A new standard for HSS.

steelwise HOLLOW PRODUCT, SOLID BENEFIT

BY ERIKA WINTERS-DOWNEY, S.E., JIE ZUO AND MENG WANG

THIS PAST APRIL, ASTM International published a new material standard for the production of hollow structural sections (HSS).

The specification, ASTM A1085-13, is the culmination of six-plus years of work by the AISC HSS Marketing Committee, and the impetus for its creation was a list of desired improvements to the requirements in ASTM A500—e.g., designers have long asked for an elimination of the wall thickness reduction factor required for ASTM A500 to allow for simpler design calculations, as well as suitability for use in fatigue applications and better control of F_y and F_u for seismic overstrength. ASTM A1085 delivers on these wishes and more and contains several differences from ASTM A500.

Tighter Material Tolerances

For starters, ASTM A500 permits wall thickness to be as much as 10% less than the specified nominal thickness compared to a 2.5% variation permitted in wide-flange shapes. To account for this larger variation, AISC *Specification* Section B4.2 requires that the design wall thickness must be taken as 93% of the nominal wall thickness. This affects both member and connection design; the latter can have a significant reduction when the thickness term is squared or cubed.

ASTM A1085 provides two controls on cross section that do not exist or are more lenient in ASTM A500: The wall thickness must be no more than 5% under nominal and the mass must be no more than 3.5% under nominal. In most situations, the latter requirement will ultimately dictate the wall thickness. Regardless, the permitted variation of ASTM 1085 HSS is similar to that for wide-flange shapes. Accordingly, the AISC Committee on Specifications is in the process of developing provisions that we expect will allow the unreduced wall thickness to be used for design of ASTM 1085 HSS. Citing a 2011 report on HSS wall thickness variations ("Characterizing Dimensional Variability in HSS Members," prepared for AISC by C.M. Foley and A. Marquez of Marquette University), the task committee responsible for Chapter B has agreed to draft language permitting the use of the nominal wall thickness as the design wall thickness when using A1085.

Additionally:

- ➤ For the first time in an HSS specification, a minimum corner radius for square and rectangular HSS is specified. There are two ranges for acceptable corner radii, depending on the thickness of the shape. The ranges specified will serve to reduce variances outside of normal practice. Radii that are too tight can be susceptible to corner cracking, particularly during the hot-dip galvanizing process. Conversely, when radii are too large, the HSS begins to take on a rounder appearance and may not produce the desired aesthetic effect.
- ASTM A1085 is applicable for HSS up to an 88-in. periphery and wall thicknesses ranging between 0.148 in. and ⁷/₈ in. Savvy designers will notice that this precludes the production of material with ¹/₈-in. wall thickness. This limitation is a result of the CVN testing process, which cannot be performed on material thinner than the lower limit.

Yield and Tensile Strengths

For simplicity, ASTM A1085, round, square and rectangular HSS are all made in a single grade and all have the same minimum specified yield strength: 50 ksi. The minimum specified tensile strength is 65 ksi. This will simplify calculations because engineers no longer need to select from (or remember!) different yield strengths for varying grades and shapes of HSS.

ASTM A1085 is the only HSS material specification in

SEPTEMBER 2013 MODERN STEEL CONSTRUCTION

North America or Europe to place an upper limit on yield strength. All shapes are made with an upper yield strength limit of 70 ksi, which is of benefit in seismic design when the HSS is used as the ductile member.

The coefficients R_y and R_t are used in the AISC Seismic Provisions to determine the expected yield and tensile strengths. The available coefficients for other materials are derived from historic production data, which is in the process of being established for ASTM A1085. Data collection is taking place now as this product is now being produced, and the coefficients will be determined.

Standard Charpy V-Notch (CVN) Requirement

ASTM 1085 provides a defined level of material toughness: 25 ft-lbs at 40°F. This corresponds to the AASHTO fracture critical requirements in Zone 2, which encompasses most of the U.S. When a more stringent toughness is required in other zones, the specifier has the option to request a custom CVN value through supplementary requirement.

Material Chemistry

ASTM A1085's material chemistry is slightly different:

- Copper provisions of A500 were not used in ASTM A1085 to reflect current steel production practices
- Aluminum content is specified to ensure the steel is killed (oxygen is chemically bound with aluminum to improve steel soundness and facilitate production)
- Silicon content is limited to improve uniformity of coating when HSS are galvanized
- A maximum carbon equivalent limit is specified to improve weldability

Using ASTM A1085

With approval of the authority having jurisdiction, ASTM A1085 is being produced and can now be specified. Domestic producers have stated their commitment to producing HSS in ASTM A1085 and making it available; see the producer survey and other online resources available at www.aisc.org/A1085. Steel service centers also are coordinating with producers. Engineers should discuss with their steel fabricators the use of ASTM A1085.

