensioned bolts had different materials for the tabs.

In addition to the potential failure modes observed in the table, all the specimens had considerable gross yielding of the shear tab. The punching shear failure of the HSS wall for 40TB3F was actually in two specimens, one with snug bolts and an identical test with fully tensioned bolts.

Strength Limit States
With the wide range of connection types variables reported, only one limit state was identified in the tube of the HSS—a punching failure when a thick shear tab was used with a thin HSS. A simple criteria to prevent this type of failure can be derived from an inequality that the yield force in a unit depth of shear tab does not exceed the through-thickness shear rupture strength on two planes of a unit length of the HSS wall.

\[F_{y,tab} t_{ab} < 2(0.6 F_{u,tab} t_{HSS}) \]
\[t_{ab} < 1.2 \frac{F_{u,tab} t_{HSS}}{F_{y,tab}} \]

face of the HSS was never a limit state. For a simply supported beam, there are limited end slopes that prevent unrestrained distortion of the HSS. Upon careful examination or measurement, pushing in of the HSS wall at the bottom and pulling out at the top of the connections could be observed. However, gross distortions of all the typical simple
connections tested were much more evident. The limit states that controlled were those associated with connecting elements, welds or bolts.

Strain in HSS Wall

In order to determine the effect of the connection types on local distortion of the HSS column, strain gauges were mounted at the center of the wall one inch below the connecting element.

Connections such as tabs and single angles that have load transfer through a weld at the center of the HSS have the highest transverse strains. These will typically exceed yield. An exception to this is the through-plate that inherently reinforces the center of the wall. Connections with welds near the sides of the HSS have significantly less transverse strain at the center of the wall. The end plate and seat angle connections produce little transverse strain. Longer connections with five bolts produce less transverse strain that three bolt connections and HSS with thinner walls or higher b/t tend to have larger strains.

Effect of HSS Distortion

In order to address the question of whether local distortion of the HSS has a detrimental effect on the column capacity, a series of tests were conducted to compare the influence of shear tab and through-plate connections. These types of connections represent the extremes of inducing transverse strain into the HSS wall. The conclusion of these tests is that shear tab connections used with HSS columns that are not thin-walled will develop essentially the same column strength as those where the wall is reinforced with a through-plate. With thin-walled HSS, shear tabs may have a detrimental effect on the axial column capacity. For connections on only one side of the HSS column, there is no strength reduction for using shear tabs. It is safe to assume that this connec-

IN STOCK! Your source for high strength weathering & abrasion resistant steel

High Strength Weathering

- **A588**
- **A242-1**
- **A606-4**

High Strength

- **A572-50**

Abrasion Resistant

- **AR 360**
- **Hardox 400 & 500**

Quenched & Tempered

- **A514 Gr. A**
- **A517 Gr. E**

Central Steel Service, Inc.

1-800-868-6798

P.O. Box 326 • Pelham, AL 35124

205/664-2950 • Fax 205/663-3391

Please circle #65

Attention to Detail

Computer Detailing Systems, Inc. introduces a state of the art structural steel detailing system which allows fabricators and detailers to meet the demands of the future with the ability to generate connection calculations, download to CDS equipment and interface with major design firms through the Steel Detailing Neutral File. A practical, flexible system requiring minimal training, CDS is capable of producing intelligent 3D models, floor plans and elevations as well as shop drawings of unsurpassed quality using your standards and paper. CDS is currently used by fabricators and detailers throughout the US and in Canada.

Contact Computer Detailing Systems today for a free information pack.

CDS

Computer Detailing Systems, Inc. • 7280 Pepperdine Avenue • Charleston, South Carolina 29418 • (803)552-7055

Please circle #63
clusion holds for other types of simple connections that have smaller transverse strains.

Connection Costs

Since a number of different connection types were studied at the same time, excellent comparative cost data was available. For comparison sake, the costs were based on the least expensive connection being assigned a relative value of 1.00. The costs include connecting material and the labor to fabricate the connection, including welding to the HSS or to the beam web in the case of the end plate. Note however, that the cost of the end plate is somewhat uncertain since flow-drilling the holes is not a routine shop operation at this time. The costs also do not reflect shop preparation of the beam or field erection.

Relative Connection Costs

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Cost Relative to 1.00 Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Angle, AISC Weld</td>
<td>1.00</td>
</tr>
<tr>
<td>Shear Tab</td>
<td>1.05</td>
</tr>
<tr>
<td>Single Angle, Vert. Welds</td>
<td>1.17</td>
</tr>
<tr>
<td>Seat Angle</td>
<td>1.36</td>
</tr>
<tr>
<td>Double Angles</td>
<td>1.50</td>
</tr>
<tr>
<td>Tee, Vert. Welds</td>
<td>1.62</td>
</tr>
<tr>
<td>End Plate</td>
<td>2.15</td>
</tr>
<tr>
<td>Through-Plate Welds</td>
<td>2.25</td>
</tr>
<tr>
<td>Tee, Flare Welds</td>
<td>2.42</td>
</tr>
</tbody>
</table>

Conclusions

The tests show that the variety of simple framing connections typically used in steel construction can confidently be used with HSS columns that are not classified as thin-walled. The tabulated connections capacities and criteria for evaluating connections that appear in the AISC Manual of Steel Construction can be applied when HSS columns are used. The only additional limit state that must be considered is a simple thickness criteria for punching shear of the HSS wall when shear connections are used.

Connections that involve welding at the center of an unreinforced HSS wall will produce local strains that exceed yield. However, the resulting wall distortions are barely noticeable and not nearly as great as the distortions of the connecting elements. The local distortion in the HSS wall has negligible influence on the column capacity as long as the HSS is not classified as thin-walled. This applies to connections on one side of the HSS or symmetric on both sides.

Finally, careful consideration should be given to the type of connection specified since the connection cost can vary by a factor of 2.5.

Donald R. Sherman, Ph.D., is a professor at the University of Wisconsin. This article is based on a paper delivered at the 1995 National Steel Construction Conference. The connection and column tests were supported by the Steel Tube Institute of North America with additional funds provided by the Society of Iron & Steel Fabricators of Wisconsin and AISC. The HSS material was provided by the Welded Tube Co. of America. Special thanks is due to Dave Mathews of Ace Iron & Steel Co., who fabricated the connection material and provided cost estimates for fabrication.
Our Tru-Tension® bolt was designed with one very important advantage over other twist-off bolts: a hex head. So removing this bolt or checking the installation with a torque wrench is just as easy as installing it.

Using a quiet, hand-held power tool, our Tru-Tension system always provides the correct tension. It also eliminates operator error during assembly, the bolts come pre-assembled and you can even save money thanks to the quick, easy installation and lower costs for visual inspection.

But, install any button head fastener compared to our hex head fastener, and there's no turning back. Because it's almost impossible to remove a button head fastener, you may even need a welder to burn it off. That costs you time and money. If you'd installed our hex head bolt in the first place you could remove it with a simple, four dollar wrench.

What if you have to verify the proper installation of a button head bolt? Again, it's almost impossible since you can't even get a wrench on the head to test or remove it. But you can verify installation of our hex head bolt with the turn of a wrist and a calibrated torque wrench.

Clearly, this is one bolt that won't let you screw up. Our Tru-Tension system is also fully traceable to our domestic sources, like all Nucor fasteners. They're fully tested and certified, including compliance with FHWA, DOT and AASHTO specifications for bridge construction.

So, forget about cutting bolts off with a torch if something goes wrong. Call us at 800/955-6826, FAX 219/337-5394 or write PO Box 6100, St. Joe, IN 46785 to find out more about our Tru-Tension system. And get a fastener that has a good head for business.
Steel Erection Awareness: An Erector's View

Simple steps a design engineer can take to make an erector’s life safer and simpler

By William G. Zimmerman II

The most general advice for any steel erection project is that it's always better to work in a shop than in the field. From an erector's viewpoint, the first order of business for any design is to keep the erection as simple as possible. Doing work in the field out of position or in bad weather can lead to a need for rework or, even worse, to poor or unsafe construction. If it can be done in the shop, do it there. Usually the cost and safety issues are greatly diminished.

Welding Issues

The quality and dependability of field welding has improved greatly over recent years. Still, some types of welding, specifically full penetration, should be avoided where possible. Full penetration field welds require a highly skilled and qualified welder and have to be inspected, usually with ultrasonic testing. Both of these factors increase the cost of a project and extend the erection schedule. Therefore, an economic design will use full penetration welds only where no other means is practical.

The size of the weld also is important, because multipass (where the welding process is repeated on top of a previous weld) welds are more time intensive and, again, require more highly trained and skilled welders. Also, many multipass welds require additional inspection beyond just visual. As an example, in the case of fillet welds, any size larger than $1/4$ to $3/16$ in. will require multipass welds. The requirement for continuous welds where stitch welds will suffice increases cost and many times causes distortion problems. If continuous welds are used for a seal, consider caulking with a high quality sealant instead.

Weld configuration is another area that should be considered. A fillet weld is the easiest to produce and does not require any special preparation. This weld can be produced by any certified welder. Inspection is simple and can be visual for the single pass configuration.

Finally, the position of the weld is another area where savings and quality can be improved. Using a flat position is always easiest for the welder.

Connection Design

Erectors always prefer a connection that can be made in the setting of the members that is...
open to access and positive, such as shear tabs and seats. When members have to be knifed through the adjoining members connection, safety and cost become a serious issue.

An easy way to reduce field labor is to focus the connection work on similar members. The erector is able to set up standards and develop techniques to speed up the erection process.

Another productivity tool is the use of twist-off bolts. One worker using a 110-volt shear wrench can tighten bolts much faster and with better quality than before. When the spline is no longer on the bolt, that bolt has been torqued to the proper tension. There is, however, an offset when using tension set bolts. The pattern used in tightening the connection must be followed or the top bolt will be loose when the bottom bolt is tightened. Utilizing the proper sequence in tightening the bolts will negate this problem. Note, however, that some erectors may prefer the turn-of-nut method, the use of calibrated wrenches or the use of direct tension indicators. For the most economical design, check with the erector on a specific project.

OSHA, through the Steel Erection Negotiated Rulemaking Advisory Committee (SENRAC) is expected to issue new recommendations on Subpart R (29 CFR 1926.750) on August 6. With the Subpart R ruling, OSHA will probably not allow any connections greater than two thicknesses in the setting process. Members that require multi-thicknesses will need to have seats or a two-ply bolt connection for setting. Multi-ply connection will be allowed after the initial setting is complete.

BEAM AND COLUMN DESIGN

Light, long beams are dangerous to install, especially if a number of holes are punched in the flanges. This type of beam tends to roll on itself and buckle when hoisted or when set in place without any lateral stabi-
Shear tabs, such as the one shown in the detail above, are the preferred connection in Colorado.

lization. An example size is W12x16 with flange width of 4-in. and thickness of 1/4-in. over 20-ft. in length.

Long light beams used in a cantilevered configuration also are a safety hazard. The erector must, at some time, climb out on that member before it is properly braced, which can lead to an accident. While one goal of the design engineer is often to use the lightest members possible, it is important to remember that fabrication and erection costs are not always weight dependent. In using more weight in the proper places, savings in erection are possible that will more than compensate for the added material costs of the member.

Columns longer than two stories usually require special handling and the savings from not needing a splice is usually lost by the need for special field handling.

Making the Difference When Performance, Reputation and Quality Count.

- FULL TRACEABILITY
- LOT CONTROL
- CERTIFICATIONS

Registered head markings on all structural and machine bolts.

Type 1 Type 3

All products made from steel melted and manufactured in the U.S.A.

St. Louis Screw & Bolt Company
6900 N. Broadway St. Louis, MO 63147 U.S.A.
1-800-237-7059/(314)389-7500/FAX (314)389-7510

Please circle # 36
BAR JOISTS

A quote from a letter from AISC-Associate Member Vulcan, dated Nov. 1, 1994, states: "The Steel Joist Institute has published the 40th Edition of the Standard Specifications, Load Tables and Weight Tables for Steel Joists and Joist Girders. These new specifications have extensively changed the handling and erection stability requirements for K-Series and LH-Series Joists. These new requirements significantly change bridging design and will become effective industry wide on November 1, 1994." This action is the result of safety in erector requirements brought up under SENRAC.

