Preface

This document is a guideline developed by the AASHTO/NSBA Steel Bridge Collaboration. The primary goal of the Collaboration is to achieve steel bridge design and construction of the highest quality and value through standardization of the design, fabrication, construction, inspection, and long-term maintenance. Each standard represents the consensus of a diverse group of professionals.

It is intended that Owners adopt and implement Collaboration documents in their entirety to facilitate the achievement of standardization. It is understood, however, that local statutes or preferences may prevent full adoption of the document. In such cases Owners should adopt these documents with the exceptions they feel are necessary.

Copyright © 2023 by the AASHTO/NSBA Steel Bridge Collaboration
All rights reserved.

Disclaimer

The information presented in this publication has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed professional engineer, designer, or architect.

The publication of the material contained herein is not intended as a representation or warranty of the part of the American Association of State Highway and Transportation Officials (AASHTO) or the National Steel Bridge Alliance (NSBA) or of any other person named herein, that this information is suitable for any general or particular use or of freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability arising from such use.

Caution must be exercised when relying upon other specifications and codes developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The authors and publishers bear no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition.

AASHTO Publication No.: NSBASBEGS-4
OFFICERS:

PRESIDENT: Roger Millar, Washington*

VICE PRESIDENT: Craig Thompson, Wisconsin**

SECRETARY-TREASURER: Russell McMurry, Georgia

EXECUTIVE DIRECTOR: Jim Tymon, Washington, D. C.

REGIONAL REPRESENTATIVES:

REGION I: Nicole Majeski, Delaware
Everett Lott, District of Columbia

REGION II: Vacant
Lorie Tudor, Arkansas

REGION III: Nancy Daubenger, Minnesota
Jack Marchbanks, Ohio

REGION IV: Vacant
Joel Jundt, South Dakota

IMMEDIATE PAST PRESIDENT: Shawn Wilson, Louisiana

*Elected at the 2022 Annual Meeting
**Elected at the 1/5/2023 Special Virtual Meeting
AASHTO Committee on Bridges and Structures, 2023

CARMEN SWANWICK, Chair
SCOT BECKER, Vice Chair
JOSEPH L. HARTMANN, Federal Highway Administration, U.S. DOT Liaison
PATRICIA J. BUSH, AASHTO Liaison

