The AISC Design Examples CD will be included with the 13th Edition Steel Construction Manual and is intended to provide examples that make a practical bridge between the Manual and the 2005 Specification for Structural Steel Buildings. The emphasis of the Design Examples CD is on simplicity of design and use of the tables found in the new manual.

The Manual tables have been extensively revised to provide ready answers to the most common design problems, including tension member selection, bending member selection, column selection, design for combined loading, and connection design. An excellent example is column selection. As with previous editions of both the ASD and LRFD manuals, the fastest way to select a column is to establish the required strength and the effective unbraced length, and then enter the column tables, proceeding down the weights of members at the proper effective length until reaching the most economical column section with an available strength that equals or exceeds the required strength. One important aspect of this selection process is that the design engineer does not need to know the exact stress in the member to be confident that the selected column will carry the applied load.

The beam selection process is also similar to the process from previous editions of the ASD and LRFD manuals. Only the maximum required moment strength and the unbraced length are needed to select an appropriate member using the available moment versus unbraced length charts. The section curve that is above and to the right of the moment-unbraced length coordinates is the one to be selected. Again, the exact stress in the beam can be found, but is unimportant in the selection process.

The emphasis of the design examples follows a guiding principle: quick selection.

Design a W-shape column using both LRFD and ASD

Given
Select an ASTM A992 W-shape column to carry an axial load consisting of a dead load of 140 kips and a live load of 420 kips. The column length is 30’ and the ends are pinned. Limit the column size to a nominal 14” series.

Solution

Calculate the required strength

<table>
<thead>
<tr>
<th></th>
<th>LRFD</th>
<th>ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_u</td>
<td>1.2(140) + 1.6(420) = 840 kips</td>
<td>$P_a = 140 + 420 = 560$ kips</td>
</tr>
</tbody>
</table>

Select column

From the Manual, enter Table 4-1 with an effective length of 30’ and proceed down the sizes (across the page) until a W14×132 is found, which has sufficient available strength to carry the axial load at this effective length. Note that for an effective length of 30’, the available axial load capacity is 892 kips for LRFD and 594 kips for ASD. A portion of Table 4-1 is shown below.

<table>
<thead>
<tr>
<th></th>
<th>LRFD</th>
<th>ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_a</td>
<td>892 kips > 840 kips</td>
<td>o.k.</td>
</tr>
<tr>
<td></td>
<td>594 kips > 560 kips</td>
<td>o.k.</td>
</tr>
</tbody>
</table>
lection of ordinary members using the design aids of the Manual, which have already accounted for the variety of requirements of the Specification appropriate for that design aid. One very good example of the automatic adjustments included in the tables is hollow structural sections (HSS) with slender webs or flanges. While an HSS bending member with very thin walls is not sensitive to unbraced length issues, its moment strength must be adjusted to account for the slender walls. This reduction is already incorporated into the tabulated available moment strength values, and the listed value can be directly compared to the required moment strength.

As with the column and beam selection process above, the exact stress in the HSS section can be found, but is unimportant in the selection process.

The figures on the preceding page include a portion of the column available strength tables with both ASD and LRFD available strengths given. For ASD, allowable strength values are given in black text with a green background. For LRFD, design strength values are printed in blue. All of the values in the Manual follow this color scheme, with those values that apply to both ASD and LRFD printed in black with no background color.

The applied design problems using the Manual design aids are followed on the CD by more detailed calculations to illustrate how one would arrive at the same available strengths through the use of the Specification formulas. All calculations give references in the right hand column to indicate the source of the information in the Specification, Manual, or other references.

Throughout the Specification, the first provisions in each chapter address the most common cases, making the application of this Specification straightforward for the most common member designs. If noncompact or slender built-up shapes are used, designs become more challenging. Examples have also been included to address design methods for these more complicated shapes with special design considerations. Often the complexity of design may be reduced by making use of the design aids listed in the Manual or by selecting compact built-up shapes.

The Design Examples CD also includes substantial guidance on the selection and design of simple shear connections, largely by illustrating the use of the tables of the Manual. In both the examples and in the Manual, information for both LRFD and ASD is presented side by side.

In addition to these features, the Design Examples CD includes coverage of all other design requirements of the Specification, from bracing requirements to combined forces. This work is expected to serve as a useful reference for understanding and applying the 2005 AISC Specification for Structural Steel Buildings and the 13th Edition Steel Construction Manual.

Charles Page is President of Page McNagneten Associates in Shawnee Mission, KS.