Section properties based upon the nominal wall thickness are available. Tables 1-3 show excerpts for square, rectangular and round ASTM A1085 HSS. These tables are modeled after Tables 1-11 through 1-13 in the AISC *Steel Construction Manual*. You will notice that the design wall thickness is equal to the nominal

▼ Table 1: Typical Dimensions and Section Properties for A1085 Square HSS

	Design Wall	Nominal	A				c	-	7	Torsion		Surface
Shape	Thickness, t	Wt	Alea, A	b/t	h/t	, ·	3		2	J	С	Area
	in.	lb/ft	in. ²			in.4	in. ³	in.	in. ³	in.4	in. ³	ft²/ft
HSS10×10×34	0.750	89.50	26.3	9.73	9.7	364	72.8	3.72	89.4	610	127	3.12
×5⁄8	0.625	76.33	22.4	12.4	12.4	321	64.2	3.79	77.6	529	109	3.15
×1⁄2	0.500	62.46	18.4	16.4	16.4	271	54.2	3.84	64.6	439	89.8	3.19
×3⁄8	0.375	47.90	14.1	23.5	23.5	214	42.8	3.90	50.4	341	69.3	3.23
×5⁄16	0.313	40.35	11.9	28.7	28.7	184	36.8	3.93	42.8	289	58.6	3.24
×1⁄4	0.250	32.63	9.59	36.8	36.8	151	30.2	3.97	34.9	235	47.5	3.26
× ³ ⁄16	0.188	24.73	7.29	50.0	50.0	116	23.2	3.99	26.7	180	36.2	3.28
HSS9×9×5%	0.625	67.82	19.9	10.8	10.8	227	50.4	3.38	61.5	377	86.7	2.82
×1⁄2	0.500	55.66	16.4	14.4	14.4	193	42.9	3.43	51.4	315	71.8	2.86
×3⁄8	0.375	42.79	12.6	20.8	20.8	154	34.2	3.50	40.3	246	55.6	2.89
×5⁄16	0.313	36.10	10.6	25.6	25.6	132	29.3	3.53	34.3	209	47.1	2.91
×1⁄4	0.250	29.23	8.59	32.8	32.8	109	24.2	3.56	28.0	170	38.2	2.93
X ³ /16	0.188	22.18	6.54	44.7	44.7	84.0	18.7	3.58	21.5	130	29.2	2.95
HSS8×8×5%	0.625	59.32	17.4	9.20	9.20	153	38.2	2.97	47.2	258	67.0	2.49
×1⁄2	0.500	48.85	14.4	12.4	12.4	131	32.8	3.02	39.7	217	55.8	2.52
×3⁄8	0.375	37.69	11.1	18.1	18.1	106	26.5	3.09	31.3	170	43.4	2.56
× ⁵ ⁄16	0.313	31.84	9.37	22.4	22.4	91.0	22.8	3.12	26.8	145	36.9	2.58
×1⁄4	0.250	25.82	7.59	28.8	28.8	75.2	18.8	3.15	21.9	118	30.0	2.60
X ³ /16	0.188	19.63	5.78	39.4	39.4	58.4	14.6	3.18	16.9	90.8	22.9	2.61
HSS7×7×5%	0.625	50.81	14.9	7.60	7.60	97.6	27.9	2.56	34.8	166	49.9	2.15
×1/2	0.500	42.05	12.4	10.4	10.4	84.7	24.2	2.61	29.6	141	41.8	2.19
×3/8	0.375	32.58	9.58	15.5	15.5	68.7	19.6	2.68	23.5	112	32.7	2.23
×5⁄16	0.313	27.59	8.12	19.2	19.2	59.6	17.0	2.71	20.1	95.7	27.9	2.24
×1⁄4	0.250	22.42	6.59	24.8	24.8	49.4	14.1	2.74	16.5	78.3	22.7	2.26
× ³ ⁄16	0.188	17.08	5.03	34.0	34.0	38.6	11.0	2.77	12.8	60.3	17.4	2.28