SLIPPERY SURFACES

Research has shown that many accidents in the field occur on slippery surfaces, such as decking, beams and columns. SENRAC is focusing on the paint or galvanized treatment given to these surfaces in the plant. Coefficients of friction that would be minimums for the product are under discussion and product surfaces may be changed to meet the set requirements.

The construction process demands a team effort to be totally successful. The erector is only one member of that team, but, by utilizing the knowledge of your local erector in the design process, you can save money, tighten schedules and make the erection of a steel-framed building a safer process.

William G. Zimmerman II is president of AISC-member Zimkor Industries, Inc. in Littleton, CO. This article is based on his many year's experience, primarily with buildings up to six stories, and is part of a paper to be presented at the 1995 National Steel Construction Conference in San Antonio.
WITH VULKRAFT ON DECK, THIS.

The Ballpark at Arlington, home of the Texas Rangers, built with Vulcraft composite deck.
BALL PARK BECAME A BIG HIT.

A classic ball park look with all the modern conveniences. That was the challenge facing designers of The Ball Park in Arlington, home of the Texas Rangers. Today, the grand baseball stadium is complete, a monument to a difficult assignment superbly accomplished.

One key design decision was the choice of structural steel and composite deck rather than cast-in-place concrete. Such a method was compatible with the steel framing spans. And, since the deck acted as a form for pouring the concrete, it saved valuable time, as well as labor expense.

It was the general contractor who, upon review of the project, immediately suggested Vulcraft supply the composite deck. His faith in the company was confirmed when Vulcraft not only came through with a competitive price, but also demonstrated their expertise at every stage of the deck's manufacturing. What's more, Vulcraft took the extended schedule of individual deliveries in stride by meeting every deadline with the exact materials required.

Upon its completion, more than 560,000 square feet of Vulcraft composite steel floor deck had gone into The Ball Park in Arlington, not to mention 93,000 square feet of roof deck. If you have a project that demands the experience of a seasoned player, contact Vulcraft or see Sweet's 05300 VUL for more information on a complete range of steel decking. Because when you have Vulcraft on deck, you can count on your project being a home run.

VULCRAFT
A Division of Nucor Corporation

PO Box 637, Brigham City, UT 84302, 801/734-9433; PO Box 100520, Florence, SC 29501, 803/662-0381; PO Box 169, Fort Payne, AL 35967, 205/545-5460; PO Box 186, Grapeeland, TX 75844, 409/688-4665; PO Box 59 Norfolk, NE 68702-0059, 402/264-8500; PO Box 1030, St. Joe, IN 46785, 219/337-1800; Architects of Record: HKS, Inc.; Design Architect: David M. Schwabe/Architectural Service; Sports Architect: Howard Needles Tammen & Bergendoff; Structural Engineer: Walter P. Moore and Associates; Associate Structural Engineer: Datum Engineering, Inc.; General Contractor: Manhattan Construction Co.; Steel Fabricator: Queen of Georgia.

Circle card no. 37
THE JANUARY 17, 1994 NORTHridge EARTHQUAKE CAUSED SIGNIFICANT AND LARGELY UNEXPECTED DAMAGE TO STEEL MOMENT FRAME JOINTS. WITHIN THREE MONTHS, A SHORT TERM INTENSIVE TESTING PROGRAM WAS INITIATED.

Damage to steel moment frames in the Northridge Earthquake was associated primarily with the welded flange-bolted web moment connection—a design widely used throughout the West Coast. The expected behavior of this detail under severe earthquake loading is a ductile response associated with flexural yielding of the beams or shear yielding of the column panel zones, without the occurrence of fracture at the beam-to-column connections. In effect, the connection should be stronger than the beam or panel zone, thereby permitting the beam or panel zone to develop the fully yielded and strain hardened strength associated with the development of large ductility. The connection must exhibit the actual strength of the adjoining frame elements, considering such factors as yield stress values in excess of minimum specified values, strain hardening, and the effects of a composite floor slab.

Contrary to the expected behavior, a variety of different types of fractures were observed in the moment frame joints in a large number of steel buildings examined after the Northridge Earthquake. Fractures in the immediate vicinity of the beam flange groove welds were a com-
mon form of observed damage, with fractures near the interface of the beam flange groove weld and column flange being particularly common. Fractures of the column within the joint region also were observed. These included the pull out of "divots" from the column flange at the groove weld, as well as fractures running across portions of the column flange and web. In some instances, fractures passed through the full depth of the column section. Fractures occurring at or initiating from the beam bottom flange groove weld appear to have occurred far more frequently than at the beam top flange.

None of the connection damage resulted in the collapse of a steel moment frame building, nor did it result in any loss of life. However, this damage is contrary to the design intent and expectations of an earthquake resistant steel moment frame. The purpose of the AISC test program was to evaluate potential improvements to the connection design.

Causes of the observed damage have been the subject of considerable discussion. While it will likely be some time before all the contributing factors are clearly identified and understood, it was necessary, for the purposes of the AISC test program, to speculate on the causes of the connection damage. Some of the factors considered for the purposes of the AISC test program include:

Welding related factors
- inadequate welding workmanship and inspection
- lack of adherence to written welding procedure specifications
- the notch effect created by left-in-place backup bars
- use of weld metal with low notch toughness

Design related factors
- overstress of beam flange groove weld and surrounding base metal regions due to inadequate participation of the bolted web connection in transferring bending moment
- uneven distribution of stress across the width of the beam flange groove weld
- highly restrained areas within the joint developing biaxial and triaxial states of tension, thereby inhibiting ductile material response
- increase in bottom flange stress and strain due to presence of composite floor slab

Material related factors
- actual yield stress of A36 beams considerably in excess of 36 ksi
- inadequate through-thickness strength or ductility of column flanges
- inadequate notch toughness of
Example of cover plate reinforcement

column material
- high values of yield-to-tensile strength ratios (F/F_t)
The above list is still speculative; the roll of these and other contributing factors has yet to be definitively demonstrated.

TEST PROGRAM
The AISC testing program was directed towards steel moment frames that were under design or construction at the time of the earthquake and was intended to provide immediate data that would permit these projects to proceed at a higher level of confidence in their moment connections than would have otherwise been possible. Thus, the objective of this program was to develop interim guidelines for improved connection details in as short a time as possible.

In order to guide the program, AISC organized an advisory group representing a broad range of expertise and including researchers, structural engineers, fabricators, erectors, steel mill representatives, welding specialists, and welding inspection and NDT personnel.

Tests were conducted on single cantilever-type test specimens. Slowly applied cyclic loads were applied at the beam tip, subjecting the connection to cyclic bending moment and automatic preheating or manual - how do you decide?

Once you compare, the choice is obvious.

Automatic electrical resistance preheating helps control project costs by:

Increasing welder productivity
Labor costs are reduced because components are always ready for welding. Your personnel are freed from time-consuming manual preheating chores. The electrical equipment creates a safe working environment.

Avoiding expensive rework
Uniform maintenance of minimum temperature controls two common causes of rework – cracking and hydrogen formation.

Request our FREE literature and information on our successful Northridge earthquake projects.

COOPERHEAT
1021 Centennial Avenue, Piscataway, NJ 08854
Toll Free: 800-526-4233
Tel: 908-981-0800 Fax: 908-981-0850

Please circle # 42
shear. A beam lateral support was provided at a distance of 7 ft. from the face of the column. Despite the limitations, including that the test does not include the effects of a composite floor slab or simulate the actual strain rates of a real earthquake, it is believed that this simple testing approach provided the best opportunity to collect meaningful data in a short time frame.

All test specimens were constructed with W36x150 beams and A36 steel, and either W14x455 or W14x426 columns of A572 Gr. 50 steel. (Note: while these member sizes are not atypical for moment frames in southern California, neither are they fully representative. Therefore, the possibility of differences in performance based on members sizes should be considered when viewing the results of these tests. Also, the member sizes used in this test program result-
ed in joints with a very strong panel zone, so inelastic action at the joint was forced into the beam.)

The specimens were subjected to symmetric loading cycles, with the beam tip displacement increased until failure of the connection occurred, or until the limits of the testing apparatus was reached. Because this does not replicate the actual load his-

TONE® Shear Wrench Tools for Tension Set Fasteners

AND

ALL Break-Off Type Bolts

SALES • REPAIRS • RENTALS • PARTS

S-60EZ Specifications

- Weight: 13 lbs.
- Torque: 425 ft./lbers.
- Speed: 16 RPM
- Capacity: 5/8" - 3/4"
- (+7/8" A325 only)
- Voltage: 110 V. AC

S-90EZ Specifications

- Weight: 18.5 lbs.
- Torque: 550 ft/lbers.
- Speed: 16 RPM
- Capacity: 3/4" - 7/8"
- (+1" A325 only)
- Voltage: 110 V. AC

CALL US For Domestic Tension Control Bolts!

BRISTOL® MACHINE COMPANY

19844 Quirz Court, Walnut, CA 91789 • (909) 598-8601 • Fax (909) 598-6493 • (800) 798-9321
ARE BOLTS CAUSING YOU UNDUE TENSION

LEJEUNE SMART BOLTS KNOW "PROPER TENSION!"

A-325 or A-490 high strength bolts.
Factory mill certification-traceable to each keg.
Black or mechanically galvanized.
Full domestic or open stock.

"THE LOWEST COST SYSTEM FOR PROPERLY INSTALLED HIGH STRENGTH BOLTS!"

LEJEUNE BOLT COMPANY
8330 West 220th Street
Lakeville, Minnesota 55044
For Information or Technical Assistance
Call 1-800-USA-BOLT (872-2658)
FAX 1-612-469-5893

Please circle # 73

STORY OF AN EARTHQUAKE, SOME
JUDGMENT WAS REQUIRED IN INTERPRETING THE TESTS. THE PRIMARY
CRITERIA USED TO JUDGE TEST SPECIMEN PERFORMANCE WAS THE PLASTIC
ROTATION DEVELOPED BY THE BEAM.
TARGET BEAM PLASTIC ROTATIONS ON
THE ORDER OF PLUS/MINUS 0.02 TO
PLUS/MINUS 0.03 RADIAN WERE
ESTABLISHED. ALSO, TOTAL DISSIPATED ENERGY AND THE NATURE OF THE
SPECIMEN'S FAILURE MODE WERE CONSIDERED IN EVALUATING THE SUCCESS OR FAILURE OF A PARTICULAR SPECIMEN.

TEST SPECIMENS

THE OVERALL APPROACH USED IN THE DESIGN AND CONSTRUCTION OF THE TEST SPECIMENS WAS TO DEVELOP IMPROVEMENTS BOTH TO THE WELDING AND TO THE DESIGN OF THE CONNECTION. IMPROVEMENTS WERE INCORPORATED IN THE BEAM FLANGE GROOVE WELDS IN AN ATTEMPT TO INCREASE THE LEVEL OF STRESS THAT THE WELD REGION COULD SUSTAIN WITHOUT FRACTURE. AT THE SAME TIME, THE CONNECTION DESIGN WAS MODIFIED TO REDUCE THE LEVEL OF STRESS ON THE BEAM FLANGE GROOVE WELDS AND SURROUNDING BASE METAL REGIONS. AS NOTED EARLIER, THERE ARE SEVERAL MATERIAL-RELATED FACTORS THAT MAY HAVE CONTRIBUTED TO THE DAMAGE. HOWEVER, NO ATTEMPT WAS MADE IN THIS TEST PROGRAM TO ADDRESS THOSE ISSUES. THEREFORE, NO ATTEMPT WAS MADE TO SET UPPER LIMITS ON BEAM Fy, SPECIFY THROUGH THICKNESS PROPERTIES OR TOUGHNESS REQUIREMENTS FOR THE COLUMN FLANGES, ETC. IT WAS BELIEVED THAT, AT LEAST IN THE SHORT TERM, SIGNIFICANT CHANGES IN STEEL MATERIAL SPECIFICATIONS IS NOT A PRACTICAL ALTERNATIVE.

