Preface

This document is a standard developed by the AASHTO/NSBA Steel Bridge Collaboration. The primary goal of the Collaboration is to achieve steel bridge design and construction of the highest quality and value through standardization of the design, fabrication, and erection processes. Each standard represents the consensus of a diverse group of professionals.

It is intended that Owners adopt and implement Collaboration standards in their entirety to facilitate the achievement of standardization. It is understood, however, that local statutes or preferences may prevent full adoption of the document. In such cases Owners should adopt these documents with the exceptions they feel are necessary.

Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration

All rights reserved.

Disclaimer

The information presented in this publication has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed professional engineer, designer, or architect.

The publication of the material contained herein is not intended as a representation or warranty of the part of the American Association of State Highway and Transportation Officials (AASHTO) or the National Steel Bridge Alliance (NSBA) or of any other person named herein, that this information is suitable for any general or particular use or of freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability arising from such use.

Caution must be exercised when relying upon other specifications and codes developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The authors and publishers bear no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition.
AASHTO EXECUTIVE COMMITTEE
2006–2007

Voting Members

Officers:

President: Victor M. Mendez, Arizona

Vice President: Pete K. Rahn, Missouri

Secretary-Treasurer: Carlos Braceras, Utah

Regional Representatives:

REGION I: Allen Biehler, Pennsylvania, One-Year Term
 David Cole, Maine, Two-Year Term

REGION II: Joe McInnes, Alabama, One-Year Term
 Stephanie Kopelousos, Florida, Two-Year Term

REGION III: Carol Molnau, Minnesota, One-Year Term
 Debra L. Miller, Kansas, Two-Year Term

REGION IV: Victor M. Mendez, Arizona, One-Year Term
 vacant, Two-Year Term

Nonvoting Members

Immediate Past President: Harold E. Linnenkohl, Georgia

AASHTO Executive Director: John Horsley, Washington, DC
AASHTO HIGHWAY SUBCOMMITTEE ON BRIDGES AND STRUCTURES

2006

Malcolm T. Kerley, Virginia Chair
James A. Moore, New Hampshire Vice Chair
M. Myint Lwin, Federal Highway Administration, Secretary
Firas I. Sheikh Ibrahim, Federal Highway Administration, Assistant Secretary

ALABAMA, William F. Conway, John F. Black, George H. Connor
ALASKA, Richard A. Pratt
ARIZONA, Jean A. Nehme
ARKANSAS, Phil Brand
CALIFORNIA, Kevin Thompson, Susan Hida, Barton Newton
COLORADO, Mark A. Leonard, Michael G. Salamon
CONNECTICUT, Gary J. Abramowicz, Julie F. Georges
DELAWARE, Jiten K. Soneji, Barry A. Benton
DISTRICT OF COLUMBIA, Donald Cooney
FLORIDA, William N. Nickas, Marcus Ansley, Andre Pavlov
GEORGIA, Paul V. Liles, Jr., Brian Summers
HAWAI I, Paul T. Santo
IDAHO, Matthew M. Farrar
ILLINOIS, Ralph E. Anderson, Thomas J. Domagalski
INDIANA, Anne M. Rearick
IOWA, Norman L. McDonald
KANSAS, Kenneth F. Hurst, James J. Brennan, Loren R. Risch
KENTUCKY, Allen Frank
LOUISIANA, Hossein Ghara, Tony M. Ducote
MAINE, James E. Tukey, Jeffrey S. Folsom
MARYLAND, Earle S. Freedman, Robert J. Healy
MASSACHUSETTS, Alexander K. Bardow
MICHIGAN, Steve P. Beck, Raja T. Jildeh
MINNESOTA, Daniel L. Dorgan, Kevin Western
MISSISSIPPI, Mitchell K. Carr, B. Keith Carr
MISSOURI, Shyam Gupta, Paul Kelly, Paul Porter
MONTANA, Kent M. Barnes
NEBRASKA, Lyman D. Freemon, Mark Ahlman, Hussam Fallaha
NEVADA, William C. Crawford, Jr.
NEW HAMPSHIRE, James A. Moore, Mark W. Richardson, David L. Scott
NEW JERSEY, Harry A. Capers, Jr., Richard W. Dunne
NEW MEXICO, Jimmy D. Camp
NEW YORK, George A. Christian, Donald F. Dwyer, Arthur P. Yannotti
NORTH CAROLINA, Greg R. Perfetti
NORTH DAKOTA, Terrence R. Udland

OHIO, Timothy J. Keller, Jawdat Siddiqi
OKLAHOMA, Robert J. Rusch, Gregory D. Allen
OREGON, Bruce V. Johnson
Pennsylvania, Thomas P. Macioce, Harold C. Rogers, Jr.
PUERTO RICO, Jaime Cabrè
RHODE ISLAND, David Fish
SOUTH CAROLINA, Barry W. Bowers, Jeff Sizemore
SOUTH DAKOTA, John C. Cole
TENNESSEE, Edward P. Wasserman
TEXAS, William R. Cox, David P. Hohmann, Ronald D. Medlock
U.S. DOT, M. Myint Lwin, Firas I. Sheikh Ibrahim, Hala Elgaaly
UTAH, Todd Jensen
VERMONT, William Michael Hedges
VIRGINIA, George M. Clendenin, Prasad L. Nallapaneni, Julius F. J. Volgyi, Jr.
WASHINGTON, Jugesh Kapur, Tony M. Allen, Bijan Khaleghi
WEST VIRGINIA, Gregory Bailey, James W. Sothen
WISCONSIN, Finn Hubbard
WYOMING, Gregg C. Fredrick, Keith R. Fulton
ALBERTA, Tom Loo
NEW BRUNSWICK, Doug Noble
NOVA SCOTIA, Mark Pertus
ONTARIO, Bala Tharmabala
SASKATCHEWAN, Howard Yea
GOLDEN GATE BRIDGE, Kary H. Witt
N.J. TURNPIKE AUTHORITY, Richard J. Raczynski
N.Y. STATE BRIDGE AUTHORITY, William J. Moreau
PENN. TURNPIKE COMMISSION, Gary L. Graham
SURFACE DEPLOYMENT AND DISTRIBUTION COMMAND TRANSPORTATION ENGINEERING AGENCY, Robert D. Franz
U.S. ARMY CORPS OF ENGINEERS - DEPARTMENT OF THE ARMY, Paul C. T. Tan
U.S. COAST GUARD, Nick E. Mpras, Jacob Patnaik
U.S. DEPARTMENT OF AGRICULTURE - FOREST SERVICE, Rosana Barkawi
AASHTO / NSBA Steel Bridge Collaboration

Task Group 4, Quality Control / Quality Assurance
Denis Dubois, Maine Department of Transportation, Chair

Andy Kottensette, *G4.4 Task Chair* Bureau Veritas
Frank Adragna Non-Destructive Testing Group, Inc.
Joe Bracken III Pennsylvania Department of Transportation
Tom Calzone Carboline Company
Jamie Connor D. S. Brown Company
Jon Edwards Illinois Department of Transportation
Heather Gilmer Texas Department of Transportation
Barry Glassman Minnesota Department of Transportation
Bob Horwhat Pennsylvania Department of Transportation
Darrin Kelly DeLong’s, Inc.
Adil Khan MACTEC, Inc
Al Laffoon Missouri Department of Transportation - Retired
Brian Leshko Bureau Veritas
Terry Logan Atema, Inc.
Ray Monson MACTEC, Inc.
Dennis Nash Stupp Bridge Company
Russ Panico High Steel Structures, Inc.
Anna Petroski Atema, Inc.
Cindy Rice KTA Tator, Inc.
Greg Rzonca Bureau Veritas
Bob Stachel HRV Conformance, Ltd
Rochelle Stachel HRV Conformance, Ltd.
Brad Streeter D. S. Brown Company
Lou Triandafilou Federal Highway Administration
Krishna Verma Federal Highway Administration
Bill Wallhausser KTA Tator, Inc.
Gary Wisch DeLong’s, Inc.
Sample Quality Assurance Manual
Structural Steel Shop Inspection