Design Wall		Nominal	A			Axis X-X				Axis Y-Y				Torsion		Surface
Shape	Thickness, t	Wt	Area, A	b/t	h/t	Ι	S	r	Ζ	Ι	S	r	Z	J	С	Area
	in.	lb/ft	in. ²			in.4	in. ³	in.	in. ³	in.4	in. ³	in.	in. ³	in.4	in. ³	ft²/ft
HSS14×10×5/8	0.625	93.34	27.4	12.4	18.8	728	104	5.15	127	431	86.2	3.97	101	885	156	3.82
×1⁄2	0.500	76.07	22.4	16.4	24.4	608	86.9	5.21	105	361	72.2	4.01	83.6	730	128	3.86
×3⁄8	0.375	58.10	17.1	23.5	34.1	476	68.0	5.28	81.5	284	56.8	4.08	64.8	564	98.2	3.89
× ⁵ ⁄16	0.313	48.86	14.4	28.7	41.5	406	58.0	5.31	69.1	242	48.4	4.10	55.0	478	82.9	3.91
×¼	0.250	39.43	11.6	36.8	52.8	331	47.3	5.34	56.0	198	39.6	4.13	44.6	387	67.0	3.93
HSS14×6×5/8	0.625	76.33	22.4	6.00	18.8	504	72.0	4.74	94.0	130	43.3	2.41	51.2	352	88.9	3.15
×1⁄2	0.500	62.46	18.4	8.40	24.4	426	60.9	4.81	78.3	111	37.0	2.46	42.9	296	73.8	3.19
×3⁄8	0.375	47.90	14.1	12.8	34.1	337	48.1	4.89	61.1	89.1	29.7	2.51	33.6	233	57.3	3.23
× ⁵ ⁄16	0.313	40.35	11.9	16.0	41.5	289	41.3	4.93	51.9	76.9	25.6	2.54	28.7	199	48.6	3.24
×1⁄4	0.250	32.63	9.59	20.8	52.8	237	33.9	4.97	42.3	63.4	21.1	2.57	23.4	162	39.5	3.26
× ³ ⁄16	0.188	24.73	7.29	28.7	71.3	182	26.0	5.00	32.4	49.2	16.4	2.60	18.0	125	30.2	3.28
HSS14×4×5/8	0.625	67.82	19.9	2.80	18.8	392	56.0	4.44	77.3	49.2	24.6	1.57	30.0	154	55.5	2.82
×1⁄2	0.500	55.66	16.4	4.40	24.4	335	47.9	4.52	64.8	43.1	21.6	1.62	25.5	134	46.8	2.86
×3/8	0.375	42.79	12.6	7.47	34.1	267	38.1	4.60	50.8	35.4	17.7	1.68	20.3	108	36.8	2.89
× ⁵ ⁄16	0.313	36.10	10.6	9.58	41.5	230	32.9	4.66	43.4	30.9	15.4	1.71	17.4	93.2	31.5	2.91
×1⁄4	0.250	29.23	8.59	12.8	52.8	189	27.0	4.69	35.4	25.8	12.9	1.73	14.3	77.0	25.7	2.93
× ³ ⁄16	0.188	22.18	6.54	18.1	71.3	147	21.0	4.74	27.2	20.3	10.2	1.76	11.1	59.8	19.8	2.95
HSS12×10×1/2	0.500	69.27	20.4	16.4	20.4	419	69.8	4.53	83.9	316	63.2	3.94	74.1	581	109	3.52
×3/8	0.375	53.00	15.6	23.5	28.8	330	55.0	4.60	65.2	249	49.8	4.00	57.6	450	83.7	3.56
×5⁄16	0.313	44.60	13.1	28.7	35.1	282	47.0	4.64	55.3	213	42.6	4.03	48.9	381	70.8	3.58
×1⁄4	0.250	36.03	10.6	36.8	44.8	230	38.3	4.66	44.9	174	34.8	4.05	39.7	309	57.2	3.60
HSS12×8×5/8	0.625	76.33	22.4	9.20	15.6	419	69.8	4.32	87.1	221	55.2	3.14	65.6	481	104	3.15
×1/2	0.500	62.46	18.4	12.4	20.4	353	58.8	4.38	72.4	188	47.0	3.20	54.7	401	85.8	3.19
×3/8	0.375	47.90	14.1	18.1	28.8	279	46.5	4.45	56.5	149	37.2	3.25	42.7	312	66.3	3.23
×5⁄16	0.313	40.35	11.9	22.4	35.1	239	39.8	4.48	48.0	128	32.0	3.28	36.4	265	56.1	3.24
×1⁄4	0.250	32.63	9.59	28.8	44.8	196	32.7	4.52	39.1	105	26.2	3.31	29.6	216	45.5	3.26
X ³ /16	0.188	24.73	7.29	39.4	60.6	151	25.2	4.55	29.9	81.3	20.3	3.34	22.7	165	34.7	3.28

▼ Table 2: Typical Dimensions and Section Properties for A1085 Rectangular HSS

Comparing A1085 to A500

The following is excerpted from a design example of a square HSS compression member without slender elements (see the full example at www.aisc.org/A1085).