NINE DIFFERENT CONNECTION DESIGNS WERE CONSIDERED IN THE TEST PROGRAM, WITH TWO REPLICATES (DESIGNATED A & B) CONSTRUCTED OF EACH BY A DIFFERENT FABRICATOR. (NOTE: ULTIMATELY, SPECIMENS 4A AND 4B WERE NOT TESTED, SO NO INFORMATION ON THESE TWO SPECIMENS IS INCLUDED IN THIS REPORT.)

- SPECIMEN 1: STANDARD WELDED FLANGE-BOLTED WEB DETAIL, DESIGNED IN ACCORDANCE WITH SECTION 2211.7.12
of the 1994 UBC. Although the conventional connection detail was used, several improvements were incorporated into the groove welds. The purpose of this specimen was to determine if the standard detail, with minor welding improvements, was likely to provide satisfactory performance.

Specimen 2: All-welded connection. Similar to Specimen 1, except the beam web, rather than being bolted, was welded directly to the column. Past test programs have typically shown significantly better performance from all-welded connections. This better performance has been attributed to the improved ability of the welded web connection to transfer bending moment at the connection, thereby reducing the stress on
Dyson maintains a large inventory of Domestic fasteners in finished and blank stock from .625" to 12" diameter. This allows us to turn around product in days instead of weeks. In the event of an emergency, our shop is equipped to handle break-in orders for same day shipments. Our in-house forging, heat treat, mechanical testing, and extensive machine shop capabilities allow custom orders to be processed on time. Dyson fasteners are fully traceable from the steel mill to our shipping dock. Certified Mill Test Reports are available upon request. Call us on your next fastener requirements. Literature available upon request.

Dyson
53 Freedom Road
Painesville, Ohio 44077
Toll Free: 800-680-3600
Local: 216-948-3500
Fax: 216-352-2700

DOMESTIC LARGE FORGED FASTENERS

Specimens 3, 5, 6, 7 & 8: Reinforced connections. The beam flanges were reinforced with either cover plates (Specimens 3, 5, 7 & 8) or with vertical "ribs" (Specimen 6). In each case, both the beam flanges and the reinforcement were welded to the face of the column. The intent of these connections was to significantly reduce the stress on the beam flange groove welds and surrounding base metal regions, and to move the location of the beam plastic hinge away from the face of the column. Connections with cover plates and ribs have shown promising performance in past tests. The design goal adopted for the reinforced connection was that the region of the connection at the face of the column should remain essentially elastic under the maximum bending moments and shear forces developed by the fully yielded and strain hardened beams. For the various reinforcement configurations tested, the section modulus of the reinforced cross-section was on the order of 1.6 to 2.0 times the section modulus of the unreinforced beam cross-section.

Specimen 9: Unconventional connection designed to avoid through-thickness loading of the column flange. Forces in the beam flange were transferred to the column through "side-straps" connected to the outer edges of the beam flanges and to the outer edges of the column continuity plates.

The test specimens were constructed in two different fabrication shops in California. Welds that would normally be field welds were in actual construction done in the fabrication shop, but by field welders from erection companies in California. All welds were done by the self-shielded FCAW process. Three different FCAW electrodes (.120-in. diameter E70T-4, \(7/32\)-in. diameter E70T-7, and \(7/32\)-in. diameter E70TG-K2) were used for the flat position field groove.
welds for different test specimens.

The E70T-4 electrode was frequently used for this application in the past. Neither the E70T-4 nor the E70T-7 electrodes provide minimum specified notch toughness properties. The E70TG-K2 electrode was chosen to provide high toughness. This electrode provides minimum specified Charpy V-notch values of 20 ft-lbs. at -20 degrees F.

Weld tabs were used for all groove welds, and were then removed by air carbon arc cutting after the welds were completed. The groove weld runoff areas enclosed by the weld tabs are where the welds are started and terminated. Consequently, these areas may contain defects and notches that may initiate a fracture. Removal of weld tabs is intended to provide a clean, notch free termination of the groove weld, reducing the opportunity for fracture initiation.

No back up bars were left in place at the bottom beam flange groove weld. Bottom flange back up bars, when used, were removed by air carbon cutting. Alternatively, for the connections with bottom flange cover plates, weld details were developed that did not require the use of a back up bar. Bottom flange back up bars were not permitted to remain in place for several reasons. First, it was believed that inspection of the bottom flange groove weld would be more reliable without a back up bar. Removal of the bars permits visual inspection of the weld root, and presumably permits more reliable ultrasonic inspection. Further, it was believed that the presence of the back up bar creates a notch at the root of the groove weld that may help initiate fracture.

For the top flange groove welds, back up bars were removed for some specimens but left in place for others. It was speculated that the top flange back up bar was not as detrimental as the bottom flange back up bar. At the top flange, the back up bar is not located at the extreme fiber of the cross-section, as it is for the bottom flange. Further, the observed damage patterns suggest the top flange was not as critical as the bottom flange.

Note that removal of weld tabs and back up bars was not common practice prior to the Northridge Earthquake. Experience with specimen fabrication indicates that removal of weld tabs and back up bars are extremely time consuming operations and would add significantly to the cost of a connection.

TEST RESULTS

Both replicates of the welded flange-bolted web detail (Specimens 1A and 1B) as well as both replicates of the all-welded detail (Specimens 2A and 2B) showed unsatisfactory performance. All four connections experienced sudden fractures early in their inelastic loading histories, falling considerably short of achieving the target plastic rotations—despite very good welding workmanship, removal of the back up bars, and removal of the weld tabs. This suggests factors other than just poor workmanship contributed to the poor performance of these type of connections in the Northridge Earthquake.

It should also be noted that the poor performance of these four Specimens should not necessarily warrant condemnation of these connection details. These details may have shown better performance if, for example, a different welding electrode was used, or if continuity plates were used. Further testing in this area is needed before any definitive answers can be given.

Eight of the ten reinforced specimens experienced sudden fractures early in their inelastic loading histories, falling considerably short of achieving the target plastic rotations—despite very good welding workmanship, removal of the back up bars, and removal of the weld tabs. This suggests factors other than just poor workmanship contributed to the poor performance of these type of connections in the Northridge Earthquake.

It should also be noted that the poor performance of these four Specimens should not necessarily warrant condemnation of these connection details. These details may have shown better performance if, for example, a different welding electrode was used, or if continuity plates were used. Further testing in this area is needed before any definitive answers can be given.
connections showed excellent performance, typically sustaining on the order of 20 inelastic loading cycles, with maximum beam plastic rotations in the range of plus/minus 0.025 to plus/minus 0.035. For Specimens 7A, 7B, 8A and 8B, the test was terminated after the specimen had achieved very large plastic rotations in order to avoid damaging the testing apparatus.

Two of the connections reinforced with cover plates showed unsatisfactory performance, experiencing brittle failures at low levels of plastic rotation. One of these, Specimen 3A, failed by a sudden fracture at the top flange/cover plate groove weld to the column, with fracture occurring near the weld-column interface. As before, the fracture surface showed no evidence of workmanship errors. Specimen 3B, in contrast, showed excellent performance. The only difference between the two specimens was the choice of weld process variables for the E70T-4 electrode. The comparison of the two specimens emphasizes the importance of the Welding Procedure Specification. It is clearly the intent of AWS D1.1 that welding should be accomplished in accordance with a written WPS. These tests indicate that the development of a proper written WPS and its rigorous enforcement have a significant impact on the success or failure of a connection.

Specimen 5B also exhibited unsatisfactory performance. Failure occurred by a sudden fracture at the bottom beam flange connection to the column. The fracture appeared to be almost completely within the column flange material, and the cause of the failure is still under investigation. The nature of the failure, however, suggests that through thickness properties of the column flange may have played a role in the failure.

CONCLUSIONS

- The test results emphasized the importance of enforcing a written Welding Procedure Specification. The use of improper welding process variables can lead to deficiencies (e.g. low toughness) that are undetectable by ultrasonic testing or other common NDT techniques. Inspection and enforcement of the WPS at the time of welding is needed.

Some of the issues that require further investigation include the required level of toughness of the weld metal and base metal, the effect of the continuity plates, the influence of the top flange back up bar, and the role of column flange through thickness properties.

Michael D. Engelhardt, Ph.D., is an associate professor of civil engineering at the University of Texas at Austin; Thomas A. Sabol, S.E., is president of Englekirk & Sabol Consulting Engineers, Los Angeles; Riyad Aboutaha, Ph.D., is an assistant professor of civil engineering at George Institute of Technology; and Karl H. Frank, Ph.D., is a professor of civil engineering at The University of Texas at Austin. This article was condensed from a paper delivered at the 1995 National Steel Construction Conference. Primary funding for the study was provided by AISC and the J. Paul Getty Trust. Additional funding/donation of materials or services were provided by PDM Strocal, Inc., the Herrick Corp., The Lincoln Electric Company, Twining Laboratories of Southern California, British Steel Inc., Nucor-Yamato Steel Co., TradeARBED Steel, Gayle Manufacturing, P.V. Banavalker, and the National Science Foundation Young Investigator Award (Grant BCS-9358186).
The World Class Technology Event for Design and Construction

Conference June 5-8, 1995
Exhibit June 6-8, 1995
Atlanta, Georgia USA

Attend the world's largest CAD and computer show for design and construction professionals — learn how to use technology to:
- produce quality projects
- on-time and within budget

A/E/C SYSTEMS '95 and EDM '95 plus the following concurrent events:
- Intellimap
- Facilities
- Virtual/Design
- M/cad Expo
- Autodesk Expo
- Bentley MicroStation Mall
- ESRI World
- IBM Technology Center

For complete information call
1-800/342-5718
(24-hour a day fax back service)
or 203/665-0153 or fax 203/666-4782.

CALL
1·800·342·5718
TODAY!
Steel Moment-Resisting Frames After Northridge

Statistics on Northridge damage point to the need for probabilistic approaches to evaluation and design

Shown above is an example of weld and column flange fracture. The crack starts in the weld (lower right) and pulls out a divot from the column flange. Photo courtesy of David L. Norris, Western Inspection & Testing.

By David Bonowitz, S.E. and Nabih Youssef, S.E.

A survey of Northridge earthquake damage is beginning to yield useful conclusions regarding steel moment-resisting frame (MRF) connections. Two patterns of damage, one quality-based and one demand-based, are emerging from the data. These patterns highlight the importance of design reliability, for which probabilistic approaches may be appropriate and even advantageous. Such approaches would account for documented variability in connection capacity.

One principle of seismic design is that any structural elements that "fail" in an earthquake should do so safely and reliably; i.e., they should maintain their strength and prevent collapse. Thus, the design philosophy behind steel moment-resisting frames (MRFs) allows for inelastic behavior in large earthquakes, but only in the ductile elements and specifically not in welded connections.

The Uniform Building Code (UBC), until last year, allowed a prescribed connection with full penetration groove-welded flanges and bolted and/or welded beam webs.

The standard connection, among other Code provisions for steel MRFs, is based on tests dating back to the 1960s. Typically, these tests involved elastic and inelastic cyclic loads applied to cantilevered wide flange sections. They did not, however, account for some conditions seen in actual buildings, such as the effects of column axial loads, the effects of composite concrete floor slabs, and the effects of true dynamic loads with high strain rates. Each of these is thought to have affected the patterns of observed Northridge damage.

Although most of the historical test programs were able to demonstrate the theoretical inelastic capacity of steel MRFs, published results reveal that post-yield behavior was not reliable. Typically, of eight or 10 specimens in a test program, one or two would fail prematurely. Dismissed then as aberrant behavior, the poor quality, brittle weld fractures and variable rotation capacity observed in these specimens appear in hindsight almost to have predicted Northridge damage. At the very least, they confirm that reliability in MRF connections is at least as great a concern as theoretical strength.