<table>
<thead>
<tr>
<th>ALABAMA</th>
<th>CONNECTICUT</th>
<th>ILLINOIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>William “Tim” Colquett</td>
<td>Bart Sweeney</td>
<td>Jayme Schiff</td>
</tr>
<tr>
<td>Eric Christie</td>
<td>Andrew Cardinali</td>
<td>Ruben Boehler</td>
</tr>
<tr>
<td>Jeffrey T. Huner</td>
<td>Bao Chuong</td>
<td>Mark Shaffer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALASKA</th>
<th>DELAWARE</th>
<th>INDIANA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leslie Daugherty</td>
<td>Jason Hastings</td>
<td>Anne Rearick</td>
</tr>
<tr>
<td>Nicholas Murray</td>
<td>Jason Arndt</td>
<td>Jennifer Hart</td>
</tr>
<tr>
<td>Dan Smith</td>
<td>Craig Stevens</td>
<td>Stephanie Wagner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARIZONA</th>
<th>DISTRICT OF COLUMBIA</th>
<th>IOWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Benton</td>
<td>Konjit Eskender</td>
<td>James Nelson</td>
</tr>
<tr>
<td>Navaphan Viboolmate</td>
<td>Don Cooney</td>
<td>Jim Hauber</td>
</tr>
<tr>
<td></td>
<td>Richard Kenney</td>
<td>Michael Nop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARKANSAS</th>
<th>FLORIDA</th>
<th>KANSAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles “Rick” Ellis</td>
<td>William Potter</td>
<td>Mark Hurt</td>
</tr>
<tr>
<td>Andy Nanneman</td>
<td>Benjamin Goldsberry</td>
<td>Karen Peterson</td>
</tr>
<tr>
<td>Steven Peyton</td>
<td>Felix Padilla</td>
<td>Peter Tobaben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CALIFORNIA</th>
<th>GEORGIA</th>
<th>KENTUCKY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruth Fernandes</td>
<td>Donn Digamon</td>
<td>Michael Carpenter</td>
</tr>
<tr>
<td>Vassil Simeonov</td>
<td>Doug Franks</td>
<td>Royce Meredith</td>
</tr>
<tr>
<td>Don Nguyen-Tan</td>
<td>Steve Gaston</td>
<td>Carl Van Zee</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLORADO</th>
<th>HAWAII</th>
<th>LOUISIANA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Collins</td>
<td>James Fu</td>
<td>Zhengzheng (Jenny) Fu</td>
</tr>
<tr>
<td>Jessica Martinez</td>
<td>Nicholas Groves</td>
<td>Mark Bucci</td>
</tr>
<tr>
<td>Tyler Weldon</td>
<td></td>
<td>Chris Guidry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDAHO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike Johnson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Names</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>MAINE</td>
<td>Wayne Frankhauser, Richard Myers, Michael Wight</td>
<td></td>
</tr>
<tr>
<td>MONTANA</td>
<td>Andy Cullison, Amanda Jackson</td>
<td></td>
</tr>
<tr>
<td>NORTH DAKOTA</td>
<td>Jon Ketterling, Lindsay Bossert, Jason Thorenson</td>
<td></td>
</tr>
<tr>
<td>MARYLAND</td>
<td>Maurizio Agostino, Jeffery Robert</td>
<td></td>
</tr>
<tr>
<td>NEBASKA</td>
<td>Ross Barron, Fouad Jaber, Kyle Zillig</td>
<td></td>
</tr>
<tr>
<td>OHIO</td>
<td>Sean Meddles, Alexander Dettlof, Jeffrey Syar</td>
<td></td>
</tr>
<tr>
<td>MASSACHUSETTS</td>
<td>Alexander Bardow, Justin Slack, Matthew Weidele</td>
<td></td>
</tr>
<tr>
<td>NEVADA</td>
<td>Jessen Mortensen, David Chase</td>
<td></td>
</tr>
<tr>
<td>OKLAHOMA</td>
<td>Justin Hernandez, Jason Giebler, Walter Peters</td>
<td></td>
</tr>
<tr>
<td>MICHIGAN</td>
<td>Rebecca Curtis, Mike Halloran, Bradley Wagner</td>
<td></td>
</tr>
<tr>
<td>NEW HAMPSHIRE</td>
<td>Loretta Doughty, David Scott</td>
<td></td>
</tr>
<tr>
<td>OREGON</td>
<td>Ray Bottenberg, Albert Nako, Tanarat Potisuk</td>
<td></td>
</tr>
<tr>
<td>MINNESOTA</td>
<td>Ed Lutgen, Arielle Ehrlich, Eric Yermack</td>
<td></td>
</tr>
<tr>
<td>NEW MEXICO</td>
<td>Xiaohua (Hannah) Cheng</td>
<td></td>
</tr>
<tr>
<td>PENNSYLVANIA</td>
<td>Richard Runyen, Kristin Langer</td>
<td></td>
</tr>
<tr>
<td>MISSISSIPPI</td>
<td>Scott Westerfield, Micah Dew, Bradnado Turnquest</td>
<td></td>
</tr>
<tr>
<td>NEW YORK</td>
<td>James Flynn, Brenda Crudele, Julianne Fuda</td>
<td></td>
</tr>
<tr>
<td>PUERTO RICO</td>
<td>Angel Alicea, Manuel Coll, Eric Rios</td>
<td></td>
</tr>
<tr>
<td>MISSOURI</td>
<td>Bryan Hartnagel, David Hagemeyer, Darren Kemna</td>
<td></td>
</tr>
<tr>
<td>NORTH CAROLINA</td>
<td>Brian Hanks, Scott Hidden, Girchuru Muchane</td>
<td></td>
</tr>
<tr>
<td>RHODE ISLAND</td>
<td>Keith Gaulin, Mary Vittoria-Bertrand</td>
<td></td>
</tr>
</tbody>
</table>
SOUTH CAROLINA
Terry Koon
Hongfen Li