Name of Organization

Address Information

Date: ________________
Revision No: ________________
Revision Date: ________________
Table of Contents

Scope ...3
1. Specifications and Documents...4
 1.1. Available Documentation ..4
 1.2. Familiarization with Requirements ...5
 1.3. Use of Shop Drawings ..5
2. Inspection Equipment ...6
3. Inspector Qualifications ..7
 3.1. Fabrication Inspection Qualifications ...7
 3.2. Minimum Inspection Experience ...7
 3.3. Coatings Inspection Qualifications ...7
 3.4. Training...8
4. Records and Reporting ..9
5. General Instructions ..10
 5.1. Responsibilities of the QAI ...10
 5.2. Role of the QAI ..10
 5.3. Interaction with the Fabricator Quality Control Inspector11
 5.4. Interaction with the Engineer ...11
 5.5. Interpretation of the Contract ...11
 5.6. Fabrication Observation ...11
 5.7. Nonconforming Materials and Workmanship12
6. Inspection Procedures ...13
 6.1. Mill Test Reports ...13
 6.2. Inspection of Raw Materials ...14
 6.3. Material Cutting Inspection ...14
 6.4. Fit-up and Welding Inspection ...14
 6.5. Nondestructive Testing ...16
 6.6. General Visual Inspection ...17
 6.7. Dimensional Inspection ...18
 6.8. Bolting Inspection ...18
 6.9. Coating Inspection ..18
 6.10 Fracture Critical Members ..19
7. Material Storage ..21
8. Loading and Shipping ...22
9. Final Acceptance ..23

Appendix A: Inspection Forms ..24

Sample Quality Assurance Manual

Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration.
All rights reserved.
This document serves as a sample quality assurance manual to be used as a guide for Bridge Owners or third party inspection agencies to develop their own quality assurance plans. This sample manual is based on the guidelines in AASHTO/NSBA Steel Bridge Collaboration Specification S4.1-2002, Steel Bridge Fabrication QC/QA Guide Specification (S4.1). As written, this sample manual is intended to be used on projects where S4.1 being used for the quality control guidelines.

As a sample manual, this is intended to serve as a model, or base document, for creating a QA manual. When using this document to create a QA manual, care should be exercised to determine if additional sections or instructions are necessary. Similarly, if any sections are not applicable, these should be removed or altered as necessary.

Refer to S4.1 for a listing of applicable terms and definitions.
SECTION 1
SPECIFICATIONS AND DOCUMENTS

The intent of this section is to recommend the documents that the inspector should be furnished with or acquire during the course of a project. This list should be modified as necessary to suit the owner’s specific requirements.

1.1 Quality Assurance Inspectors (QAIs) shall obtain, or have available, the following documentation at the fabrication shop:

- applicable current standard specifications, supplements, special provisions, special specifications, and addenda
- approved shop drawings with current revisions
- fabricator’s Quality Control Plan (QCP), which is to include the company’s Non-Destructive Evaluation (NDE) written practice
- prefabrication meeting minutes, if any
- applicable AASHTO/AWS D1.5, Bridge Welding Code
- applicable American Welding Society (AWS) D1.1, Structural Welding Code
- applicable provisions of the AREMA Manual for Railway Engineering, if required for the project
- AWS A2.4, Symbols for Welding and Nondestructive Testing
- AWS A3.0, Standard Welding Terms and Definitions
- applicable ASTM or AASHTO specifications
- applicable coating test methods
- applicable SSPC specifications
- metrication conversion tables, if required
- Mill Test Reports (MTRs) for material used in fabrication
- list of qualified welders, welding operators, and tack welders
- approved welding procedure specifications (WPSs)
- approved welding procedure qualification records (PQRs)
- applicable pre-approved non-critical fracture critical material (FCM) repair procedures
- applicable approved repair procedures
- copy of approved nondestructive testing procedures, only when submission and approval of these testing procedures is required by the owner's specification
- qualification documents for all certified welding inspectors (CWI) and NDE quality control (QC) personnel
- NDE reports for all work on this project that has been inspected and accepted by NDE
- project record log sheets
- copy of the approved coatings plan, when submission and approval of coatings plan is required by specification
1.2 Familiarization with Requirements

The QAI shall become familiar with applicable portions of the Contract documents covering the work to be inspected. The QAI shall study the plans and specifications before fabrication commences to provide ample opportunity to coordinate with the Engineer.

1.3 Use of Shop Drawings

The QAI should become familiar with the shop drawings. The QAI shall coordinate with the Owner regarding any discrepancies between the plans and specifications and the shop drawings. Fabrication should proceed only with approved shop drawings. However, if the Fabricator elects to proceed prior to receipt of approved shop drawings (performing work at their own risk), notify the Owner and, if directed, proceed with QA functions using non-approved shop drawings. Later, verify conformance of fabrication with the approved drawings. The shop must submit revisions to the shop drawings to the Owner for approval to reflect changes in details and provide a permanent record of the as-built condition. The QAI should ensure that fabrication is in conformance with the latest revisions.
SECTION 2
INSPECTION EQUIPMENT

<< The intent of this section is to recommend those tools and equipment necessary for proper inspection. This list should be modified as necessary to suit the owner’s specific requirements. >>>

The QAI shall have/or have available the following equipment at the fabrication shop. Some equipment may not be applicable depending on the nature of fabrication:

- tape measure, 25 ft (7 m), 1/32 in, or 1 mm increments.
- metal tape measure, 100 ft (30 m), 1/8 in, or 0.01 ft (5 mm) increments
- pocket metal ruler(s), 1/32 in or 1 mm increments
- flashlight and spare batteries
- camera; QAI to photograph only raw and fabricated materials produced for the owner
- feeler gauges
- fillet weld gauges
- undercut gauge
- skewed fillet weld gauge
- bevel gauge
- micrometer
- mirror for examining restricted access areas (such as snipes)
- NDE tools, if applicable
- surface roughness gauges for machine and flame cutting (Ref. ANSI B41 or AWS C4.1-G)
- temperature indicating crayons for 30°F (15°C) above and below desired temperatures or surface pyrometer
- sling psychrometer
- thermometers for determining air, paint, and metal surface temperatures
- blast profile comparator or replica tape for direct measurements and a permanent record
- dry film thickness gauge
- tools for checking surface anomalies, coating adhesion, etc.
- surface profile comparator for media (sand, shot, or grit) used and/or deformable replica
- tape and micrometer to check profile depth before coating
- 10X Lens
SECTION 3
INSPECTOR QUALIFICATIONS

<< The intent of this section is to specify the minimum recommended qualification and training requirements for QAIs—the basis for which is given in AASHTO/NSBA Steel Bridge Collaboration Specification S4.1-2002, Steel Bridge Fabrication QC/QA Guide Specification. This list should be modified as necessary to suit the owner’s specific requirements (these could include bolting training, etc.). >>>

QAIs shall have the following minimum required knowledge, abilities, and experience:

3.1 Fabrication Inspection Qualifications

A QAI performing welding inspection must be a Certified Welding Inspector (CWI) or equivalent, in accordance with the Bridge Welding Code. QAIs who are Certified Associate Welding Inspectors (CAWI) may work under the direct supervision of a CWI. QAIs who interpret and perform NDE must be certified in accordance with the applicable ASNT SNT-TC-1A requirements for each NDE method being used in accordance with the Bridge Welding Code.

