As the city of Lewiston, ME planned construction of its 700-space Park Street parking structure, aesthetics, as well as cost and the ability to be built in phases, were major design considerations.

Located 30 miles north of Portland, ME, Lewiston was once a mill town. Like many other mill towns, its downtown suffered as the mills closed. Renovation of a vacant downtown building for use as a district courthouse was seen as a potential boon to the area’s comeback. The master plan identified a two-acre surface parking lot as the site for a new parking structure, as well as an incorporated city bus station, for the courthouse and other expected development.

Because few of the downtown buildings are over four stories high, skeptics worried that a new structure would overwhelm the surrounding buildings. In response to these worries, the RFP for design services specified that the structure be designed with a “brick façade treatment” to make it more compatible with its surroundings.

Steel’s Advantage

Platz Associates architects and Shelley Engineering, Inc. structural engineers had worked together on many previous projects, including Lewiston’s 612-space Chestnut Street steel-framed parking structure. The overriding criterion for the Chestnut Street project was cost, which is why structural steel was chosen over precast concrete.

Cost was also a major consideration for the Park Street facility. The city’s budget precluded a brick closed structure, which increased the challenge of designing a facility that would meet the city’s stated design goals. It was also decided to build the structure in two phases, as the projected parking demand would not immediately require all 700 spaces that were programmed for full build-out.

From its experience with the Chestnut Street parking structure, the design team knew the advantages of structural steel. In addition to initial cost being less than other structural systems, maintenance costs could be reduced with proper planning at the construction stage. Building a second vertical stage could be easily accomplished when the need arose, and the use of ornamental panels could provide a great deal of design possibilities. The design team was also confident that the expressiveness of painted structural steel could add visual interest to the city.

A city-appointed building committee called for the structure’s perimeter walls to look like storefronts. By taking advantage of the flexibility afforded by structural steel, the designers were able to simulate the rhythm of a downtown streetscape within budget. Vehicular and pedestrian entrances, stair towers, arches, and ornamental panels were hung between the steel columns. Some of these panels are pre-cast to provide the texture of brick, while others are steel grills of several different patterns. This was meant to break up the façade into distinct vertical sections. With different heights, these sections reflect the scale and proportions of neighboring buildings.

The northeast corner of the facility is anchored by a 2,400 sq. ft city bus station. Although they are two distinct buildings,
separated by a load bearing masonry fire-
wall, the bus station is integrated into the
design of the parking structure both visu-
ally and structurally. It is constructed of
the same structural steel system, which is
exposed as a design element in the inte-
rior. The lower portion of the perimeter
walls is brick, a tie-in to the ornamental
panels of the parking structure. The inte-
gration of these two buildings is another
indication of structural steel’s flexibility.

Framing Plans

The basic framing arrangement for the
three-level parking structure consists of
wide-flange columns spaced 18’ on cen-
ter, with wide-flange girders spanning
60’. Filler beams span the girders at 8’ on
center. The perimeter spandrel beams are
all W12s, giving the structure a light and
airy feel.

Shelley Engineering designed all steel
connections in advance of the shop draw-
ings. Connections, such as shear tabs at
the filler beams, were selected over dou-
bles-angle clips so that when each filler
beam was rotated into place it would not
scratch the paint on the girder.

The lateral system consists of end plate
moment connections and vertical braces.
The engineer and architect coordinated
their design work to detail and locate all
connections between the perimeter orna-
mental steel and the structural steel. The
typical note, “coordinate with architect,”
was not used on this project. The coordi-
nation was done up front, which was re-
lected in the results—the steel fit-up was
early perfect, with all field connections
being bolted.

Megquier & Jones, an AISC member
and the project’s steel fabricator, worked
closely with the architectural pre-cast
panel subcontractor to ensure the con-
nections between the structural steel and
pre-cast panels would fit up correctly. By
bringing the pre-cast subcontractor into
the process early, misalignment and field
welding were avoided, which reduced
the need for field touch up of the paint.
The structural and ornamental steel was
protected with Tnemec’s advanced Se-
ries 73 polyurethane paint system over
Tnemec’s 90-97 zinc primer. The paint
was factory applied with minimal on-site
touch up.

The floors of the parking structure are
galvanized metal deck with cast-in-place
6” reinforced concrete slab. To reduce
long-term maintenance costs, an elastic
wear layer was applied to the entire sur-
face, and the deck is vented to allow the
concrete to release moisture.

The Park Street parking structure was
completed August 2003 at a per-space
construction cost of $8,350. Not only did
it meet the city’s strict budget and pro-
vide necessary parking, it also has made
a positive contribution to the cityscape of
Lewiston’s downtown.

Steve Myers is a development planner for
Platz Associates.

Owner
City of Lewiston, ME

Architect
Platz Associates, Auburn, ME

Structural Engineer
Shelley Engineering, Inc., Westbrook, ME

Engineering Software
RAM Structural System

Fabricator
Megquier & Jones, Inc., South Portland, ME, AISC member

General Contractor
Granger Northern, Inc., Portland, ME