SOUTH DAKOTA
Steve Johnson
Todd Thompson
Patrick Wellner

TENNESSEE
Ted Kniazewycz

TEXAS
Graham Bettis
Bernie Carrasco
Jamie Farris

UTAH
Cheryl Hersh Simmons
Mark Daniels
Rebecca Nix
Carmen Swanwick

VERMONT
Carolyn Cota
Bob Klinefelter
Jim Lacroix

VIRGINIA
Greg Henion
Andrew Zickler

WASHINGTON
Evan Grimm
Andrew Fiske
Amy Leland

WEST VIRGINIA
Tracy Brown
Robert Douglas
Chad Robinson

WISCONSIN
Josh Dietsche
Scot Becker
Aaron Bonk
Laura Shadewald

WYOMING
Michael Menghini
Jeff Booher
Paul Cortez

Associate Members

CHESAPEAKE BAY BRIDGE
AND TUNNEL DISTRICT
Timothy Holloway

MARYLAND
TRANSPORTATION
AUTHORITY
James Harkness
William Pines

MULTNOMAH COUNTY
TRANSPORTATION DIVISION
Jon Henrichsen

TRANSPORTATION RESEARCH
BOARD
Ahmad Abu-Hawash

U.S. ARMY CORPS OF
ENGINEERS
Phillip Sauser

FHWA (Non-Voting)
Joseph Hartmann

Technical Committee Liaisons
Vincent Chiarito
Fawaz Saraf
Jerry Shen
Tuong Linh (Linh) Warren
Lubin Gao
Jamal Elkaissi
Calvin Chong
Joe Balice
Raj Ailaney
Reggie Holt
Ben Graybeal
Sougata Roy
Joe Krolak
Dayi Wang
Ryan Slein
Silas Nichols
Larry O’Donnell
Justin Ocel
Samantha Lubkin
Everett Matias
Tom Saad
Stephen Bartha
TABLE OF CONTENTS

Section 1—General ... 1
 1.1—Definitions ... 1
 1.1.1—Steel Bridge Erection .. 1
 1.1.2—Erector ... 1
 1.1.3—Contractor .. 1
 1.1.4—Design Engineer ... 1
 1.1.5—Erection Engineer ... 1
 1.1.6—Fabricator ... 2
 1.1.7—Inspection ... 2
 1.1.8—Owner ... 2
 1.1.9—Plans ... 2
 1.1.10—Erection Plans ... 2
 1.1.11—Erection Procedures ... 3
 1.1.12—Erection Engineering Calculations 3
 1.1.13—Contract Documents .. 3
 1.1.9—Contract Documents .. 1
 1.1.10—Erection Plans ... 1
 1.1.11—Erection Procedures ... 1
 1.1.12—Erection Engineering Calculations 1
 1.1.13—Contract Documents .. 1
 1.2—Erector Qualifications .. 3

Section 2—Erection Engineering .. 5
 2.1—General ... 5
 2.1.1—Required Erection Plans and Procedures and Erection Engineering Calculations 5
 2.1.2—Erection Plans and Procedures Overview 5
 2.1.3—Erection Engineering Calculations Submittal 6
 2.2—Erection Plans and Procedures .. 7
 2.2.1—Plan of Work Area ... 7
 2.2.2—Erection Sequence ... 7
 2.2.3—Delivery Location ... 8
 2.2.4—Crane Information ... 8
 2.2.5—Primary Member Crane Pick Information 9
 2.2.6—Lifting Devices and Special Procedures 9
 2.2.7—Bolting Requirements .. 10
 2.2.8—Bearing Blocking and Tie-Down Details 10
 2.2.9—Load Restrictions ... 11
 2.2.10—Temporary Supports ... 11
 2.2.11—Jacking Devices .. 12
 2.3—Guidelines for Methods of Structural Analysis 12
 2.4—Requirements for Erection Engineering Calculations for Structural Adequacy and Stability ... 13
 2.4.1—Design Criteria ... 14
 2.4.2—Loads and Load Combinations .. 15
 2.4.3—Girder and System Stability .. 15
 2.4.4—Uplift ... 17
 2.4.5—Temporary Hold Cranes ... 17
 2.4.6—Temporary Support Loads .. 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.2</td>
<td>Welding Procedure Qualification</td>
<td>37</td>
</tr>
<tr>
<td>8.3</td>
<td>Welding Requirements</td>
<td>38</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Welders</td>
<td>38</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Contact Surfaces</td>
<td>38</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Joined Parts</td>
<td>38</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Environmental Conditions</td>
<td>38</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Consumables</td>
<td>38</td>
</tr>
<tr>
<td>8.3.6</td>
<td>Preheat</td>
<td>38</td>
</tr>
<tr>
<td>9.1</td>
<td>General</td>
<td>39</td>
</tr>
<tr>
<td>9.2</td>
<td>Geometric Control</td>
<td>39</td>
</tr>
<tr>
<td>9.3</td>
<td>Tolerances</td>
<td>39</td>
</tr>
<tr>
<td>9.4</td>
<td>Bolting</td>
<td>42</td>
</tr>
<tr>
<td>9.5</td>
<td>Welding</td>
<td>42</td>
</tr>
<tr>
<td>10.1</td>
<td>Documentation</td>
<td>43</td>
</tr>
<tr>
<td>10.2</td>
<td>Implementation</td>
<td>43</td>
</tr>
<tr>
<td>10.3</td>
<td>Repair Procedures</td>
<td>43</td>
</tr>
<tr>
<td>10.4</td>
<td>Welds</td>
<td>43</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Appendix A: Erection Plan and Procedures Checklist</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Appendix B: Erection Calculations Checklist</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Appendix C: Erection Inspection Checklist</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Appendix D: Sample Erection Plans</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>
1.1—DEFINITIONS

1.1.1—Steel Bridge Erection

Steel bridge erection is the process of transporting, handling, and assembling steel bridge components to result in a bridge structure that meets all the geometric and structural requirements of the Contract Documents.