3.2 Minimum Inspection Experience.

A QAI performing welding inspection should have the following minimum inspection experience:

<table>
<thead>
<tr>
<th>Project Type</th>
<th>Minimum Recommended Years of Experience*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolled beam bridges</td>
<td>1 year</td>
</tr>
<tr>
<td>Welded plate girders (I sections, box sections, etc.)</td>
<td>2 years</td>
</tr>
<tr>
<td>Complex structures, such as trusses, arches, cable-stayed bridges, and moveable bridges</td>
<td>3 years</td>
</tr>
<tr>
<td>Fracture critical (FC) members</td>
<td>3 years (required by D1.5)</td>
</tr>
</tbody>
</table>

* Experience in rolled beam bridge inspection will not be counted towards the experience needed for plate girders, complex structures, or fracture-critical members.

Inspectors who have less experience than that specified above should work under the guidance of an inspector having those qualifications. QAIs must be proficient with the typical fabrication inspection procedures described in this document.

3.3 Coatings Inspection Qualifications.

A QAI performing coatings inspection must be qualified to inspect coatings and coatings applications.
3.4 Training

Documented training in materials preparation, coatings application, and inspection is suggested for the QC and QA coatings inspectors. Recommended training includes one or more of the following:

- American Institute of Steel Construction (AISC) – Application and Inspection of Sophisticated Coatings
- National Association of Corrosion Engineers (NACE) – International Coating Inspector training and Certification Program Session I: Coating Inspection Training
- Society for Protective Coatings (SSPC) – C-1 Fundamentals of Protective Coatings for Industrial Structures
- National Highway Institute (NHI) – Bridge Coating Inspection Course No. 130079
- Other training programs that are considered acceptable by the Engineer
SECTION 4
RECORDS AND REPORTING

<< The intent of this section is to recommend the records and reporting required to be kept by QAI's. This section should be modified as necessary to suit the owner's specific requirements. >>>

The QAI shall maintain neat and orderly records for each project. Documentation of the status of fabrication and acceptability of members shall be performed on the forms included in Appendix A. << note: specific forms and directions for completing shall be inserted by Owner >>>

In addition to completion of the necessary forms, the QAI shall maintain a narrative report for each project, as directed by the Engineer. The narrative report should either be legibly handwritten in a permanently bound book, or be maintained in an electronic log with automatic date and time recording. Record the Fabricator’s activity on the work inspected, including both positive and negative comments, information provided to the Fabricator, and any agreements made. Make entries as soon possible after the events or conversations.

Obtain copies of Fabricator generated records such as NDE reports, inspection reports, etc. for the project files and submission to the Engineer as directed.

Furnish a written report on a weekly basis to the Engineer as directed. Include those forms and documents required by the Engineer. Number the reports consecutively until completion of the work, with the last report noted “final”.

Make notes, letters, faxes, reports, and memoranda clear and brief, and keep them on file. Sign on-site correspondence as its originator.

The QAI should maintain verbal communication with the Engineer or his representative as directed. The QAI shall also maintain good relations with the Fabricator’s Quality Control Inspector (QCI). Ensure that both the Engineer and QCI are timely apprised of the QAI’s findings including nonconformances. Written documentation is not a substitute for appropriate dialogue with the Fabricator, but should provide a record of important discussions.
SECTION 5
GENERAL INSTRUCTIONS

<< The intent of this section is to recommend the general requirements for QAI activities. This list should be modified as necessary to suit the owner’s specific requirements. >>>

5.1 Responsibilities of the QAI

Verify that production quality and fabrication processes satisfy contract requirements, including the QCP. Verify that the fabricator has QCI performing inspection functions during all fabrication operations. Perform QA inspections in accordance with this manual and other instructions by the Engineer. Determine extent and frequency of inspection based on the Engineer’s direction.

Accept materials that satisfy the Contract requirements. Do not waive items that are contractual obligations of the Fabricator and do not accept material that does not conform to the Contract requirements without the written approval of the Engineer.

Do not direct the Fabricator’s personnel. Do not provide suggestions on how to fabricate material. However, the QAI should advise the Fabricator if any operation would, in their opinion, result in noncompliance with the Contract. Direct all official communications to the Fabricator’s quality control. Do not convey directives or personal judgments about overall shop quality or concerns about employee competence to production personnel.

Do not divulge a fabricator’s proprietary information to another fabricator. Do not publish, copy or distribute any proprietary information, documents, or forms received from the Fabricator for any purpose other than the contractual needs of the Owner.

5.2 Role of the QAI

Perform verification tests, measurements, inspection, or observations to assure that fabricated items conform to the Contract requirements. Although the QAI does not perform QC work, some QA activities may duplicate a portion of QC activity for verification.

If there are questions about a requirement or level of quality, contact the Engineer and, if directed, alert the Fabricator.

Conduct consistent inspections based on the Contract requirements while providing guidance to the Fabricator concerning interpretation of the plan details and specification mandates. Obtain assistance from the Engineer as needed.
Be familiar with the QCP to better understand the QC operations of the shop. Verify that the shop is conducting operations in accordance with their QCP.

5.3 Interaction with the Fabricator Quality Control Inspector

Verify the effectiveness of the QCI’s evaluation of the work.

Perform verification inspection after the QCI has completed inspection and testing in accordance with the QCP. However, serious problems noted at any time or stage of fabrication must be immediately pointed out to the QCI. Notify the Engineer if there are any unresolved problems.

Though QA inspection may include all aspects of fabrication, the QAI must not supersede QC, which is the responsibility of the Fabricator. If QC is not accomplishing its role, the Engineer and Fabricator must determine the necessary corrections.

5.4 Interaction with the Engineer

If the Fabricator’s inquiries involve design questions, material substitutions, alternate fabrication methods, or items that are beyond the authority of the QAI, refer them to the Engineer.

5.5 Interpretation of the Contract

Review Contract requirements. If conflicts arise regarding their interpretation or adequacy, seek guidance from the Engineer. Inform the QCI of the results of this discussion.

5.6 Fabrication Observation

Establish a proactive pattern of regular and frequent observations during the progress of work to verify satisfactory workmanship without delaying production or missing critical operations.

Coordinate verifications with the QCI and accomplish them with minimal additional material handling by the Fabricator and with as little interference with the work in process as possible.

Though there are not designated points during fabrication when the suitability of materials must be checked, problems should be discovered and addressed as early as possible.
5.7 Nonconforming Materials and Workmanship

A nonconformance is defined as a fabrication error or alteration in the work that does not meet project specifications. Some minor nonconformances can be remedied as provided for in the welding code and project specifications. A typical example of this would include cosmetic weld repairs. Other nonconformances may be more serious and cannot be remedied through simple repair as allowed in the applicable welding code. These types of nonconformances render the affected component unacceptable until such time as the issue is referred to the Engineer for disposition. Typical examples of these nonconformances include, but are not limited to, mis-located holes, incorrect material, final dimensions not in accordance with approved drawings, un-authorized welds, welding without approved welding procedures, and overheating of members. When in doubt regarding the proper disposition method, the QAI should obtain clarification from the Engineer/Owner as necessary.

Bring all nonconformance issues to the attention of the Fabricator immediately upon discovery. However, do not direct corrective action. If the Fabricator fails to take corrective action, or continues to operate in an unacceptable manner, immediately notify the Engineer. Verbal notification of nonconformance issues to the fabricator is sometimes sufficient; however serious specification noncompliance issues should always be conveyed in writing to the fabricator and the Engineer.

For significant problems, the Fabricator must submit a written proposal concerning the issue, providing documentation of the situation and proposed actions to address the issue. The Fabricator may write directly to the Engineer, Contractor, or both, as directed, and in all cases send a copy to the QAI.