Pre-Northridge Design

In September 1994, the prescribed connection was removed from the UBC and replaced with a requirement to demonstrate connection capacity by test or by conservative calculations. Although specific features of the prescribed connection, which had been widely used in California for many years prior to its codification in 1988, have not been linked conclusively to observed damage, its removal from the Code should still be seen as a positive step. As Northridge damage was discussed and
debated in late 1994, it became clear that most engineers knew very little about the history, metallurgy, construction and inspection of their full-penetration welds. This was certainly due in part to the availability of the prescribed detail. Removal of the detail may remove some of our institutionalized ignorance as well.

In particular, some engineers consider the fully-welded beam flanges to be fundamentally flawed. They argue that restrained steel in the standard detail can never reliably develop its plastic strength under impulsive earthquake loading.

Other pre-Northridge practices now under scrutiny include:
- **Minimal structural redundancy.** For example, the use of only two or three single-bay frames in each direction. Though economical, these frames use heavier column sections that may be prone to flange tearing; they have very low axial compressive stresses, which may lead to states of bi- or tri-axial tension; and they lose a greater portion of their strength when a single weld fractures.
- **Backining bars left in place.** The small vertical gap between the backing bar and the column flange can simulate a notch at the weld root, possibly leading to stress concentrations and fractures emanating from the root pass, a part of the weld that is sometimes prone to poor quality. Further, the presence of the backing bar can obscure UT readings and hinder quality control during construction. One solution is to routinely remove the backing bar after welding, backgouge the weld root pass, and refill the weld from the underside with a reinforcing fillet.
- **Lax documentation and quality control.** This regards all aspects of design and construction, from specifications of materials and procedures to certification of welders and inspectors. It is particularly important where traditional practices, such as the use of end dams, are at odds with project standards and where newer techniques, such as Flux-Core Welding, may be unfamiliar to project personnel.

While none of these practices has been shown conclusively to have caused the observed damage, all are thought to have helped make the damage more likely and more critical.

Northridge Earthquake Performance

An ongoing survey, funded by NIST and the SAC Joint Venture, of steel MRFs inspected since the Northridge earthquake has collected data from 24 engineering firms on 89 inspected buildings. The sample may be unrepresentative of the total MRF population because inspections so far have been voluntary, often motivated by the presence of non-structural damage and limited by budget and access constraints. In late February, the Los Angeles City Council passed an ordinance mandating limited inspection of MRF connections.

Contributing engineers completed survey forms with sections on building design criteria, detailing, configuration, earthquake performance, scope of post-earthquake inspection (typically visual and UT), and observed damage. The form defined six categories of damage based on the connection part most affected: Weld (at top and bottom of beam); Girder (top and bottom); Column Flange (top and bottom); Shear Connection; Panel Zone (continuity plates and double plate welds); and Column Web.

Data collected on a building-by-building basis would not have allowed studies of damage by frame direction or floor level. But due to schedule and budget constraints, data could not be collected for individual connections either. As a compromise, we collected damage data for each inspected “floor-frame,” that is, each set of connections in a single frame at a single floor.

The survey buildings represent a variety of ages, sizes, frame configurations, degrees of
STEELCAD is the most complete detailing software on the market. It allows you to compress tasks into hours instead of days, helping you become more competitive and more profitable.

STEELCAD enables you to produce drawings four different ways, including:
- Downloading from engineering neutral files
- Detailing from the framing plan
- Individual piece detailing
- Graphics detailing

STEELCAD can also dramatically streamline production control, including:
- Estimating
- Advance bill of material
- Inventory control
- Production control
- CNC downloading
- 3D modeling
- Bar coding information
- Automated erection plans and piece marking

Or it can be downloaded to your current production control system.

And it's all built in...there are no added modules to buy. STEELCAD is the simplest, most flexible, most complete detailing software available, all at a price well below the second best alternative.

But we're always working on making it even better. We're regularly upgrading it based on input from our customers. So maybe we'll have that coffee making feature yet!

But don't just take our word for it. We'll put you in touch with companies that have switched from other systems to STEELCAD. Then call us to set up a demonstration in your office.

We'll even make the coffee.

Please circle # 84

CALL US TODAY!

800-456-7875

regularity and redundancy, etc. If the survey has a typical building, it is a three- or four-story office building from the early 1980s, with a 20,000 to 30,000 sq. ft. floor plate and plan setbacks at the upper stories. It has two-to-four frames in each direction and two-to-four bays in each frame. Geographically, the surveyed buildings lie mostly in areas of concentrated commercial development. Surveyed buildings with serious MRF damage lie as far south as Santa Monica and West L.A., as far north as Santa Clarita, and along a seven-mile wide band north of the Santa Monica Mountains running 25 miles from Simi Valley in the west to Glendale in the east.

Survey statistics (as of February 1995):
Buildings ... 89
Investigated frames 590
Investigated floor-frames 2066
Visually inspected connections 8675
UT'd Connections 7812

Most common damage class (as percent of all inspected floor-frames)
Bottom weld ... 50%
Top weld ... 18%
Column flange at bottom 15%

The most serious damage, fracture through the column flange into the column web, was reported in 92 floor-frames (4%) in 21 buildings.

Note that fractures along the fusion zone between the weld and the column flange are generally counted as weld damage. Also, it is important to note that about half of all reported weld "damage" was reported as type W1, defined on the survey form only as "incipient root cracks detected by UT." Whether these rejectable conditions predated the earthquake is an open issue, although by now most engineers believe that at least some of the root cracks are not earthquake damage.

Overall, the distribution of damage is as follows:
Considering that half of all weld damage was "incipient root cracking" only, it appears that about two-thirds of all inspected floor-frames (43% + half of 40% = 63%) had nothing more than root cracks.

DAMAGE CORRELATION

Because the floor-frame data so far does not include estimates of structural demand, it is mostly a catalogue of observed damage types and distributions. Correlation studies of damage level versus site and design characteristics confirm only two clear patterns:

In the San Fernando Valley, frames oriented in the north-south direction had significantly more damage than those running east-west.

In three- to five-story buildings, more damage was found at lower floors (no pattern of damage vs. floor level was found for midrise and highrise buildings).

Limited as they are, these two correlations are still useful in guiding further inspection programs. They also suggest a predictable relationship between damage and demand, discussed below.

Despite the conjectures of some engineers, no statistical correlations have been found between observed damage and building size, building age, nominal material strength, structural regularity, structural redundancy, the number of bays per frame, frame dimensions, or member sizes. Planned studies with ground motion and analysis results may show that some design conditions are more critical than others above a certain threshold demand, but so far it cannot be shown that some frames are more susceptible to damage due to their configuration alone.

In addition to the floor-frame
Shown above is another example of lamellar flange tearing (note use of end dam on weld, which is not supposed to be used). Photo courtesy of David L. Norris, Western Inspection & Testing.

For each connection, we know the building and connection configuration, the observed damage, and the beam end moments and inter-story drifts from elastic analyses with recorded or synthesized Northridge ground motions. Preliminary results are encouraging, suggesting a correlation between damage and elastic demand. But, even if additional data support this trend, any correlation will almost certainly be probabilistic, not deterministic. In other words, we may be able to say that for a given demand-capacity ratio there is a certain likelihood that a connection will be damaged, but we will not be able to derive a "fracture strength" for a given detail.

This probabilistic approach is necessary because of the variable material strength, construction quality, and loading of a given MRF connection, as demonstrated by the history of lab testing. In fact, two global "damage" patterns are emerging:

- A largely random pattern of rejectable weld conditions caused by poor quality control during
construction and more than likely pre-earthquake.

- Superimposed on the first pattern, a set of serious fractures statistically correlated to local stresses.

The first pattern, perhaps tied to weld quality, helps explain the observed scatter of weld root "damage" as well as the unlikely cases of buildings where most inspected welds had rejectable defects but none was cracked through. The remaining question is whether the two patterns are linked. That is, does poor initial quality increase the chance of serious damage?

This question will become central as more buildings are inspected and more rejectable weld discontinuities are found. If the defects are original, will insurers still cover the costs of inspection and repair? If ordinances mandate repair of damage, do they also apply to conditions once overlooked or even accepted? And if some of the cracks are original, what does it mean that they rode out the earthquake without fracturing completely? As with California's unreinforced masonry buildings, the MRF issues are more than technical, and their resolution will demand cooperative input from all potential stakeholders. But unlike UMBs, we still design and build steel MRFs with high expectations.

The second pattern shows up when cumulative distributions of damaged and undamaged connections are plotted against elastic demand-capacity ratios (DCRs). Overall, the connections with visible base-metal fracture tend to have a higher proportion of damage. Although no critical fracture stress is identified and damage to specific connections cannot be predicted, these patterns confirm the value of analysis in setting the scope of post-earthquake inspection for large buildings.

Mitigation

SAC Advisory No. 3 provides practical recommendations for dealing with new and existing MRFs. For both, the first step is selecting appropriate performance goals, and here it is essential to distinguish between life safety hazard mitigation and damage or economic loss mitigation. Although there is still a range of opinion on the subject, most engineers believe that existing steel MRFs, if repaired where necessary, are capable of providing substantial life safety. And because life safety is the first priority of building officials and code writers, we cannot expect forthcoming guidelines or mandates to address damage control specifically. But considering the costs in business downtime from the Northridge earthquake, and considering that modern steel MRF tenants are

When There's No Room for Doubt...

Tonight, a handful of players, coaches, and 18,000 fans will be jumping, stomping, and cheering...

Take a moment to think about those calculations.

Now is not the time to question the accuracy of your analyses or the soundness of the design results. GT STRUDL, the world's premier structure analysis and design software, gives the accuracy you need, great versatility, and the highest user support rating in the industry.

All the power for the most complex designs. It's all included with GT STRUDL.

So sit back. Enjoy the game. You used the right tool.

GT STRUDL®

Quality engineering demands the highest quality software

For more information, please contact:

TEL: 404.894.2260 FAX: 404.894.8014

Computer Aided Structural Engineering Center Georgia Institute of Technology

Please circle # 71
frequently businesses with national and global interests, isn't damage mitigation also a reasonable goal? These owners and tenants may find a yellow-tag unacceptable even if they can walk out of their building unharmed.

If life safety is the only goal, then the challenge is to determine how many and which MRF connections can fail in the next earthquake without collapse. If damage control is important, then the issue is how to upgrade or design the frames to limit the scope of post-earthquake inspection and repair. In either case, design decisions can benefit from a probabilistic approach. Given the uncertainties of MRF connection design, a deterministic approach, which requires accounting for redundancy and configuration of the MRF system. The second answer can only come from probability theory. It turns out that the certainty of finding randomly scattered damage/defects by inspecting a fixed percentage of connections depends heavily on the number of connections in the building.

For example, consider a recently shaken building that may have hidden damage among its 300 connections. Suppose that the owner's engineer, accounting for redundancy and frame configuration, determines that damage to 10% of the connections could impair the building. If they inspect 24 connections (only 8% of the total) and find no damage, then probability theory says they can be more
than 90% sure that the critical damage level of 10% has not been reached. However, if the building had only 100 connections, a similar 8% inspection would be less than 60% certain that damage was less than critical.

Consideration of sample size also is essential because critical subsets of connections, such as those in the north-south direction or those in a single floor, must be treated separately to assure that local collapse modes are ruled out. And because subsets of connections may be small, the required percentage of inspection may be high.

These numbers assume randomly scattered damage and random inspection. They apply mostly to the first pattern discussed above in which damage or defects are related to initial construction quality. If ongoing research reveals a correlation between damage and analytical demand or floor level, for example, then this would of course affect the inspection scope. Following the theory of two independent damage patterns, one quality-based and one demand-based, a combination of random and focused inspection seems

Shown above is a crack through the column flange (bottom left) continuing into and ahlf way across the column web. Photo courtesy of Brandow & Johnston Associates

At last, the most powerful structural and earthquake engineering software in the world is user-friendly. Now Larsa has a new Microsoft® Windows based graphical user interface. With the new L-Tools of Larsa®, the software is easy to use whether you need to perform a nonlinear structural analysis on a dome, or a bridge analysis on a simple model. There are more than 14 new capabilities with 4.0, which make us even more expansive and flexible. Using Larsa 4.0, almost any structural engineer in your firm can access the power of the Larsa computational engine.