1.1.2—Erector

In this document, “Erector” refers to the entity that is responsible for the erection of the structural steel.

1.1.3—Contractor

The Contractor is responsible for proper completion of all tasks required by the Contract. Subcontractors, including Fabricators, Erectors, and field painters, may be used by the Contractor, but the Contractor retains responsibility for all material, operations, and the final product. The Contractor may permit direct subcontractor interaction with the Owner to expedite the project, but subcontractors shall inform the Contractor of any proposed modifications to contract requirements accepted by the Owner.

1.1.4—Design Engineer

In this document, “Design Engineer” refers to the licensed professional who is responsible for sealing the Contract Plans. Sealing indicates that a licensed professional has performed or supervised the analysis, design, and document preparation for the structure and has knowledge of the load-carrying structural system.

1.1.5—Erection Engineer

In this document, “Erection Engineer” refers to the licensed professional who is responsible for developing, evaluating, and specifying the Contractor’s specific procedures and plans for erecting the structural steel of the bridge.
1.1.6—Fabricator

In this document, “Fabricator” refers to the facility(ies) performing such shop activities as cutting, welding, drilling, punching, cleaning, and painting of structural steel. “Fabricator” also includes any agents of the Fabricator, such as subcontracted Fabricators. In some cases, the Fabricator is subcontracted by the Contractor.

1.1.7—Inspection

The examination by the Owner, Contractor, Erector, or Fabricator of processes and products to verify conformance with the Contract requirements.

1.1.8—Owner

In this document, “Owner” refers to the entity paying the Contractor to fulfill the terms of the Contract. The Owner also encompasses the following: those preparing the Contract Documents, including those responsible for the structure’s adequate design; and those authorized to represent the Owner during construction, commonly called the “Engineer” and the “Inspector.” The Engineer and Inspector may be employees either of the Owner or of professional firms contracted for the work.

1.1.9—Plans

In this document, if not otherwise noted or modified by adjectives, the term “Plans” refers to the engineering drawings prepared by the Design Engineer. The terms “Design Plans” and “Contract Plans” are identical in meaning to the generic term “Plans.”

1.1.10—Erection Plans

In this document, the term “Erection Plans” refers specifically to the engineering drawings prepared by the Erection Engineer describing and specifying the erection (i.e., the field-installation and member-placement) of the structural steel. In this document, the term “Erection Plans” may also refer in a more general context to the combination of engineering drawings and Erection Procedures describing and specifying the erection (i.e., the field-installation and member-placement) of the structural steel.

C1.1.10

The intent of these definitions is not to create requirements for separating information shown on the Erection Plans from information presented in the Erection Procedures; the two documents are intended to be complementary. The required information can be shown in either the Erection Plans or the Erection Procedures as is appropriate for clear presentation, efficiency, and simplicity; the key is that all required information is presented in either one or the other.

C1.1.9

The term “Plans” can refer to many documents, but typically refers to the engineering drawings prepared by the Design Engineer unless modified by at least one descriptive adjective to denote different meaning (e.g., “Erection Plans” refers to the engineering drawings prepared by the Erection Engineer). When not otherwise clear, the term “Plans” should be interpreted (in this document) as referring to the plans prepared by the Design Engineer, which can also be denoted as the “Design Plans” or the “Contract Plans.”
1.1.11—Erection Procedures

In this document, the term “Erection Procedures” refers to the documents which describe the specific sequence, methods, equipment, and other directives which the Contractor is to follow in erecting the structural steel. The terms “Erection Plans” and “Erection Procedures” are not synonymous, but the Erection Plans and Erection Procedures shall be fully integrated with each other and shall together describe and specify all aspects of how the structural steel is to be erected, including, but not limited to, sequence of erection, methods or techniques to be used, equipment to be used, materials to be used, along with any temporary works or other devices necessary. Items identified as required by these specifications and not addressed in the Erection Plans shall be addressed in the Erection Procedures.