When the Engineer’s approval is required for a repair, the inspector shall review and confirm the Fabricator’s proposed methods of repair and description of the existing material conditions. Seek guidance from the Engineer for clarification when necessary. Follow up to verify that all required corrections and applicable NDE have been accomplished. All nonconformances shall be properly resolved before the members can be considered for final acceptance.
SECTION 6
INSPECTION PROCEDURES

<< The intent of this section is to specify the inspection requirements for QAI activities. This list should be modified as necessary to suit the owner’s specific requirements. >>

6.1 Mill Test Reports

6.1.1 Verify use of proper materials by reviewing a copy of the MTRs when the material arrives and by monitoring heat numbers during fabrication until the material is joined into a piece-marked item.

6.1.2 Obtain MTRs from the Fabricator in accordance with the Department’s customary practice, including the number of copies and when and to whom MTRs should be submitted.

6.1.3 Verify the following information on MTRs:
- product description (specifications, grade, H or P testing frequency)
- chemistry
- physical test results, including Charpy V-Notch when applicable
- applicable “Buy America” certification requirements
- heat number
- certification signature (Quality Control Department and Notary, when required)

6.1.4 Do not accept material if the Fabricator cannot furnish appropriate certifications to establish compliance with the required material properties and “Buy America” requirements, if required in the Contract.

6.1.5 Maintain a record of heat number identification for main members.

6.1.6 Accept structural steel based on MTRs. Miscellaneous hardware or other associated products may be accepted based on certifications of compliance.

6.1.7 If the Department requires additional independent physical and/or chemical tests of the material’s properties, then these tests must be performed as soon as practical, and prior to fabrication. If the independent tests indicate noncompliance, do not allow use of the material unless an agreement is reached between the Department and the Fabricator as to its acceptability. Bring such noncompliance to the attention of the QCI for evaluation and disposition.

6.1.8 Verify compliance of MTRs with the requirements of the relevant ASTM or AASHTO specification.
6.2 Inspection of Raw Materials

6.2.1 Verify that the requirements of ASTM A 6 (AASHTO M 160) or ASTM A 20 as applicable, which cover the common requirements for hot-rolled plates, shapes, sheet piling, and bars, are applied, as applicable, for material acceptance inspection and repairing certain surface defects.

6.2.2 Check materials for surface defects and discontinuities, both initially and as material is being worked. Check rolled sections and steel castings for dimensions, straightness, twist, fins, scabs, and rolling defects, prior to fabrication.

6.2.3 Grade of material shall be in accordance with the shop drawing / project requirements. No unauthorized substitutions of material (size or grade) are allowed without the Engineer’s approval.

6.3 Material Cutting Inspection

6.3.1 Check that methods employed for material cutting are allowed by the contract documents specifications. Monitor steel plate during cutting for internal defects or other problems. Check that cutting methods do not produce unacceptable gouges or surface roughness. Check that internal defects or gouges are evaluated and repaired in accordance with the applicable code requirements. Verify that heat numbers are being transferred to cut members.

6.4 Fit-up and Welding Inspection

6.4.1 Review the consumable manufacturer’s certificate of conformance maintained by the Fabricator for all consumables used. If required by the Department, obtain copies for the project file.

6.4.2 If the Department maintains a list of approved electrodes, verify that all consumables used by the Fabricator are on the list.

6.4.3 Monitor these criteria before welding begins:
- approved shop drawings clearly indicate the details of welded joints by welding symbols or sketches. Missing or inappropriate weld details are unacceptable and shall be referred to the Fabricator and Engineer for disposition. Approved drawings must be corrected and approved prior to final acceptance
- appropriate equipment in acceptable condition and periodically calibrated per QCP
- proper functioning of drying and baking ovens
all welders, welding operators, and tack welders are qualified in accordance with the contract documents
appropriate welding procedure specifications (WPS) for all detailed joints have been submitted and approved by the Engineer

6.4.4 Monitor these consumable-handling criteria (randomly audit):
• storage, condition, and exposure times of welding consumables
• re-drying and recycling limits

6.4.5 Monitor these criteria during welding operations (randomly audit):
• joint details, including root face and opening, bevel angle, and alignment of parts are within appropriate welding code and WPS tolerances
• proper application of extension tabs (run-on and run-off)
• cleanliness of surfaces to be welded
• proper condition and storage of welding consumables
• size, quality, and location of tack welds
• the following of approved welding procedure specifications (WPSs) including amperage, voltage, speed of travel, electrode extension, shielding gas flow rate, and preheat, interpass, and/or post-heat temperatures within applicable welding code and WPS tolerances
• workmanship of individual welders
• use of proper repair procedures for fabrication errors, including, when required, the Engineer’s approval
• weld starts and stops, securing and removing run-on and run-off tabs, stopping short of snipes or plate edges, and ending without craters
• for stud welding, ensure test studs are being performed and materials are acceptable

6.4.6 Monitor these final weld quality criteria:
• size, profile, and contour of fillet and groove welds
• defects in welds or parent metal only as permitted by contract documents code/specifications
• accurate interpretation by QCIs for the acceptance or rejection of welds
• cleaning and backgouging of welds, including thorough removal of unsound metal and gouging contamination (copper, carbon). Check proper profile of backgouged weld for compliance
• overgrinding of weld or adjacent base metal areas so as to reduce material/weld throat
• stud welds exhibit full 360 degree flash or are welded studs are visually acceptable
6.5 Nondestructive Testing

6.5.1 Review and approve the personnel qualification documentation of those performing NDE for the Fabricator. Assure that all NDE is being scheduled by QCI so that QAI witnessing of the NDE operation is possible.

6.5.2 Periodically witness NDE, review the test results, and verify that reports are complete and legible and completed in a timely manner.

6.5.3 For radiographic testing (RT), conduct the following activities:

- interpret test results in accordance with the contract documents
- verify that final edges may be properly interpreted (if the plate will be cut after RT, the final edge may be within the plate on the RT film)
- verify proper application of edge blocks if necessary (plate edge is final edge in structure)
- verify that each radiograph represents a unique section or piece by comparing punch marks or other approved methods of marking the work and corresponding marks on the film
- verify that the entire specified area is tested

6.5.4 Periodically observe or conduct, if necessary, ultrasonic testing (UT) to verify the Fabricator’s NDE results. The QAI will determine intervals for observation of verification testing unless otherwise directed by the Engineer.

- verify the calibration of equipment, including horizontal and vertical linearity checks

6.5.5 For magnetic particle testing (MT), conduct the following activities:

- periodically observe the application and interpret the results of MT performed on primary members to verify that they satisfy Bridge Welding Code requirements.
- on ancillary, secondary, or miscellaneous items, periodically observe and interpret MT when required by the contract documents.
- observe MT when needed to verify visual findings.
QUALITY ASSURANCE MANUAL

6.5.6 For liquid penetrant testing (PT), periodically observe technique and interpret results.

6.6 General Visual Inspection

During fabrication the QAI should monitor and spot-check that the work performed by the fabricator meets the contract requirements, including, as a minimum, the following:

