If you’ve ever asked yourself “Why?” about something related to structural steel design or construction, *Modern Steel*’s monthly Steel Interchange is for you! Send your questions or comments to solutions@aisc.org.

Reinforcing with Differing Grades of Steel

An existing singly symmetric, built-up I-section requires reinforcing. The yield strength of the section is 50 ksi, and the web is non-compact. AISC Specification Section F4 requires four criteria to be checked: yielding, lateral-torsional buckling, flange local buckling and tension flange yielding. If A36 angles and plates are used as reinforcing, what yield strength should be assumed in the limit state calculations?

You should not assume 50 ksi for the entire section, as that would be unconservative.

The simplest approach is to assume 36 ksi for everything. However, it must be noted that this approach is conservative and results in a reduction in the assumed design strength of the original section, and may require you to add more reinforcing than is strictly necessary. However, that is not always the primary concern. Oftentimes, the costs associated with reinforcing an existing member are largely influenced by the labor involved, and the material costs are minor in comparison. In such cases, being conservative and adding a little extra material, in order to simplify the design process, may not really burden the project. Judgment must be exercised to ensure an economical outcome.

The most efficient design would assume a combination of both the 36- and 50-ksi material strengths in the calculations, depending on the limit state being reviewed. First, I would recommend checking each of the limit states using the existing beam section (unreinforced) and 50-ksi material with the new loads, and only for those limit states that fail would I consider the reinforced section with the 50/36-ksi steel mix. Any of the four limit states that “work” before reinforcing the beam should not be negatively impacted by the addition of the beam reinforcing and need not be rechecked.

Next, you would need to determine the plastic neutral axis location—M_p, S_c, and S_o—for the built-up shape. In order to maintain equilibrium, you would need $\Sigma F_i A_i = \Sigma F_i A_i$ where the “c” and “t” subscripts represent compression and tension, respectively. You will need to perform an analysis using the plastic force distribution method, distinguishing between the 50-ksi sections and the 36-ksi sections, in order to locate your plastic neutral axis and determine what portion of the built-up member contributes to S_c or S_o. When you calculate M_p for this member, you would need to perform a plastic moment capacity analysis that accounts for the portion of the section that is 36 ksi and not simply use the equation given for the definition of M_p in Equation F4-9.

In Sections F4.1 and F4.4 - Compression Flange Yielding or Tension Flange Yielding: For this limit state, you could use the F_i of each component, as applicable. You would simply use $M_p = \Sigma F_i S_c$ or $M_p = \Sigma F_i S_o$ and use M_p as calculated above.

In Section F4.2 - Lateral-Torsional Buckling: Assuming your member is unbraced for a length greater than L_o and you have to consider this limit state, I recommend using 36 ksi in these calculations since the entire cross section is considered in the limit state check and the various material components cannot be segregated within the equations.

In Section F4.3 - Compression Flange Local Buckling: If the entire area in compression is within the 50-ksi material, you could use 50 ksi for this check. Otherwise, I would use 36 ksi for the check.

Susan Burmeister, P.E.

Curved Members

We are designing a lifting beam at a power plant. The design uses a W21×201 bent about the weak axis to form a ring beam with a radius of approximately 20 ft. What is the strength reduction after bending, and are there publications that we can use as a guide?

The answer to this question is more involved than the effects of bending on strength, and the strength concern is slightly different than what you are picturing. Torsional effects usually govern a design like this. Lateral-torsional buckling is usually not the controlling limit state. For torsional stresses, AISC Design Guide 9 is a good reference.

Concerning the effect of the rolling process on the material properties, there are two things to consider: residual stresses induced by the rolling process and the potential reduction in ductility due to cold working.

Generally, residual stresses have no effect on the ultimate strength of a member but can affect stability. For a wide-flange member rolled the easy way, the tension residual stress at the inner edge of the flange will be about 50% of the yield stress. The compression residual stress at the outer edge of the flange will also be about 50% of the yield stress. This is comparable to straight wide-flange members, which have a compression residual at the flange edges that can vary from about 20% to 80% of the yield stress, depending on the flange thickness. Therefore, compared to straight members, the effect of residual stresses due to the rolling process should be insignificant because the effect is already included at these levels in the design equations in the AISC Specification.

According to Riviezz (1984), “The reduction in notch ductility as a result of cold working alone becomes significant only when the amount of cold working produces a strain in the outermost fibers exceeding about 5%.” Because the strain in your ring due to cold rolling is only about 2.6%, the ductility should be adequate unless it is subjected to extreme combinations of low temperature and severe impact/fatigue loading.
References:

Bo Dowswell, P.E., Ph.D.

The complete collection of Steel Interchange questions and answers is available online. Find questions and answers related to just about any topic by using our full-text search capability. Visit Steel Interchange online at www.modernsteel.com.

Steel Interchange is a forum to exchange useful and practical professional ideas and information on all phases of steel building and bridge construction. Opinions and suggestions are welcome on any subject covered in this magazine.

The opinions expressed in Steel Interchange do not necessarily represent an official position of the American Institute of Steel Construction and have not been reviewed. It is recognized that the design of structures is within the scope and expertise of a competent licensed structural engineer, architect or other licensed professional for the application of principles to a particular structure.

If you have a question or problem that your fellow readers might help you solve, please forward it to us. At the same time, feel free to respond to any of the questions that you have read here. Contact Steel Interchange via AISC’s Steel Solutions Center:

1 E Wacker Dr., Ste. 700, Chicago, IL 60601
phone: 866.ASK.AISC • fax: 312.803.4709
solutions@aisc.org