Given:

Select an ASTM A1085 square HSS column, with a length of 20 ft, to support a dead load of 150 kips and live load of 440 kips in axial compression. The

base is fixed and the top is pinned. Compare it to the size that would be required for an ASTM A500 Grade B square HSS.

ттт

Solution:

The required compressive strength is:

▶ LRFD: *P_u* = 884 kips

> ASD: $P_a = 590$ kips

Summary of results:											
HSS Standard	Selected Section	Area (in.²)	Weight (lb/ft)	Design Strength, ¢P _n (kips)	Allowable Strength, P _n /Ω (kips)						
ASTM A1085	HSS12×12×1⁄2	22.4	76.1	891	593						
ASTM A500 Gr. B	HSS12×12×5%	25.7	93.3	946	629						

The column size required for ASTM A1085 material is an HSS12×12×½, which has a design strength of 891 kips and an allowable strength of 593 kips. This same cross section in ASTM A500 Grade B material is not adequate (design strength is 773 kips and allowable strength is 514 kips). Using a $\frac{5}{10}$ -in. wall thickness, the HSS12×12×½ has a design strength of 946 kips and an allowable strength of 629 kips. However, it weighs 17 lbs more per ft.

In this case, using ASTM A1085 allows an 18% reduction in weight. Since fabrication, erection and other costs are likely unaffected, that's a direct savings that likely will more than offset the additional cost of the A1085 material.

wall thickness for ASTM A1085, and this has a direct effect on every property in the table with the exception of the nominal weight, which has always been based upon nominal dimensions.

Axial compression strength tables also are available, as illustrated in Table 4, which shows an excerpt of an axial compression table for square A1085 HSS. These tables are modeled after Tables 4-3 through 4-5 in the AISC Steel Construction Manual.

A design example is provided that compares a column designed with ASTM 1085 material to a column designed with A500 material. The calculations for the design example are omitted in this article, but a summary of the comparison results is shown.

	Design Wall	Nominal	Area,		,	6		7	Torsion	
Shape	Thickness, t	Wt	А	D/t		5	r	2	J	С
	in.	lb/ft	in. ²		in.4	in. ³	in.	in. ³	in.4	in. ³
HSS10×0.625	0.625	62.64	18.4	16.0	203	40.6	3.32	55.0	406	80.6
×0.500	0.500	50.78	14.9	20.0	169	33.8	3.36	45.2	338	67.2
×0.375	0.375	38.58	11.3	26.7	132	26.3	3.41	34.8	263	52.5
×0.312	0.312	32.31	9.50	32.1	112	22.3	3.43	29.3	223	44.5
×0.250	0.250	26.06	7.66	40.0	91.1	18.2	3.45	23.8	182	36.4
×0.188	0.188	19.72	5.80	53.2	69.8	14.0	3.47	18.1	140	27.9
HSS9.625×0.500	0.500	48.77	14.3	19.2	150	31.1	3.23	41.7	299	61.9
×0.375	0.375	37.08	10.9	25.7	117	24.3	3.27	32.1	233	48.4
×0.312	0.312	31.06	9.13	30.8	99.1	20.6	3.29	27.1	198	41.1
×0.250	0.250	25.06	7.36	38.5	81.0	16.8	3.32	22.0	162	33.6
×0.188	0.188	18.97	5.57	51.2	62.1	12.9	3.34	16.7	124	25.8
HSS8.625×0.625	0.625	53.45	15.7	13.8	126	29.3	2.84	40.1	253	58.0
×0.500	0.500	43.43	12.8	17.2	106	24.5	2.88	33.0	211	48.7
×0.375	0.375	33.07	9.72	23.0	82.9	19.2	2.92	25.5	166	38.3
×0.322	0.322	28.58	8.40	26.8	72.5	16.8	2.94	22.2	145	33.5
×0.250	0.250	22.38	6.58	34.5	57.7	13.4	2.96	17.5	115	26.7
×0.188	0.188	16.96	4.98	45.9	44.4	10.3	2.98	13.4	88.7	20.6
HSS7.625×0.375	0.375	29.06	8.54	20.3	56.3	14.8	2.57	19.7	113	29.4
×0.328	0.328	25.59	7.52	23.2	50.1	13.2	2.58	17.5	100	26.2

▼ Table 3: Typical Dimensions and Section Properties for A1085 Round HSS

Cost

Any discussion of a new product in the marketplace is not complete without addressing potential cost implications. We expect that ASTM A1085 material will cost more than ASTM A500—but also that the weight savings due to the enhanced material properties will offset some or even all of the added material cost. And, as always, one should remember that material costs are only about 30% of a typical steel frame, with the rest made up by fabrication, erection and other costs. The largest savings and efficiencies can be achieved from constructability review and early involvement of your steel fabricator.