- straightness
- no unauthorized corrections made by welding or manual thermal cutting
- size and quality of punches and dies
- proper setup and securing of drilling or reaming templates
- bolt hole location, edge distance, and diameter
- cylindrical and perpendicular bolt holes
- absence of burrs, tears, and chips in bolt holes
- thickness of plates, clearances, fitup accuracy, alignment of holes, and proper size of sections at field connections
- shop assembly of girders or other parts required for reaming or drilling of field splice holes: positioning, securing, match marking members and splice plates, splice plate orientation (flange splice plates’ rolling direction parallel to flanges), fills in assembly, and all plies in contact when assembled
- flatness of flanges at bearing areas
- bearing plates and bearing assemblies, including rockers and shoes for structural steel and expansion joints
- proper surface finish and protection of machined surfaces
- contact condition of milled bearing surfaces
- camber blocking during girder assembly, prior to drilling and QAI acceptance for disassembly
- records of final sweep or camber
- inspection and installation of fasteners in the shop
- location of stiffeners and connection plates
- match-marking of assembled members
- preparation of match-mark diagrams
- control and use of heat and/or pressure to obtain or correct sweep and camber in accordance with shop’s QCP, and avoidance of buckles, twists, kinks, or other defects
• legibility and position of erection and shipping marks
• no unacceptable twists, bends, kinks, or sweep in finished members
• proper number of pieces
• small parts properly packaged or otherwise secured against loss or damage in transit
• loose pieces fastened in place for shipment
• application of rust-preventive material when required, and covering to prevent contamination of painted surfaces
• no cutting apart of welded members without the Engineer's approval

6.7 Dimensional Inspection

6.7.1 Periodically observe laydowns and shop assembly.

6.7.2 Verify the Fabricator’s geometry control methods and measurements. For full or partial shop assemblies, receive the QCI’s signed reports of measurements for the Department’s records. If requested by the Department, photographs should also be included in the QAI’s report.

6.8 Bolting Inspection

6.8.1 Verify the acceptability of fastener components by reviewing MTRs and test reports (including rotational capacity test reports).

6.8.2 Verify that all fasteners are properly stored and segregated.

6.8.3 When fasteners are installed in the shop, ensure that installation and verification testing procedures are properly followed.

6.8.4 Witness the rotational capacity and verification testing for shop-installed high-strength fasteners.

6.8.5 Assure current calibration and functionality of torque wrenches and bolt tension-indicating devices.

6.9 Coating Inspection

6.9.1 When shop sampling is performed:

Sample Quality Assurance Manual

Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration. All rights reserved.
Sample Quality Assurance Manual

Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration.
All rights reserved.
6.10.2 Check that the base metal complies with the additional requirements for FCMs including fine-grain practice, prohibition of mill repairs, and toughness requirements.

6.10.3 Check that the Fabricator has complied with the more stringent purchasing, storing, and handling requirements for consumables as required by the Fracture Control Plan.

6.10.4 Check that the fabricator complies with the additional fabrication requirements of the Fracture Control Plan including preheating requirements, tack welding limitations, and straightening/cambering/curving requirements.

6.10.5 Confirm that repair welding conforms to the Fracture Control Plan. “Noncritical Repairs” may be preapproved by the Engineer. “Critical Repairs” shall be approved by the Engineer prior to beginning the repair and shall be documented giving details of the type of discontinuity, location, and extent of repair. Verify that all discontinuities to be repaired are covered by the repair procedure. All repair welding shall be monitored and inspected by the QCI and the QAI.

6.10.6 Confirm that the repair is properly made in accordance with the approved repair procedure including additional requirements such as proper preheat, postheat, and nondestructive testing.

6.10.7 Verify that the Fabricator’s NDT Level III is certified by ASNT.
SECTION 7
MATERIAL STORAGE

The intent of this section is to recommend the activities required by the QAI as related to Material Storage during the course of a project. This list should be modified as necessary to suit the owner’s specific requirements.

The project schedule may require that completed members be stored at the fabrication shop or other location for a period of time before shipment to the jobsite. Check that the completed members are stored in a manner that will not cause distortion or damage. Check that lifting devices do not damage the material or the coating. The fabricator is responsible for repairing any storage damage prior to shipment to the project.
SECTION 8
LOADING AND SHIPPING

<<< The intent of this section is to recommend activities required by the QAI as related to Loading of material during the course of a project. This list should be modified as necessary to suit the owner’s specific requirements. >>>

When all work is complete, conduct a final visual examination of the work.

The QCI will provide copies of reports covering the materials to be shipped. Verify that all data are correct.

Randomly observe handling and loading of the work to verify that the methods and supports used will prevent significant damage during shipping. Check that damage to coatings during the storage and loading process is properly repaired as appropriate.
SECTION 9
FINAL ACCEPTANCE

<< The intent of this section is to recommend the requirements of the QAI during the final acceptance of material during the course of a project. This list should be modified as necessary to suit the owner’s specific requirements. >>>

When fabrication is complete and the inspection results demonstrate that all contract documents have been satisfied, the materials are conditionally accepted. Confirm that all nonconformances have been properly resolved.

Affix the approval stamp or shipping tag on the fabricated piece (or a group of parts bundled or contained together), if required, during preparation of a member/component for shipping, indicating that a representative of the Owner has inspected and accepted the work. Presence of this stamp does not relieve the Contractor of responsibility for proper loading, shipping, final fit, and acceptable final condition of the member or component.

If required, notify jobsite personnel or the Owner of the shipment. Submit final report to Owner as directed.

If the fabricator elects to ship material that does not meet the contract documents or has unresolved nonconformances, immediately contact the Engineer to notify. Do not affix an approval stamp or tag to the fabricated component(s).

If the material is being shipped to a secondary processor such as a galvanizer or coater, then final acceptance/stamping may occur at that location. Coordinate with the Engineer to confirm the method for inspection at the secondary location.
APPENDIX A
INSPECTION FORMS

<<The intent of this section is to include the inspection forms routinely required during the course of a project. This list should be modified as necessary to suit the owner’s specific requirements. >>>

<table>
<thead>
<tr>
<th>Form</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General QA Inspection Forms</td>
<td></td>
</tr>
<tr>
<td>Bearing Status Record</td>
<td>A1</td>
</tr>
<tr>
<td>Expansion Dams Status Record</td>
<td>A2</td>
</tr>
<tr>
<td>Secondary & Miscellaneous Items Status Record</td>
<td>A3</td>
</tr>
<tr>
<td>Girder Status Record</td>
<td>A4</td>
</tr>
<tr>
<td>Sign Structure and Pole Status Record</td>
<td>A5</td>
</tr>
<tr>
<td>Stringer Status Record</td>
<td>A6</td>
</tr>
<tr>
<td>Camber Inspection Form</td>
<td>A7</td>
</tr>
<tr>
<td>Sweep Inspection Form</td>
<td>A8</td>
</tr>
<tr>
<td>Material Certification Summary Form</td>
<td>A9</td>
</tr>
<tr>
<td>Girder Heat Number Record</td>
<td>A10</td>
</tr>
<tr>
<td>Rolled Beam-Stringer Heat Number Record</td>
<td>A11</td>
</tr>
<tr>
<td>Quality Control Repair Summary</td>
<td>A12</td>
</tr>
<tr>
<td>Bolt Torque Verification Record</td>
<td>A13</td>
</tr>
<tr>
<td>Galvanizing Inspection Record</td>
<td>A14</td>
</tr>
<tr>
<td>NDT Inspection Record</td>
<td>A15</td>
</tr>
<tr>
<td>Paint Inspection Record</td>
<td>A16</td>
</tr>
<tr>
<td>Project Narrative</td>
<td>A17</td>
</tr>
</tbody>
</table>

Standardized Welding Forms

<table>
<thead>
<tr>
<th>Form</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fillet Weld Soundness Test Results Form</td>
<td>A18</td>
</tr>
<tr>
<td>Procedure Qualification Record Form</td>
<td>A19</td>
</tr>
<tr>
<td>Weld Procedure Specification Form – D1.1</td>
<td>A20</td>
</tr>
<tr>
<td>Weld Procedure Specification Form – D1.5</td>
<td>A21</td>
</tr>
</tbody>
</table>
Bearing Status Record