Also, the increased productivity from the improved access just might lower your manpower costs. Go figure.
CASE Council of American Structural Engineers

#272	Technical Peer Review Manual — $20 CASE member, $30 non-members
#962	National Practice Guidelines for the Structural Engineer of Record — $30 CASE member, $30 non-member
#962-A	National Practice Guidelines for the Preparation of Structural Engineering Reports for Buildings — $30 CASE member, $30 non-member
#962-B	National Practice Guidelines for Specialty Structural Engineers — $20 member, $30 non-member
#976	CASE Commentary: The Special Inspection Process — $20 members, $30 non-members
#977	CASE Membership Directory — $20

Bulk Orders of the above are 55% per copy in quantities of 10 or more.

#2-1993 An Agreement Between Owner and Structural Engineer of Record — $7.00 Member, $10 non-member

#3-1993 An Agreement Between the Structural Engineer of Record and Consulting Design Professional for Professional Services — $7.00 CASE member, $10.00 non-member

#4-1993 An Agreement Between Owner and Structural Engineer for Special Inspection Services — $7.00 CASE member, $10.00 non-member

#5-1993 An Agreement Between Owner and Structural Engineer for Special Structural Engineering Services — $7.00 CASE member, $10.00 non-member

#6-1994 CASE commentary on AIA Documents — $7.00 member, $10 non-member

#7-1994 CASE commentary on ECSC Documents — $7.00 member, $10 non-member

* Set of Documents #1 - 7 above, $25.

The Strength Behind the Beast

Membership Information — CASE membership is limited to principals of structural engineering firms and managers of structural departments. Join NOW and get all documents above and your membership will extend through June 30, 1996.

Dues: 1-4 firm personnel $200, 5-10 personnel $400, over 10 $600.

Please send CASE membership information.

Mail to:

CASE/ACEC
1015 15th St., NW, Suite 802
Washington, D.C. 20005

Phone (202) 347-7474, Fax (202) 898-0068

Analyzing Frames

Analysis is traditionally an all-or-nothing deterministic exercise: For design in the elastic range, either a connection is overstressed or it isn’t; and for non-linear studies, post-yield behavior is only as accurate as your hysteretic model. Semi-rigid and fracture elements allow better representation of actual behavior, but a single MRF model still cannot capture the potential variability observed both in historical lab tests and post-Northridge inspections.

Alternatively, a simple probabilistic approach to evaluation or design of MRFs could involve a series of models, each with a certain number of connections discounted. As time-history seismic analysis considers one model with a suite of appropriate ground motions, probabilistic MRF analysis could consider a suite of damage scenarios subjected to one or more design basis load patterns. Such an approach would probably be most useful for checking a stability limit state.

The damage scenarios would reflect observed damage patterns, both quality-based and demand-based. For example, the NIST/SAC survey statistics show that less than 40% of all floor-frames sustained significant damage in one or more connections. Less than 25% of the analyzed case-study connections were visibly damaged. This suggests at least a starting point for simple probabilistic analysis: model 30-35% of a frame’s connections as pins or semi-rigid elements. The scenarios would of course be tempered by any demand-based damage correlations yet to be confirmed, such as an increased likelihood of damage at certain floor levels or for higher elastic stresses. Similar approaches could be used in non-linear analysis to vary the hysteric. Rational. Alternatively, an engineer could propose a random program with a subset of connections identified by analysis.
teretic properties or fracture level of inelastic elements.

Testing New Details

Proposed details for repair, upgrade or new MRF construction are currently being tested. The probabilistic approach recognizes that actual performance of these improved details will rely as much on the quality of materials, construction, and inspection as on stresses and strains. Therefore, it is essential that these tests establish not only connection strength but connection reliability. The test programs should consider enough "identical" specimens to yield useful measures of the likelihood of different failure modes, including brittle fractures. In particular, researchers should consider how mitigation of one failure mode may increase the probability of another, for example, how beam strengthening could lead to higher ductility demands on the column and panel zone or how weld strengthening could force fractures out of the weld and into the column flange.

Nabih Youssef, S.E. is with the structural engineering firm of Nabih Youssef and Associates, Los Angeles. David Bonowitz, S.E., is based in San Francisco and is working with NYA on the SAC Survey Project. This article is based on a paper to be delivered at the National Steel Construction Conference. The first phase of the research discussed in the article was sponsored by the National Institute of Standards and Technology (NIST). John L. Gross, Ph.D., coordinated and supervised the work for NIST. Further data collection and processing was performed by Nabih Youssef & Associates under contract to the SAC Joint Venture (SAC), a partnership of the Structural Engineers Association of California, the Applied Technology Council, and California Universities for Research in Earthquake Engineering. Funding for the SAC work was provided by the Federal Emergency Management Agency (FEMA). SAC and FEMA do not endorse any findings or conclusions and are not responsible for any losses sustained as a result of the use of information or guidance contained in this publication.
AMERICAN GALVANIZERS ASSOCIATION
12200 E. Iliff Ave., Suite 204
Aurora, CO 80014
Fax: 303/750-2900
Ph: 303/750-2909
Contact: David G. Bueche
The AGA represents the galvanizing industry in North America. It serves as a technical and information resource to those engaged in the formation and design of products to be galvanized.
AGA services include disseminating of technical and product application information through publications, videotapes and seminars.
NSCC Booth # TBA
For more information, Circle # 103

APPLIED BOLTING TECHNOLOGY
P.O. Box 255
Ludlow, VT 05149
Ph: 802/228-7390
Fax: 802/228-7204
Manufactures a full-line of Direct Tension Indicators (DTIs) to ASTM F959-94. DTIs are a simple mechanical product that can make the installation and inspection of A325 or A490 bolts much easier by eliminating the need for torque wrench inspection on buildings, bridges and industrial structures.
NSCC Booth # 511
For more information, Circle # 104

ARKANSAS STEEL PROCESSING, INC.
P.O. Box 129
Armorel, AR 72310
Ph: 501/762-1000
Fax: 501/762-1411
Contact: Bob Bronson
Offers steel processing services to structural fabricators and steel service centers. Arkansas Steel can split tees from wide flange beams, camber beams, mill columns, and offers specialized processing. Also offers fully processed floor and perimeter beams, girders, and columns; as well as cutting, drilling, coping, camber, and bolted connections. The company is located adjacent to Nucor-Yamato's wide flange mill near Blytheville.
NSCC Booth # 517
For more information, Circle # 131

BEHNERING SAW INC.
730 Hemlock Road
Morgantown, PA 19543
Ph: 610/286-9777
Fax: 610/286-9699
Contact: Joseph A. Dick
Company will feature it's HB-360/704G semi-automatic horizontal miter bandsaw with motorized miter setting via N.C. preselect with plus or minus 1 degree of accuracy at this year's NSCC. In addition, information will be available on the company's complete line of saws.
NSCC Booth # 224,226
For more information, Circle # 129

BOYLES GALVANIZING
625 W. Hurst Boulevard
Hurst, TX 76053
Ph: 817/268-2414
Fax: 817/282-7793
Contact: John Blackburn
Offers full range of hot dip galvanizing of steel.
New this year: "Galv-Plus" is a new process that provides a smoother, brighter finish for galvanized and is offered exclusively by Boyle's Galvanizing.
NSCC Booth # 524
For more information, Circle # 105

BULL MOOSE TUBE
1819 Clarkson Road
Chesterfield, MO 63107
Ph: 314/537-2600 ext. 262
Fax: 314/536-1225
Contact: Rolf Frederickson
Produces cold, direct formed ERW, HSLA hollow structural sections in sizes up to 12"x12"x5/8", square and 16"x8"x5/8", rectangular plus metric sizes up to 300x300x16mm and 400x200x16mm to major international certifications.
NSCC Booth # 334
For more information, Circle # 128

BULL & HURST
308 West 57th Street
Chicago, IL 60607
Ph: 312/777-7777
Fax: 312/777-7777
Contact: Curt Lamb
Offers full range of hot dip galvanizing of steel.
New this year: "Galv-Plus" is a new process that provides a smoother, brighter finish for galvanized and is offered exclusively by Boyle's Galvanizing.
NSCC Booth # 524
For more information, Circle # 105

CANDY PECK
474 E. 105th St.
Cleveland, OH 44108
Ph: 216/681-7400
Fax: 216/681-7009
Contact: Candy Peck
Produces punches, dies, punch stems, die holders, shear blades, coupling nuts and other related tooling.
NSCC Booth # 504
For more information, Circle # 67

COMEQ, INC.
P.O. Box 2193
Baltimore, MD 21203
Ph: 410/325-7900
Fax: 410/325-1025
Company distributes a wide range of metal fabricating...
machinery, including: hydraulic upstroke and downstroke press brakes and hydraulic shears; hydraulic and mechanical shears and pipe and tube benders; hydraulic iron-workers and single-end punches; hydraulic press brakes; angle and plate bending rolls, beam benders, joggles and welding positioners.

New this year: GEKA has introduced a CNC X-Y Positioning Table.

NSCC Booth # 205, 304

For more information,
Circle # 68

CONTROLLED AUTOMATION INC.

P.O. Box 530
Bryant, AR 72022
Ph: 501/557-5109
Fax: 501/557-5618
Contact: Buck Rogers
Specialist in retrofitting existing fabrication equipment, including: Angle Lines (all brands); Beam Lines (all brands); Drill Lines (all brands); Plate Punches; and Plate Cutting Machines. Also sells new machinery, including: Angle Lines; Beam Lines; Plate Punches; Conveyor Systems; Portable Punch Systems; Marking Units; and Band Saws.

NSCC Booth # 523

For more information,
Circle # 106

DESIGN DATA

121 South 13th Street
Lincoln, NE 68508
Ph: 402/476-8278 or 800/443-0782
Fax: 402/476-8354
Contact: Doug Evans
This totally integrated software system encompasses the entire steel industry. Modules include: Detailing; Engineering, Analysis & Design; Estimating; and Production Control. The Detailing Module uses a solids modeling approach to create an exact replica of what is to be erected in the field. The Analysis and Design Module calculates forces, stresses and displacements and designs the structure taking into account all modes of failure and serviceability limits. All of the material can be transferred electronically or entered manually.

NSCC Booth # 221, 320

For more information,
Circle # 93

E.J.E. INDUSTRIES, INC.

287 Dewey Ave.
Washington, PA 15301
Ph: 412/228-8841 or 800/321-3955
Fax: 412/228-7668
Contact: Edward F. Easterday
New version of company’s Structural Material Manager software system is now available. New this year: V.5.1, the 11th release in the last decade, has a new Estimating Module that now incorporates a Master Price File feature. Also, the Plate-Nesting Module’s reports now consume up to 50% less paper while drawing optimal cutting patterns, thanks to the addition of “autoscaling” logic. Finally, the system’s Production-Control Module now displays a running tally of the current truck weight as items are entered on a Shipping Ticket.

EDISONWELDING INSTITUTE (EWI)

1100 Kinnear Road
Columbus, OH 43212-1161
Ph: 614/485-8400
Fax: 614/486-9528
Contact: Harvey Castner
EWI offers a full range of services in materials joining technology for steel construction and manufacturing, including process selection and optimization, contract R&D, FEAFEM, and failure analysis.

NSCC Booth # TBA

For more information,
Circle # 108

ELCO INDUSTRIES/ CONSTRUCTION PRODUCTS DIVISION

P.O. Box 7009
5110 Falcon Road
Rockford, IL 6115-7009
Ph: 800/435-7213
Fax: 815/397-8986
Contact: Pat Monahan
Elco will display its Dril-Flex self drilling fasteners and its HangerMate threaded rod anchoring system at this year’s NSCC.