¥ Ta	ble 4: /	Available S	trength in	Axial Com	pression fo	or A1085 So	quare HSS			F,	, = 50 ksi	
ch			HSS2	2×22×				HSS2	0×20×			
Sn	аре	7,	/8	3	/4	7,	/8	3	/4	5	/8	
t _{desi}	_{an} , in	0.875 244.88		0.7	0.750		375	0.750		0.625		
W	t/ft			212.00		221.06		191.58		161	.40	
Design		$P_n / \Omega_c = \phi_c P_n$		P_n / Ω_c	$\phi_c P_n$							
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
	0	2160	3240	1870	2800	1950	2930	1690	2530	1420	2130	
	6	2140	3220	1860	2790	1930	2910	1680	2520	1410	2120	
	7	2140	3220	1850	2780	1930	2900	1670	2510	1410	2120	
	8	2140	3210	1850	2780	1920	2890	1670	2510	1400	2110	
	9	2130	3200	1840	2770	1920	2880	1660	2500	1400	2100	
	10	2120	3190	1840	2760	1910	2870	1660	2490	1400	2100	
u, r	11	2120	3180	1830	2760	1910	2860	1650	2480	1390	2090	
tio	12	2110	3170	1830	2750	1900	2850	1640	2470	1380	2080	
) Jyra	13	2100	3160	1820	2740	1890	2840	1640	2460	1380	2070	
of 0	14	2100	3150	1810	2730	1880	2830	1630	2450	1370	2060	
ius	15	2090	3140	1810	2720	1870	2810	1620	2440	1370	2050	
rad	16	2080	3120	1800	2700	1860	2800	1610	2420	1360	2040	
ast	17	2070	3110	1790	2690	1850	2780	1600	2410	1350	2030	
	18	2060	3090	1780	2680	1840	2760	1590	2400	1340	2020	
t l	19	2050	3080	1770	2660	1830	2750	1580	2380	1330	2010	
spe	20	2040	3060	1760	2650	1810	2730	1570	2360	1330	1990	
h re	21	2020	3040	1750	2630	1800	2710	1560	2350	1320	1980	
wit	22	2010	3020	1740	2620	1790	2690	1550	2330	1310	1960	
Œ	23	2000	3000	1730	2600	1770	2670	1540	2310	1300	1950	
レレ	24	1980	2980	1720	2580	1760	2640	1530	2290	1290	1930	
gth	25	1970	2960	1710	2570	1740	2620	1510	2270	1280	1920	
len	26	1960	2940	1690	2550	1730	2600	1500	2250	1270	1900	
tive	27	1940	2920	1680	2530	1710	2570	1490	2230	1250	1880	
ffec	28	1930	2890	1670	2510	1700	2550	1470	2210	1240	1870	
Ш	29	1910	2870	1660	2490	1680	2520	1460	2190	1230	1850	
	30	1890	2850	1640	2470	1660	2500	1440	2170	1220	1830	
	32	1860	2800	1610	2420	1630	2440	1410	2120	1190	1790	
	34	1830	2740	1580	2380	1590	2390	1380	2080	1170	1750	
	36	1790	2690	1550	2330	1550	2330	1350	2030	1140	1710	
	38	1750	2630	1520	2280	1510	2270	1310	1970	1110	1670	
	40	1710	2570	1490	2230	1470	2210	1280	1920	1080	1630	
	2				<u> </u>	Properties		- <i></i>	2			
A _g , ir	1. ^ in 4	/2 E2	2.0	62.3		65	0.0	56	20 20	47.4		
$ _{x}^{I_{x}} = I_{y}$, III.' ' in	52 8	.00 56	40 8	50 62	39	00 75	34	-50 81	29	40 88	
	<u>y, iii.</u> SD	I R	FD	0.	~_		,	. 7.0	<u> </u>	. 7.		
Ω.=	1.67	φ. =	0.90	1								
<u></u> c		Ψc		l								