<table>
<thead>
<tr>
<th>Fabricator Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Number:</td>
<td>Project Number:</td>
</tr>
<tr>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>Piece Mark</td>
<td></td>
</tr>
<tr>
<td>Approved Drawing</td>
<td></td>
</tr>
<tr>
<td>Init.</td>
<td>Date</td>
</tr>
<tr>
<td>Approved Welding Procedure</td>
<td></td>
</tr>
<tr>
<td>Approved Welders</td>
<td></td>
</tr>
<tr>
<td>Mill Certs</td>
<td></td>
</tr>
<tr>
<td>Cutting</td>
<td></td>
</tr>
<tr>
<td>Machining Complete</td>
<td></td>
</tr>
<tr>
<td>Welding Complete</td>
<td></td>
</tr>
<tr>
<td>Sample Test</td>
<td></td>
</tr>
<tr>
<td>PTFE, Fabric Pad, Rubber</td>
<td></td>
</tr>
<tr>
<td>NDT Complete</td>
<td></td>
</tr>
<tr>
<td>Blast Clean</td>
<td></td>
</tr>
<tr>
<td>Paint Complete</td>
<td></td>
</tr>
<tr>
<td>Friction/Proof Load Test</td>
<td></td>
</tr>
<tr>
<td>Final Dimensions Check</td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td></td>
</tr>
<tr>
<td>Weight (lb)</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
Expansion Dams Status Record

<table>
<thead>
<tr>
<th>Fabricator Name:</th>
<th>Project Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Number:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Piece Mark</th>
<th>Approved Drawings</th>
<th>Init.</th>
<th>Date</th>
<th>Init.</th>
<th>Date</th>
<th>Init.</th>
<th>Date</th>
<th>Init.</th>
<th>Date</th>
<th>Init.</th>
<th>Date</th>
</tr>
</thead>
</table>

Welder Qualifications
- Approved Welding Procedure
- Mill Certs

Cutting
- Angles
- Divisor
- Pedestals
- Curb Parapet

Welding Complete

Stud Welding Complete

Bend Test
- Length
- Elevation
- Lug Depth
- Pedestals
- Contours

Dimension Check
- Certs
- Insp. (Car Seal #)
- Sample
- Approved

Seal
- Adhesive
 - Sample
 - Approved

Blast Clean
- Installation of Seal
- Depth of Seal
- Joint Opening
- Cleaning of Seal

NDT
- Dye Penetrant
- Magnetic Particle
- Ultrasonic

Painting Complete
- Galvanizing
- Final Approval
- Shipping

Weight (lb)

Remarks:
Secondary & Miscellaneous Items Status Record

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Piece Mark</th>
<th>Quantity</th>
<th>Approved Drawing</th>
<th>Init. Date</th>
<th>Init. Date</th>
<th>Init. Date</th>
<th>Init. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill Certs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Cut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holes Drilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly/Weld Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blast Clean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paint / Galvanizing Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Check</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (lb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Sample Quality Assurance Manual

Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration. All rights reserved.
Girder Status Record

<table>
<thead>
<tr>
<th>Fabricator Name:</th>
<th>Project Number:</th>
</tr>
</thead>
</table>

| Piece Mark | Approved Drawing | Welder Qualifications | Approved Weld Procedure | Mill Certs | Top Flange Cut | Top Flange Welded | Top Flange RT | Bottom Flange Cut | Bottom Flange Welded | Bottom Flange RT | Web Cut | Web Welded | Web RT | Web to Flange Fit | Web to Flange Welded | Stiffeners Fit | Stiffeners Welded | Fit Others | Weld Others | Weld Dimensions Checked | Bearing Area Flatness | NDT | Magnetic Particle | Ultrasonic | Length Check | Web Flatness | Flange Tilt | Camber Check | Sweep Check | Blast Clean | Pick up Repairs | 1st Coat | 2nd Coat | 3rd Coat | Final Approval | Shipment | Weight (lb) | Remarks: |
|--------------|------------------|----------------------|--------------------------|-----------|----------------|-----------------|--------------|------------------|-------------------|------------------|----------|-------------|-------|-----------------|---------------------|--------------|---------------|-----------|-------------|------------------------|---------------------|-----|--------------|----------|--------------|-------------|-----------|-----------|------------|-------------|-----------|-----------|--------|-------------|-----------|----------|-

Sample Quality Assurance Manual
Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration.
All rights reserved.
Sign Structure and Pole Status Record

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Piece Mark</th>
<th>Approved Drawing</th>
<th>Welder Qualifications</th>
<th>Approved Weld Procedure</th>
<th>Mill Certs</th>
<th>Cutting</th>
<th>Drilling</th>
<th>Welding Complete</th>
<th>Weld Dimensions Checked</th>
<th>Dye Penetrant</th>
<th>Magnetic Particle</th>
<th>Radiographic</th>
<th>Ultrasonic</th>
<th>Galvanizing</th>
<th>Storage</th>
<th>Final Approval</th>
<th>Shipping</th>
<th>Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Init. Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Sample Quality Assurance Manual

Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration.
All rights reserved.
Stringer Status Record

<table>
<thead>
<tr>
<th>Fabricator Name:</th>
<th>Contract Number:</th>
<th>Project Number:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Piece Mark</th>
<th>Approved Drawing</th>
<th>Welder Qualifications</th>
<th>Approved Weld Procedure</th>
<th>Mill Certs</th>
<th>Init. Date</th>
<th>Init. Date</th>
<th>Init. Date</th>
<th>Init. Date</th>
<th>Init. Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Heat Camber</th>
<th>Cover Plate Fit T/B</th>
<th>Cover Plate Welded T/B</th>
<th>Stiffeners Welded</th>
<th>Weld Dimensions Checked</th>
<th>Attach Bearings</th>
<th>Bearing Protection</th>
<th>Radiography</th>
<th>Magnetic Particle</th>
<th>Ultrasonic</th>
<th>Length Check</th>
<th>Web Flatness</th>
<th>Flange Tilt</th>
<th>Camber Check</th>
<th>Sweep Check</th>
<th>Blast Clean</th>
<th>Pick up Repairs</th>
<th>1st Coat</th>
<th>2nd Coat</th>
<th>3rd Coat</th>
<th>4th Coat</th>
<th>Final Approval</th>
<th>Shipment</th>
<th>Weight (lb)</th>
</tr>
</thead>
</table>

Paint

<table>
<thead>
<tr>
<th>1st Coat</th>
<th>2nd Coat</th>
<th>3rd Coat</th>
<th>4th Coat</th>
<th>Final Approval</th>
<th>Shipment</th>
<th>Weight (lb)</th>
</tr>
</thead>
</table>

Remarks:

`Sample Quality Assurance Manual`

Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration.