NSCC Booth # 214

For more information,
Circle # 109

FAB/TROL SYSTEMS INC.

1655 West 11th Ave.
Eugene, OR 97402
Ph: 503/485-4719
Fax: 503/485-4302
Contact: Sue Landis
Offers an integrated suite of software programs designed to improve the management of structural, miscellaneous, and general fabrication shops. Includes estimating, auto-laboring, nesting, inventory and remnant control, purchase order, production control, and shipping modules. Programs interface with American Contractors Accounting Software and with most major CAD programs, creating an integrated system. The software comes with an expandable database, creating the equivalent of a computerized AISC manual.

New this year: Fab/Trol V5 for Windows and DOS, plus Auto/Labor, Schedule/Mate and Bar/Coder modules.

Also, American Contractors Accounting Software will be joining Fab/Trol at the NSCC this year.

NSCC Booth # 434

For more information,
Circle # 94

FRANKLIN MANUFACTURING

Highway 243, Industrial Prk.
Russellville, AL 35653
Ph: 205/332-0143
Fax: 205/332-0143
Contact: Mike Liveoak
Custom designs, manufactures, and installs machinery ranging from manual control fabrication equipment such as portable hydraulic punches, shears and plate rolls to complete CNC controlled machinery, including angle fabricators, plate fabricators, bus bar fabricators, drill...
bolts, eye bolts and other structural specials up to 4" in diameter. Products are offered in ASTM A36, A449, A325, A568 and A490. Also, a complete line of A325 and A490 TC bolts and standard hex bolts (plain, hot dipped and mechanically galvanized) are offered.

NSCC Booth # 525
For more information,
Circle # 101

HUCK INTERNATIONAL
8001 Imperial
P.O. Box 8117
Waco, TX 76714
Ph: 817/776-2000
Fax: 817/751-5259
Contact: Don Shell
Offers high-strength blind bolts, lock pin and collar fastening systems, and blind fasteners in various materials and finishes. Custom variations are available for specific performance requirements.

New this year: High-strength blind bolting for hollow-structural sections.

NSCC Booth # 327
For more information,
Circle # 111

ITW BUILDEX
1349 W. Bryn Mawr Ave.
Itasca, IL 60143
Ph: 708/595-3500
Fax: 708/595-3569
Contact: Ralph Tenuta
Complete line of fastening systems to attach metal decking. Systems utilize self-drilling screws and powder activated pins.

NSCC Booth # 303
For more information,
Circle # 110

INDIANA FASTENER —
DIV. OF BIRMINGHAM
FASTENER MANUF.
P.O. Box 151
Auburn, IN 46706
Ph: 800/395-2658
Fax: 219/927-8909
Contact: Peter F. Kasper
Offers a wide range of cold-forged and hot headed construction fasteners, including structural bolts in Grades A307, A325 and A490, as well as anchor bolts, lag rods, eye bolts, etc. Product line includes metric structural fasteners, twist-off bolts, and galvanized or Duracoat finished bolting. Company specializes in testing for bridge and highway use. New this year: Metric structural bolting and Duracoat extended corrosion resistance coatings.

NSCC Booth # 526
For more information,
Circle # 112

JANCY ENGINEERING
2735 Hickory Grove Road
Davenport, IA 52804
Ph: 319/391-1300
Fax: 319/391-2323

New!
Pocket-Sized
Bolting Manual

a must for fitters, ironworkers and inspectors

Detailed illustrated step-by-step instructions for performing bolt installation using:
- Turn-of-the-Nut
- Calibrated Wrench
- Twist-Off Bolts
- Direct Tension Indicators

Detailed inspection procedures specific to each installation method

Pre-installation testing procedures specific to each installation method

Discussions of snugging joints, lubrication, torque, stripping, stickout, over-tightening, systematic tightening and other provisions

Product identification marks

Manufacturer identification marks

Bolt, nut and washer dimensions

Bolt/nut compatibility tables

FHWA / AASHTO procedures

Rotational-capacity test procedures

Grip/bolt length tables, and more

1-10 copies $ 9.00 each
11-50 copies $ 8.00 each
51+ copies $ 7.00 each

For orders under $75.00, add $4.00 s/h.
Michigan residents add 4% sales tax.
Prepayment by check, Visa or Mastercard.

Steel Structures Technology Center,
40612 Village Oaks Dr. • Novi, MI 48375
phone (810)344-2910 • fax (810)344-2911

Please circle # 87

Please circle # 21
Use these cards to request information from manufacturers and other companies mentioned in this issue. Simply circle the numbers referenced in the advertisement or article, fill out the rest of the information requested on the card, and either mail it to: Modern Steel Construction, Creative Data Center, 650 South Clark St., Chicago, IL 60605-9960 or fax it to: 312/922-3165.

<table>
<thead>
<tr>
<th>Name</th>
<th>Company Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
<th>Business Telephone</th>
<th>Fax Number</th>
</tr>
</thead>
</table>

For free information on advertisers and other companies mentioned in this issue, circle the appropriate number below:

| 1 2 3 4 5 6 7 8 9 10 11 12 | 13 14 15 16 17 18 19 20 21 22 23 24 | 25 26 27 28 29 30 31 32 33 34 35 36 | 37 38 39 40 41 42 43 44 45 46 47 48 | 49 50 51 52 53 54 55 56 57 58 59 60 | 61 62 63 64 65 66 67 68 69 70 71 72 | 73 74 75 76 77 78 79 80 81 82 83 84 | 85 86 87 88 89 90 91 92 93 94 95 96 | 97 98 99 100 101 102 103 104 105 106 107 108 | 109 110 111 112 113 114 115 116 117 118 119 120 | 121 122 123 124 125 126 127 128 129 130 131 132 |

1. **Type of work**
 - Please circle all that apply:
 - a. Bridges
 - b. Office Buildings
 - c. Hospitals
 - d. Retail
 - e. Industrial
 - f. Schools
 - g. Multifamily
 - h. Institutional
 - i. Low-Rise
 - j. High-Rise

2. **Your position**
 - Please circle ONLY one:
 - a. Owner/President
 - b. Chief Engineer/ Chief Architect/ Department Head
 - c. Staff Engineer/ Staff Architect/ Construction Manager
 - d. Other

3. **Type of business**
 - Please circle ONLY one:
 - a. Structural engineer
 - b. Civil engineer
 - c. Structural steel fabricator
 - d. Other fabricator
 - e. Educator/library
 - f. Architect
 - g. Building owner/developer
 - h. Steel mill
 - i. Erector
 - j. Steel product manufacturer
 - k. GC/CM
 - l. Student
 - m. Other

4. **Reason for Inquiry**
 - Please circle ONLY one:
 - a. Information file
 - b. Immediate or Future Purchase

Check this box to renew or start a **FREE** subscription to Modern Steel Construction. *This offer good only for practicing professionals within the U.S.*
Use these cards to request information from manufacturers and other companies mentioned in this issue. Simply circle the numbers referenced in the advertisement or article, fill out the rest of the information requested on the card, and either mail it to: Modern Steel Construction, Creative Data Center, 650 South Clark St., Chicago, IL 60605-9960 or fax it to: 312/922-3165.
Contact: Robert Debacker
Manufacturers of SLUGGER portable magnetic drilling machines and annular center-free cutting tools, capable of producing up to 2\(\frac{3}{4}\)" diameter holes through 3" carbon steel in seconds.
SLUGGER drills do not require pre-drilling or reaming and produce concentric burr-free holes in seconds. Drilling machines can be easily converted for use with twist drills to \(\frac{1}{4}\)" diameter. Cutters are available in both standard and metric sizes as well as popular truck frame bolt sizes.

New this year: JM-5000 Drilling Machine and JM-150 Drilling Machine
NSCC Booth # 305
For more information, Circle # 72

J&M TURNER INC.
1310 Industrial Boulevard
Southampton, PA 18966
Ph: 800/525-7193
Fax: 215/953-1125
Manufacturers Direct manufacturers of SLUGGER portable magnetic drilling machines and annular center-free cutting tools, capable of producing up to 2\(\frac{3}{4}\)" diameter holes through 3" carbon steel in seconds.

Contact: David Goetsch
Structural steel specialists in cutting (cold saw and band saw) and material transport. Cold saw applications are served with the "HDM" series, which specializes in the 24" to 48" range. Band saw applications are served with twin Colamne machines, which range from 14" to 40" capacity.

New this year: The HDM-1430, an automatic cold saw capable of full CNC structural cutting, fully automates material handling, length measurement, material optimization, sorting, transfer, and discharge applications.

NSCC Booth # 219
For more information, Circle # 113

KALTENBACH, INC.
P.O. Box 1629
Columbus, IN 47202
Ph: 812/342-4471
Fax: 812/342-2336

Guaranteed to be the BEST beam program ever or your money back!
RAMSBEAM, a single steel/steel composite beam program utilizing a Windows graphical interface. Features: ASD or LRFD; vibration analysis; checks existing framing or optimizes new. Allows for depth restrictions, cantilever beams; partial or full composite and unbraced flange conditions; includes SI/Metric units.

Special Limited Time Offer $150
Ram Analysis
5315 Avenida Encinas, Suite 220
Carlsbad, CA 92008
Tel. 800-726-7789 • Fax. 619-431-5214

CALL TODAY FOR YOUR FREE DEMO KIT!

EJ. E. INDUSTRIES, INC.
257 Devoy Avenue, Washington, PA 15301
1-800-321-3955 or 412-228-8841

Hands-off experience.

Please circle # 46
LINCOLN ELECTRIC CO.
22801 St. Clair Ave.
Cleveland, OH 44117
Ph: 216/481-8100
Fax: 216/486-1751
Contact: Dave Hutchens
Company will display a variety of power source welders and wire feeders at this year's NSCC. Included will be the Commander 400 engine-driven stick welder and a number of other engine drives as well as high productivity power source/wire feeder combinations. New this year: The Commander 400 is a reliable, industrial engine-driven DC stick welder with AC power. Also offers flexibility to pick and place with a lift hook and an easy fork-lift access.
NSCC Booth # 309, 311
For more information, Circle # 57

LOHR STRUCTURAL FASTENERS
P.O. Box 1387
Humble, TX 77032
Ph: 800/782-4544
Fax: 713/821-5216
Company will demonstrate the domestic high-strength rapid tension bolt system. The system provides structural joint integrity, higher installed tensions, while reducing installation and inspection costs.
NSCC Booth # 203, 302
For more information, Circle # 130

MNH-SMRF SYSTEMS
3151 Airway Ave.-N-1
Costa Mesa, CA 92626
Ph: 800/475-2077
Fax: 714/40-0319
Contact: Gary D. Myers
The company's new column and beam connection system for steel moment frames is available for new and retrofit construction. The connection eliminates full penetration welds and associated UT testing and inspection, as well as through thickness problems of column flange and restrained pre-stressed welds.
NSCC Booth # 404
For more information, Circle # 114

MID SOUTH BOLT & SCREW CO.
499 Cave Road
Nashville, TN 37210
Ph: 800/251-3520
Fax: 615/885-6542
Manufactures anchor bolts, plate & sleeve assemblies, tie rods, studs, swedge bolts, U-bolts, hex bolts and eye bolts. Offers structural bolts, nuts & washers in A325 and A490; also tension control bolts. Various grades and materials, including galvanized, are available.
NSCC Booth # 424
For more information, Circle # 115

NAPTECH INC.
851 S. Freeport Industrial Parkway
Clearfield, UT 84015
Ph: 801/773-7300

Performance Software
For the Steel Industry

DTI SOFTWARE EQUALS PERFORMANCE

Engineering Analysis = Economy
Computerized Detailing = Accuracy
Metric Output = Flexibility
Material Management = Control
Fabrication (CNC) Downloads = Efficiency