All rights reserved.
Camber Inspection Form

<table>
<thead>
<tr>
<th>Fabricator Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Number:</td>
<td>Project Number:</td>
</tr>
</tbody>
</table>

Camber Inspection Form

- **Item:**
- **Piece Mark:**
- **Length:**
- **Tolerance:**

Heat Corrected: Yes No Max. Temp.: Heat Pattern:

<table>
<thead>
<tr>
<th>Panel Points</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location (From Left End N.S)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required Camber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camber Before Heat Correction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Camber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Location (From Left End N.S)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Inspector Name:

Inspector Signature:

Sample Quality Assurance Manual

Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration. All rights reserved.
Sweep Inspection Form

<table>
<thead>
<tr>
<th>Fabricator Name:</th>
<th>Project Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item:</th>
<th>Piece Mark:</th>
<th>Length:</th>
<th>Tolerance:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heat Corrected: Yes No Max. Temp.: Heat Pattern:

Top Flange

<table>
<thead>
<tr>
<th>Distance from Left</th>
<th>Required Sweep</th>
<th>Sweep Before Heat Correction</th>
<th>Final Sweep</th>
<th>Heat Location (from left)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom Flange

<table>
<thead>
<tr>
<th>Distance from Left</th>
<th>Required Sweep</th>
<th>Sweep Before Heat Correction</th>
<th>Final Sweep</th>
<th>Heat Location (from left)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
Material Certification Summary Form

<table>
<thead>
<tr>
<th>P.O. #</th>
<th>Mill / Supplier</th>
<th>Heat or Lot #</th>
<th>Materials Description</th>
<th>Insp. Initial</th>
<th>Date Accept.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
Girder Heat Number Record

<table>
<thead>
<tr>
<th>Piece Mark</th>
<th>Top Flange</th>
<th>Web</th>
<th>Bottom Flange</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
Rolled Beam-Stringer Heat Number Record

<table>
<thead>
<tr>
<th>Piece Mark</th>
<th>Beam Size</th>
<th>Beam Length</th>
<th>Beam Heat #</th>
<th>Cover Plate Heat #</th>
<th>Top</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
Quality Control Repair Summary

<table>
<thead>
<tr>
<th>QCRN</th>
<th>Date</th>
<th>Piece Mark</th>
<th>Location/ Type of Defect</th>
<th>Date Submitted</th>
<th>Date Procedure Approved</th>
<th>Date Repaired</th>
<th>MT ACC</th>
<th>UT ACC</th>
<th>PT ACC</th>
<th>RT ACC</th>
<th>Final ACC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Remarks:
Bolt Torque Verification Record

<table>
<thead>
<tr>
<th>Status Indicator</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Verify–Bolt marking</td>
<td></td>
</tr>
<tr>
<td>2. Check–Surface condition of bolts, nuts, and washers</td>
<td></td>
</tr>
<tr>
<td>3. Check–Storage of bolts, nuts, and washers</td>
<td></td>
</tr>
<tr>
<td>4. Check–Faying surfaces of joints</td>
<td></td>
</tr>
<tr>
<td>5. Observe–Calibration/testing procedures</td>
<td></td>
</tr>
<tr>
<td>6. Verify–Selected procedure is properly applied</td>
<td></td>
</tr>
<tr>
<td>7. Verify–Procedure used provides the tension values given in table</td>
<td></td>
</tr>
<tr>
<td>8. Monitor–Installation of fasteners verifying that the selected procedure demonstrated in the initial testing to supply the specified tension is properly applied</td>
<td></td>
</tr>
</tbody>
</table>

If Unsatisfactory, Explain:

of Bolts in connection: # of Bolts verified: Inspection lot numbers:

Inspection Procedure (Once per day when installing H.S. Bolts):

Three bolts of the same grade, size, and condition shall be placed individually in a device calibrated to measure bolt tension, such as Skidmore-Wilhelm.

Tighten each bolt in the calibrated device to the specified tension. Using the inspection wrench, turn the nut an additional 5 degree (approx. 1” at a 12” radius). Record the torque values below:

Tension Device Ser. No.: Calibration Date: Cal. Due Date:

| Bolt 1: | | | |
|---|---|---|
| | | |
| Bolt 2: | | | |
| | | |
| Bolt 3: | | | |
| | | |

Average Torque Value:

Test Status:

Inspector Name:

Inspector Signature:
Galvanizing Inspection Record

<table>
<thead>
<tr>
<th>Item</th>
<th>Status</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material free from damage:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material free from grease or other coatings:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanizing procedure reviewed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quenching performed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromate treatment allowed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutting / Welding performed by galvanizer:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material properly handled after coating:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material stored properly:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual appearance acceptable:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness acceptable (use DFT form):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adhesion visually acceptable:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All welds visually checked for cracks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material free from distortion:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repairs performed per ASTM A780:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final approval / Ship:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inspector Name:

Inspector Signature:

Sample Quality Assurance Manual
Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration. All rights reserved.
NDT Inspection Record

<table>
<thead>
<tr>
<th>Date</th>
<th>Piece Mark</th>
<th>NDT Type</th>
<th>Observations</th>
<th>Accepted</th>
<th>ASNT Operators</th>
<th>Witnessed By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Paint Inspection Record

<table>
<thead>
<tr>
<th>Fabricator Name:</th>
<th>Contract Number:</th>
<th>Project Number:</th>
</tr>
</thead>
</table>

Piece Mark:

Environmental Conditions for Surface Preparation

<table>
<thead>
<tr>
<th>Date:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Bulb Temp.:</td>
<td>Wet Bulb Temp.:</td>
</tr>
<tr>
<td>Relative Humidity:</td>
<td>Dew Point:</td>
</tr>
<tr>
<td>* Surface Temp.:</td>
<td>Inspector:</td>
</tr>
<tr>
<td>Application:</td>
<td></td>
</tr>
<tr>
<td>Surface finish actual:</td>
<td>Surface Profile Actual:</td>
</tr>
<tr>
<td>Inspector:</td>
<td>Date:</td>
</tr>
</tbody>
</table>

Environmental Conditions for Prime Coat

<table>
<thead>
<tr>
<th>Date:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Bulb Temp.:</td>
<td>Wet Bulb Temp.:</td>
</tr>
<tr>
<td>Relative Humidity:</td>
<td>Dew Point:</td>
</tr>
<tr>
<td>* Surface Temp.:</td>
<td>Inspector:</td>
</tr>
<tr>
<td>Application:</td>
<td></td>
</tr>
<tr>
<td>Coating Product:</td>
<td>Batch # A</td>
</tr>
<tr>
<td>Start</td>
<td>Date:</td>
</tr>
<tr>
<td>Stop</td>
<td>Date:</td>
</tr>
<tr>
<td>Actual DFT Low:</td>
<td>High:</td>
</tr>
<tr>
<td>Inspector:</td>
<td>Date:</td>
</tr>
</tbody>
</table>

Environmental Conditions for Intermediate Coat

<table>
<thead>
<tr>
<th>Date:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Bulb Temp.:</td>
<td>Wet Bulb Temp.:</td>
</tr>
<tr>
<td>Relative Humidity:</td>
<td>Dew Point:</td>
</tr>
<tr>
<td>* Surface Temp.:</td>
<td>Inspector:</td>
</tr>
<tr>
<td>Application:</td>
<td></td>
</tr>
<tr>
<td>Coating Product:</td>
<td>Batch # A</td>
</tr>
<tr>
<td>Start</td>
<td>Date:</td>
</tr>
<tr>
<td>Stop</td>
<td>Date:</td>
</tr>
<tr>
<td>Actual DFT Low:</td>
<td>High:</td>
</tr>
<tr>
<td>Inspector:</td>
<td>Date:</td>
</tr>
</tbody>
</table>

Environmental Conditions for Final Coat

<table>
<thead>
<tr>
<th>Date:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Bulb Temp.:</td>
<td>Wet Bulb Temp.:</td>
</tr>
<tr>
<td>Relative Humidity:</td>
<td>Dew Point:</td>
</tr>
<tr>
<td>* Surface Temp.:</td>
<td>Inspector:</td>
</tr>
<tr>
<td>Application:</td>
<td></td>
</tr>
<tr>
<td>Coating Product:</td>
<td>Batch # A</td>
</tr>
<tr>
<td>Start</td>
<td>Date:</td>
</tr>
<tr>
<td>Stop</td>
<td>Date:</td>
</tr>
<tr>
<td>Actual DFT Low:</td>
<td>High:</td>
</tr>
<tr>
<td>Inspector:</td>
<td>Date:</td>
</tr>
</tbody>
</table>

* (must be 5 degrees above dew point)
Project Narrative

<table>
<thead>
<tr>
<th>Fabricator Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Number:</td>
</tr>
</tbody>
</table>

Inspector Name:

Inspector Signature
Contractor (Fabricator) __

Prepared by: ___

T1 Thickness ___

T2 Thickness ___

Filler Metal Specification ___

Filler Metal Classification ___

Shielding Gas ___

Flux Mfg. Designation ___

Voltage ___

(use mean voltage of WPS to be qualified)

Amperage/WFS* ___

(use mean amperage/WFS* of WPS to be qualified)

Polarity ___

Position of Welding __

* wire feed may be used in lieu of current when a correlation curve is provided for the same electrode diameter and electrode extension.

TEST RESULTS (per 5.19.3.1)

<table>
<thead>
<tr>
<th>Maximum Size Single Pass Weld Size</th>
<th>Minimum Size Multiple Pass Weld Size</th>
</tr>
</thead>
</table>

Weld Size Acceptable __

Cracking ___

Thorough Fusion ___

Weld Profile per 3.6 __

Undercut > 1/32 inch __

Note: Fillet weld soundness tests are required in addition to groove weld PQRs to qualify fillet welds. A fillet weld macro-tech text shall be made for each WPS and position to be used in construction. Test Plate D shown in Figure 5.8 of AWS D1.5-2002 shall be used.

Preparer’s Signature: __
Contractor (Fabricator):
PQR Prepared by:

Qualified Per: 5.12.1 □ 5.12.2 □ 5.13 □ Process □ HPS □

Position 1G □ 2G □ 3G □ 4G □ Welder’s name ________________

Electrode(s) Mfg. Designation ________________ AWS Specification ________________

Flux Mfg. Designation ________________ AWS Classification ________________

Flux Type: Active □ Neutral □ Alloy □ Electrode Extension ________________

<table>
<thead>
<tr>
<th>Electrode Dia. (inch)</th>
<th>Current (amps)</th>
<th>WFS* (ipm)</th>
<th>Voltage (volts)</th>
<th>Current & Polarity</th>
<th>Travel Speed (IPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* wire feed may be used in lieu of current when a correlation curve is provided for the same electrode diameter and electrode extension.

Calculated Heat Input (KJ/In) __________________________ (See AWS D1.5 5.12) AWS Joint Detail used ________________

Shielding Gas ________________ Flow Rate (cfph) ________________ Dew Point (°F) ________________

Base Metal Thickness (In) ________________ Backing Thickness (In) ________________

Base Metal Specification & Heat No. __________________________ (Attach Certified Copies of Mill Test Reports)

Back-up Specification & Heat No. __________________________ (Attach Certified Copies of Mill Test Reports)

A709 50W carbon equivalent (plate%) ________________ (backing%) ________________

A709 50W carbon content (plate%) ________________ (backing%) ________________

Preheat Temp. (°F) ________________ Interpass Temp. (°F) Min. ________________ Max. ________________

Welding Witness: __________________________ Agency: __________________________

PHYSICAL AND NONDESTRUCTIVE TEST RESULTS (Complete below and attach laboratory reports)

<table>
<thead>
<tr>
<th>SPECIMEN</th>
<th>TEST RESULTS</th>
<th>Official Use Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Weld Metal Tension (AWMT) Tensile Strength (psi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield Strength (psi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elongation in 2 in. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction in Area (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Side Bends (accept/reject) 1. ______ 2. ______ 3. ______ 4. ______

Reduced Section Tension (ksi) Tensile Strength 1. ______ Location of Break 1. ______

2. ______ 2. ______

Charpy V-Notch Impact __________________________ @ °F

Toughness of Weld Metal (Ft.lbs.) Avg. ft.lb. ** @ °F

** Discard the highest and lowest values and average the remaining values.

Physical Tests witnessed by: __________________________ Agency: __________________________

Expiration Date (5 years for Non Fracture Critical): __________ (3 years for Fracture Critical): __________

I attest that the above information is correct: __________________________ Date: __________

(Authorized representative of contractor (fabricator) (State of __) Department of Transportation)
1. Contractor (Fabricator) ________________________ Prequalified ______ Qualified by testing ______
 Supporting PQR No(s). ______________________ ______

2. Material specification(s) ______________________

3. Material Thickness(es) ______________________

4. Diameter (pipe) ______________________

5. Welding process ______________________

7. Position(s) of welding ______________________

8. Filler metal specification ______________________

9. Filler metal Classification ______________________
 Brand name ______________________

10. Flux Class ______________________
 Brand ______________________ Type: Active ______ Neutral ______ Alloy ______

11. Shielding gas ______________________ Flow rate ______________________

12. Single pass ______ Multiple pass ______

13. Single arc ______ Multiple arc–Tandem ______ Multiple arc–Parallel ______

14. Welding current ______________________

15. Polarity ______________________

16. Welding progression ______________________

17. Root cleaning ______________________

18. Postheat treatment ______________________

19. Electrode extension (electrical stickout) ______________________

Welding Process Variables

<table>
<thead>
<tr>
<th>Weld Pass No(s.)</th>
<th>Electrode Size (In)</th>
<th>Welding Process Variables</th>
<th>Travel Speed (IPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AMPs/WFS*</td>
<td>VOLTS</td>
</tr>
</tbody>
</table>

Wire feed speed may be used along with amperage (include chart)

Preheat and Interpass Temperature Chart

<table>
<thead>
<tr>
<th>Base metal thickness range</th>
<th>Minimum preheat (°F)</th>
<th>Max Preheat & Interpass (°F)</th>
</tr>
</thead>
</table>

Authorized Signature: ______________________

Additional Shop Notes: ______________________

For Official use only

Approved By: ______________________

Date: ______________________

© 2006 by the AASHTO/NSBA Steel Bridge Collaboration. All rights reserved.
1. Contractor (Fabricator) Prepared by:
2. Non-Fracture Critical Fracture Critical WPS/PQR Expiration date: ______________
3. Qualified in accordance with: 5.11 (prequalified) 5.12.1 5.12.2 5.13
 Referenced PQR No(s). ____________ ____________ ____________ ____________
 Referenced Fillet Weld Soundness Test No(s). ____________ ____________
4. Material specification(s) ________________________________
5. Material Thickness(es) (range) ________________________________
6. Welding process ________________________________
8. Position(s) of welding ________________________________
9. Filler metal specification ________________________________
10. Filler metal classification and brand name ________________________________
11. Flux class & brand ________________________________
 Type: Active Neutral Alloy
 Shielding gas Flow rate ________________________________
12. Single pass Multiple pass ________________________________
13. Single arc Multiple arc – Tandem Multiple arc - Parallel ________________________________
14. Welding current ________________________________
15. Polarity ________________________________
16. Welding progression ________________________________
17. Root cleaning ________________________________
18. Postheat treatment ________________________________
19. Calculated Heat Input (KJ/In) Min __________ Max __________
20. Electrode extension (electrical stickout) ________________________________

<table>
<thead>
<tr>
<th>Weld size (In)</th>
<th>Pass No(s)</th>
<th>Electrode Size (In)</th>
<th>Welding Process Variables</th>
<th>Travel Speed (In/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AMPS/WFS*</td>
<td>VOLTS</td>
</tr>
</tbody>
</table>

*Wire feed speed may be used along with amperage (include chart)

Preparer’s Signature: ________________________________
Additional Notes: ________________________________

Joint Detail
Show relevant dimensions, AWS Joint Designation and AWS symbols

<table>
<thead>
<tr>
<th>Preheat and Interpass Temperature Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base metal thickness range</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2006 by the AASHTO/NSBA Steel Bridge Collaboration.
All rights reserved.