Software from Design to Erection

Call: 1-800-467-0096 1-615-584-0096

DTI
Dogwood Technologies, Inc.
P.O. Box 52831 • Knoxville, TN • 37950-2831

Please circle # 93

DESCON
STEEL CONNECTIONS
DESIGN AND DETAILING PROGRAM

For a Free Demo Disk Call or Write
OMNITECH ASSOCIATES
P. O. Box 7581
Berkeley, CA 94707-0581
(510) 658-8328

Please circle # 52
Fax: 801/773-5185
Contact: Rick Renz or David Murphy
Specializes in structural steel hot induction bending for squares, rectangles, I-beams, and pipe.
NSCC Booth # 234
For more information, Circle # 116

N.C. ENGINEERING CO.
#228-4664 Lougheed Highway
Burnaby, British Columbia
V5C 5T5 CANADA
Ph: 604/293-0003
Fax: 604/293-0197
Contact: David Easingwood
Provides structural and miscellaneous steel detailing services. Company, which was established in 1966, has 2,500 hours/week production capacity (staff of 62).
NSCC Booth # 235
For more information, Circle # 117

NUCOR-YAMATO STEEL
P.O. Box 1228
Blytheville, AR 72316
Ph: 501/762-5500 or 800/289-6977
Fax: 501/763-9107
Contact: Robert W. Johns
This joint venture steel company produces wide flange structural shapes from W6x15 to W40x397, H-piling sections from HP8x367 to HP14x117, selected channel and miscellaneous channel sections, and a variety of specialty sections. Available steel grades include ASTM A36, ASTM A572 Grades 50 & 60, ASTM A588 (and its equivalents, including ASTM A709), CSA 40.21 Grade 44W, ABS Grades AH32 & AH36 and other specialty grades.
NSCC Booth # 530, 532, 534
For more information, Circle #39

PEDDINGHAUS CORP.
300 N. Washington
Bradley, IL 60915
Ph: 815/937-3800
Fax: 815/937-4003
Contact: Lyle Menke
This year's NSCC exhibits include:
• AFCPS-623-K Anglemaster, which features the proprietary Peddimat roller feed drive and measuring system that previously were not available on any CNC angle fabrication lines
• Twin Column Structural Steel Band Saw 38/18 with guillotine approach for maximized efficiency
• FPB Plate Punching and Air Plasma Cutting System (AFCPS 623K), which offers an economical solution for the automatic production of plate components that require punching, burning, marking and cutting
NSCC Booth # 313, 315, 412, 414

Call toll free 1-800-322-1487
Das Consulting, Inc.
866 Turnpike Street
North Andover, MA 01845 USA
(508) 794-1487 • FAX: (508) 685-7230
Modern Steel Construction / May 1995 / 61
design and drafting of steel buildings. The program automates the process of designing steel beams, girders, joists, joist girders, columns and base plates. It allows the design engineer to build a model of the entire building graphically, with the program automatically computing the tributary loads for all members. Designs in either LRFD or ASD, and offers different alternatives for comparison. RAMSBEAM is a full featured single beam design program, excellent for designing one beam at a time. It analyzes or designs any loading for either steel or steel composite beams and girders. LRFD and ASD designs can be compared at the click of a button. New this year: RAMSTEEL V4.1 includes direct importing of DXF CAD drawings. RAMSBEAM V2.0 includes graphical data verification, unbraced flange design check, and on-line help.

NSCC Booth # 215
For more information, Circle # 81

RESEARCH ENGINEERS
22700 Savi Ranch
Yorba Linda, CA 92687
Ph: 714/974-2500
Fax: 714/974-4771
Contact: John Putnam
Company will be displaying its world-class structural engineering software at this year’s NSCC. Included will be STAAD-III, AutoSTAAD and STAAD-Mate.
NSCC Booth # 402
For more information, Circle # 34

ROMAR ELITE AUTOMATION INC.
P.O. Box 3417
Tustin, CA 92681-3417
Ph: 714/569-1050
Fax: 714/569-1009
Contact: Peter J. Janes
Specializes in new and used steel fabrication equipment, including: beam coping machines; material handling systems; measuring devices for structural fabricators; column rotators; and web punches. New this year: Tank turning rolls; positioners; manipulators; box column production line; welded beam line; tank welders; and other automated equipment.

NSCC Booth # 318
For more information, Circle # 119

SAWS INTERNATIONAL
1206 Kishwaukee St.
P.O. Box 3111
Rockford, IL 61106
Ph: 815/965-6900
Fax: 815/965-0761
Contact: Fan Vincent
Manufactures: HSS solid blades; segmental saw blades; friction saw blades; carbide tipped blades; bandsaw blades; and cutting fluid.

NSCC Booth # 505
For more information, Circle # 120

SOFTDESK, INC.
7 Liberty Hill Road
Henniker, NH 03242
Ph: 603/428-3199
Fax: 603/428-7665
Contact: Christine Ek
The world’s largest AutoCAD developer (more than 100,000 customers worldwide) offers a complete suite of integrated structural software. Softdesk products handle the complete structural process, including modeling, link to an industry standard analysis program, and automation of the generation of design/construction and fab-
Southern Coatings
P.O. Box 160
Sumter, SC 29151
Phone: 803/775-6351
Fax: 803/775-7666
Contact: Skip Pendry
Offers a full-line of VOC compliant coatings for industrial use. All coatings include high solids and water borne coatings. Products include: Chemtec 608 Inorganic Zinc Rich; Dura-Pox 646 Epoxy Mastic High Build; Enviro-Guard Build Urethane; and VOC compliant dipping primers. New this year: Tint-based color systems for all major lines that afford an extensive color selection and fast shipment of special colors.
NSCC Booth # 209
For more information, Circle # 121

Steel Solutions Inc.
Rt. 3 Box 312A
Buckhannon, WV 26201
Phone: 304/472-2668
Fax: 304/472-3214
Contact: Ron Taylor
STRUCTURAL STEEL SYSTEMS
3763 Lower Saucon Road
Hellertown, PA 18055
Phone: 610/838-7338
Fax: 610/838-7338
Contact: Jan Hemp or Bud Panick
Specializes in buying, selling, leasing and brokering equipment typically found in structural and plate fabricating facilities. Offers technical sales personnel, service staff, remanufacturing of used equipment, retrofits and financing options.
NSCC Booth # 314
For more information, Circle # 127

Timberline Software
9600 S.W. Nimbus
Beaverton, OR 97008
Phone: 503/526-8049
Fax: 503/526-8049
The Precision Collection estimating package offers an easy-to-use spreadsheet format and a pre-built steel database. Crew capabilities, a dimensional audit trail and database security are also available. The software integrates with job cost, AutoCAD and scheduling programs.
NSCC Booth # 409, 411
For more information, Circle # 123

TradeARBED
825 Third Ave.
New York, NY 10022
Phone: 212/486-9890
Fax: 212/355-2159
Contact: J.C. Gerardy
ARBED manufactures unique, high-quality products, including:
• Tailor-made wide flange beams in both standard and jumbo sizes (from 24" to 36" up to 798 lbs./ft., as well as 40" and 44" deep beams)
• HISTAR quality steels (ASTM A913) in Grades 50, 60, 65 and 80; the material is ideal for gravity columns and trusses and has high-strength, good toughness and superior weldability
• HISTAR H bearing piles
• Steel sheet piling & steel wall program
• Tees, girder and crane rails
• KRYBAR (special ultra low temperature reinforcing bars)
NSCC Booth # 502
For more information, Circle # 35

Voss Engineering
6965 N. Hamlin Ave.
Lincolnwood, IL 60645
Phone: 708/673-8900
Fax: 708/673-1408
Contact: Glen Adams
Products Include:
• Dura-Pox; and
• Structural building materials, bearing pads and bearing assemblies for bridges and commercial structures.
Products featured at the NSCC will be: NEOSORB (AASHTO grade Neoprene pads); VOSSCO (Random Oriented Fiber Pads); SORBTEX (preform fabric pads); and FIBERLAST (engineering ROF pads). In addition, information will be available on PTFE Expansion Bearings.
NSCC Booth # 125
For more information, Circle # 124

Wasser High-Tech Coatings, Inc.
80415. 228th St.
Kent, WA 98032
Phone: 206/850-2967
Fax: 206/850-3098
Contact: Bill Brinton, Jr.
Manufactures single-component moisture-cure urethane high-performance coatings. The product offers numerous advantages over two-part epoxy and urethane coatings and inorganic zinc coatings, including the ability to apply in very cold, damp or high-humidity conditions. New this year: Zero VOC and less than 100 grams per liter VOC single-component moisture-cure urethane product line. Also, accelerated single-component moisture cure coatings that can be overcoated in less than 30 minutes.
NSCC Booth # 425, 427
For more information, Circle # 50

Yamazen Inc.
735 E. Remington Road
Schaumburg, IL 60173
Phone: 708/882-8800
Fax: 708/882-4270
Contact: Shin Takabe or Amy Komeda
Offers structural band saw machines and CNC structural drilling machines. The saws feature a patented amplifying valve feed system, unique three contact point mitering method, six degree saw bowl angle and carbide roller ring back-up guides. The CNC drilling machines features an exclusive “fixed work piece-travelling spindles” method, which allows for faster hole location without repositioning heavy beams and results in greater accuracy.
NSCC Booth # 225, 324
For more information, Circle # 80
THERE IS ONLY ONE DFA SUPERCAGE™ FOR THREE DIFFERENT APPLICATIONS

1. Attach directly to boom point

2. Suspend from crane hook with 4 or 5 part lifting bridle assembly

3. With forklift

For More Information:

UNITED STATES CRANE, INC.
P.O. Box 593290, Orlando, FL 32859 1-(800)-327-0300 1-(407)-859-6000 FAX 1-(407)-857-9146

SUPER CAGE PRODUCTS ARE CERTIFIED TO MEET OR EXCEED APPLICABLE OSHA, STATE AND FEDERAL REGULATIONS
STAAD3-2D
State-of-the-art 2D Structural Analysis and Design Software for $595

Research Engineers, Inc. is proud to announce the arrival of STAAD3-2D, the most comprehensive 2D Structural Analysis and Design software in today's industry. STAAD3-2D is the 2D version of RE's world famous structural software STAAD-III. Equipped with powerful Analysis/Design, brilliant GUI, easy Visualization/Verification, and flexible Report/Query facilities, STAAD3-2D represents the true state-of-the-art in modern structural engineering.

STAAD3-2D supports STEEL/CONCRETE/ TIMBER design per AISC (ASD & LRFD), ACI and AITC codes. With a price tag of $595, it offers you the best value for all your 2D structural needs.

Research Engineers, Inc.
22700 Savi Ranch
Yorba Linda, CA 92887
Toll Free: 1-800-FOR-RESE
Fax: (714) 974-4771

StruCAD®3D
The Flagship Product for 3D Structural Analysis & Design

• Pop-Up & Pull-Down Menus
• Wind & Gravity Load Generation
• Truly Interactive 3D Graphics
• Pre- and Postprocessing
• 3D AutoCAD Interface (in & out)
• Detailed Fatigue Analysis
• Reinforced Concrete Design

Prices start at only $249
Zentech, Inc. 8582 Katy Freeway, #205, Houston, TX 77024 Tel (713) 884-9171 Fax (713) 884-9175

Structural & Miscellaneous Steel Detailing CAD Programs
AutoCAD parametric LSIP programs for preparing structural AND misc. steel shop drawings. All programs have been updated for 1996 and new programs have been added. Anchor bolts to roof opening frames and "everything in between". Imperial and metric versions with USA, Canadian and European steel sections. 45-DAY MONEY BACK GUARANTEE. Discounts up to 30%. Buy only what you need. Used in the field for 8 years. Programs written by a detailer with 30 years experience. Extremely "flexible" programs. FREE telephone support. No maintenance fee. Reasonable yearly update fee. EXCELLENT PROGRAMS at a REASONABLE PRICE. Call for a FREE demo disk, list of programs, and prices.

SSDCP
110 Shady Oak Circle, Florence, MS 36037 Tel: 601-845-2146 (fax same)

HEWLETT-PACKARD
Computers/Peripherals
A complete line of used and refurbished HP Equipment to fill all your computer needs. Laser printers, scanners, disk drives, plotters (Draftpro, DrafterMaster & Designjet), PC's and 9000 series workstations are available for immediate delivery. Call our toll free number for additional information and pricing.

Ted Dasher & Associates
4117 2nd Avenue South
Birmingham, AL 35222
800-638-483 Fax (205) 581-1108

Images—3D
2-D/3-D Structural/Finite Element Analysis
Easy to learn and use
Shear & Moment Diagrams
AISC Code Check
Large Problems to 3,000 Joints
Complete Static Package—Only $795
Celestial Software, 2150 Shattuck Ave., Suite 1200
Berkeley, CA 94704
Tel: 510-843-0977 / Fax: 510-848-9849
Fifty-node fully functional evaluation package for only $49.95

FOR SALE
NORTHERN COLORADO FRONT RANGE STEEL FABRICATION BUSINESS
Fabricate components for Utility Companies $1,000,000 plus gross per year.
Price $750,000 including real estate.
Call Larry or Bill
F&M Land Co. (970) 484-9088

HELP WANTED
STRUCTURAL STEEL ESTIMATOR
Large Midwest Structural Steel Fabricator has a requirement for a Structural Steel Estimator with a minimum of 10 years experience. Please mail your resume & salary requirements to:

Carter Steel and Fabricating Co.
P.O. Box 70
Bellefontaine, OH 43311-0070
Attn: Personnel Manager

Help Wanted
CHIEF DRAFTSMAN
Well established AISC Certified Category II medium size structural and miscellaneous fabricator needs well qualified department head. Reply in confidence via fax or mail to:

Stein Steel & Supply Company
P.O. Box 17907
Atlanta, GA 30316
Attn: Bert Stein, President
Fax: (404) 523-8415

Metrossoft Structures, Inc. is looking for a motivated individual to join our growing team. Duties will include sales and pre-sales support of leading structural analysis software package ROBOT V6. Good working knowledge of competing products a plus. We offer a competitive salary and an excellent benefits package. Please send resumes to Metrosoft Structures, Inc., 332 Paterson Ave., E. Rutherford, N.J. 07073, Attn: Personnel, or you may fax it to us at (201) 438-7058.

Help Wanted — Draftspeople/Checkers
Multi-location structural steel fabricator located in the beautiful Ozarks of Missouri is seeking experienced structural steel draftspeople and checkers. Must be self motivated and want a challenging job. AutoCAD-DCA or PDS cad experience a plus. We offer a competitive salary with benefits.

B&D Fabrication
2431 Stephens Blvd.
Joplin, MO 64801
Doing Steel, Inc.
2125 North Golden
Springfield, MO 65803

"California Structural Engineering Exam Review Manual"
Complete problem statements and solutions for the last 8 years of California Structural exam are presented (except the bridge problems). The main volume ($150) includes the 1990-1994 exam problems. These solutions are in a word processed form with extensive use of computer generated drawings for additional clarity. The 1987 thru 1989 solutions ($25 each) are also available as supplements. All solutions are per 1991 UBC, 1989 ACI and ASD manuals. Specific solutions and page numbers are printed at the sides of pages to provide ease and quickness for the user. To inquire about the technical contents, contact the editor, Ben Yousefi, S.E., at 619-236-7368. To order, call Bernie or Elisa at 619-236-7075.
Structural Software Solutions from Softdesk
The World's Largest Developer for AutoCAD

Softdesk Structural Plans & Elevations
- Comprehensive set of tools to create design/construction drawings
- Automated geometry and annotation features based on material data

Softdesk Details
- State-of-the-art parametric programs for creating structural details
- Supports AIA CONDOC formatting and keynoting
- w/link to spec. files
- Customizable material management system stores, retrieves and scales details drawings

Softdesk Steel Detailer
- Parametric programs for generating shop drawings including beams, columns, braces, stairs, anchor bolts and more
- Automatically generates Bill of Material and project level reporting
- Graphical modeler with visualization and error checking tools
- 2-way link to STAAD-III for creating and updating model automatically
- Complete plan, section, and elevation generations

Call for a free brochure and preview disk!
Softdesk, Inc., 7 Liberty Hill Road, Henniker, NH 03242
Tel (603) 428-3191 ext. 95 Fax (603) 428-7901

WE PROVIDE
CADD STRUCTURAL STEEL DESIGN/Detailing
for Engineers, Fabricators and Contractors
JOHNSON TECHNICAL SERVICES
2509 South Paul St., Suite 4B
Baltimore, MD 21218
(410) 243-3269 FAX (410) 243-1963

AISC Certification
Categories I, II, III
Do you want to become certified but are just buried with work?
I offer assistance with the necessary paperwork plus training for your people.
McGowan Technical Services, Inc.

AISC Professional Membership
Receive a FREE Manual of Steel Construction and 25% discounts on AISC publications, seminars and the National Steel Construction Conference. In addition, be eligible to serve on AISC Committees.

For more information, contact:
LeAnn Schmidt at 312/670-5432.

Comprehensive Review Manuals
SE and PE (Civil) License
Call/write for detailed brochures. PEDP, Inc., 5912 Bolsa Ave., Suite 108-MSC, Huntington Beach, CA 92649;
(714) 898-3658; Fax (714) 898-4635

GT STRUDL ADINA
Static, Dynamic, Linear, Nonlinear & Pushover Analysis
Straight & Curved Steel Bridge Model & Load Generator
SC Solutions, Inc.
Tel (415) 903-5050 Fax (415) 691-9452

Advertisers' Index

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page Number</th>
<th>Circle No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISC</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>ATIR Engineering</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>American Punch</td>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>Nicholas J. Bouras</td>
<td>CBI</td>
<td>33</td>
</tr>
<tr>
<td>Braga Holcome Engineering</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Bristol Machine</td>
<td>39</td>
<td>62</td>
</tr>
<tr>
<td>CASE</td>
<td>54</td>
<td>72</td>
</tr>
<tr>
<td>CAST</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>CDS</td>
<td>27</td>
<td>63</td>
</tr>
<tr>
<td>Cadvantage</td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td>Cadex Oy</td>
<td>21</td>
<td>107</td>
</tr>
<tr>
<td>Canam Steel</td>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>Central Steel Service</td>
<td>27</td>
<td>65</td>
</tr>
<tr>
<td>Chaparral Steel</td>
<td>11</td>
<td>43</td>
</tr>
<tr>
<td>Chicago Metal Rolled</td>
<td>55</td>
<td>66</td>
</tr>
<tr>
<td>Columbus Galvanizing</td>
<td>insert</td>
<td>102</td>
</tr>
<tr>
<td>Coenq</td>
<td>55</td>
<td>68</td>
</tr>
<tr>
<td>Computer Detailing</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Computers and Structures Inc.</td>
<td>CIV</td>
<td>31</td>
</tr>
<tr>
<td>Cooperheat</td>
<td>38</td>
<td>42</td>
</tr>
<tr>
<td>DAS Consulting</td>
<td>26</td>
<td>82</td>
</tr>
<tr>
<td>Design Data</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>DetailCAD</td>
<td>49</td>
<td>24</td>
</tr>
<tr>
<td>Dogwood Technologies</td>
<td>60</td>
<td>93</td>
</tr>
<tr>
<td>Dyson</td>
<td>42</td>
<td>25</td>
</tr>
<tr>
<td>EJE Industries</td>
<td>59</td>
<td>46</td>
</tr>
<tr>
<td>Grinder Software</td>
<td>61</td>
<td>83</td>
</tr>
<tr>
<td>GTStrudl</td>
<td>53</td>
<td>71</td>
</tr>
<tr>
<td>Integrated Engineering Software</td>
<td>58</td>
<td>87</td>
</tr>
<tr>
<td>Jobber Instruments</td>
<td>52</td>
<td>43</td>
</tr>
<tr>
<td>Larsa</td>
<td>51</td>
<td>88</td>
</tr>
<tr>
<td>Lejune Bolt</td>
<td>40</td>
<td>73</td>
</tr>
<tr>
<td>MDX Software</td>
<td>20</td>
<td>47</td>
</tr>
<tr>
<td>MHN-SMRF Systems</td>
<td>20</td>
<td>114</td>
</tr>
<tr>
<td>M-Marin</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Metrosoft</td>
<td>CII</td>
<td>51</td>
</tr>
<tr>
<td>Mid-South Bolt</td>
<td>18</td>
<td>74</td>
</tr>
<tr>
<td>Mound Architectural</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Naptch Inc.</td>
<td>50</td>
<td>116</td>
</tr>
<tr>
<td>Nucor Fastener</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>Nucor Yamato</td>
<td>14-15</td>
<td>39</td>
</tr>
<tr>
<td>Omnitech</td>
<td>60</td>
<td>52</td>
</tr>
<tr>
<td>Optimate</td>
<td>33</td>
<td>53</td>
</tr>
<tr>
<td>RISA Technologies</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>Ram Analysis</td>
<td>33</td>
<td>41</td>
</tr>
<tr>
<td>Rambeams</td>
<td>59</td>
<td>81</td>
</tr>
<tr>
<td>Research Engineers</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>St. Louis Screw & Bolt</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>Steel Structures Technology Cen</td>
<td>58</td>
<td>21</td>
</tr>
<tr>
<td>SteelCAD</td>
<td>48</td>
<td>84</td>
</tr>
<tr>
<td>Steel Deck Institute</td>
<td>12</td>
<td>77</td>
</tr>
<tr>
<td>Steel Solutions</td>
<td>insert</td>
<td>98</td>
</tr>
<tr>
<td>TradeARBID</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>U.S. Crane</td>
<td>65</td>
<td>86</td>
</tr>
<tr>
<td>Vulcraft</td>
<td>34-35</td>
<td>17</td>
</tr>
<tr>
<td>Max Weiss</td>
<td>24</td>
<td>56</td>
</tr>
<tr>
<td>Whitefab</td>
<td>49</td>
<td>53</td>
</tr>
</tbody>
</table>
ROBOT V6
THE FINEST IN STRUCTURAL ANALYSIS AND DESIGN SOFTWARE

NEW RELEASE

very easy to learn and use, become a productive user in just one day
- extremely fast, shortens the concept through design cycle
- most powerful on PC platform - 3D FEM, buckling, nonlinear, P-delta, dynamic, 3D moving loads, parametric structures, phase constructions, US and foreign codes
- buy the power you need, starts from $495 version - 150 node/3D plus plate elements
- no risk, 30 day money back guarantee

See for yourself. Have fun. Any questions? Call us. 1-800-60-ROBOT

Please circle # 51

Name:
Company:
Address:
Tel.: Fax:

I am: ☐ structural engineer, ☐ architect, ☐ educator, ☐ dealer, ☐ other:
☐ Please have a product specialist call me ☐ Please send more information
☐ Please send working demo version (limited to 25 elements and 25 nodes), with recorded macros of real design examples. Enclosed is a check for $25 (plus applicable Tax in NJ and NY). I have a system equal to or better than 386SX with math coprocessor, ☐ 4 MB ☐ 8 MB RAM, 25 MB of free disk space, VGA monitor.

Metrosoft Structures, Inc. 332 Paterson Avenue, E. Rutherford, NJ 07073. Tel 201 438-4915, Fax 201 438-7058.

©1994 Metrosoft Structures, Inc. All brand and product names are trademarks or registered trademarks of their respective holders. Developer Tested Only. Novell makes no warranties with respect to this product.

UK • Germany • Italy • Belgium • Spain • Portugal • France • Brazil • Luxembourg • Poland • Jordan • Morocco
STATE OF THE ART

Structural Engineering Software

INTEGRATED ANALYSIS AND DESIGN SOFTWARE FOR STRUCTURAL AND EARTHQUAKE ENGINEERING

Developed by Ashraf Habibullah & Edward L. Wilson

For further information:
Computers & Structures, Inc.
1995 University Avenue
Berkeley, California 94704
TEL: 510/845-2177
FAX: 510/845-4096

Please circle # 31