1.1.12—Erection Engineering Calculations

In this document, the term “Erection Engineering Calculations” refers to any engineering calculations associated with the substantiation of the Erection Plans and Erection Procedures.

1.1.13—Contract Documents

In this document, the term “Contract Documents” refers to the documents that define the responsibilities of the parties that are involved in bidding, fabricating, and erecting structural steel (and other elements of the project). These documents normally include the design drawings, the specifications, and the contract.

1.2—ERECTOR QUALIFICATIONS

Structural steel shall be erected by a qualified, competent Erector. The Owner shall specify qualifications for the steel Erector based on the complexity of the project.

C1.1.11

The Erection Procedures should be presented in some written format (i.e., verbal directives are not sufficient to constitute Erection Procedures). The Erection Procedures can include reference to standard operating procedures of the Contractor (to avoid unnecessary repetition or excessive documentation), but in such a case, the standard operating procedures should be written, and should be available for review by the Owner.

C1.2

A “qualified, competent Erector” has knowledge, training, and experience, and has demonstrated the technical proficiency and ability to complete the work specified. The Erector should be able to resolve common problems associated with the complexity of work proposed. American Institute of Steel Construction (AISC) credentials such as Certified Erector, or other similar industry-based qualifications, should be considered based on the requirements for such certifications and the complexity of the bridge. Certification alone may not be sufficient evidence of qualification for complex or monumental bridge structure types, such as suspension, cable-stayed, tied arch, cantilever truss, or movable bridges.
2.1—GENERAL

2.1.1—Required Erection Plans and Procedures and Erection Engineering Calculations

The Contractor shall submit Erection Plans and Erection Procedures to the Owner for each bridge structural unit identified on the Contract Plans and specifications. In the Contract Documents language, “an erection plan is required” or similar invokes a requirement for submittal of Erection Plans and Procedures and the associated Erection Engineering Calculations as described in this Guide Specification.

The Contractor shall submit Erection Engineering Calculations to the Owner for each bridge structural unit identified on the Contract Plans and specifications. In the Contract Documents language, “Erection engineering calculations are required” or similar invokes a requirement for submittal of Erection Plans and Procedures and the associated Erection Engineering Calculations as described in this Guide Specification.

Unless otherwise specified in the Contract Documents, if the submittal of Erection Plans and Procedures (with or without Erection Engineering Calculations) is required, the Owner shall be allowed a minimum of 15 working days to review the submittal, after which the Contractor may assume the submittal has been approved by the Owner, unless the Owner provides written notification that the submittal was not approved.

2.1.2—Erection Plans and Procedures Overview

The Erection Plans and Procedures shall be prepared by a licensed professional engineer licensed in the state(s) or jurisdiction(s) in which the subject bridge is being built. The Erection Plans and Procedures submittal shall address all requirements for erection of the structural steel into the final designed configuration. Any and all written review comments provided by the Owner shall be addressed to the Owner’s satisfaction prior to the start of erection. As a minimum, the Erection Plans and Procedures shall include consideration of all items described in Article 2.2.

C2.1.1

Formal submittal and review of Erection Plans and Procedures and Erection Engineering Calculations may not be warranted for all bridges. Owners may choose to forgo requiring formal submittal and review of Erection Plans and Procedures and Erection Engineering Calculations where the additional cost and time is not justified. For simpler structures where the risk associated with problems is minimal, the Owner may choose to rely upon the Contractor’s expertise to erect the bridge without requiring a formal submittal. For example, for a shorter, rural, simple-span creek crossing bridge, formal submittal and review of Erection Plans and Procedures and associated Erection Engineering Calculations may not be warranted.

Note that, as explained in Articles 1.1.9, 1.1.10, and 1.1.11, the term “Erection Plan” encompasses both engineering drawings (defined specifically as Erection Plans) and any associated Erection Procedures documents.

C2.1.2

The qualifications of the Erection Engineer preparing the Erection Plans and Procedures and the Erection Engineering Calculations should be evidenced by knowledge, training, and experience in steel erection, and having demonstrated the ability to resolve problems related to steel bridge erection. Many states also require that erection procedures and temporary falsework design be prepared by a professional engineer licensed or registered in that state. Some states may specifically require licensure or registration as a Structural Engineer (SE); in such cases, the specification language should be revised as appropriate.
The submission date(s) and review period(s) should be established and agreed to by the Owner and the Contractor as soon as possible after the Contract award, and should be established such that sufficient time is allotted for development of the erection submittal by the Erection Engineer and for review by the Owner. Erectors are encouraged to attend prebid and preconstruction meetings to help understand the complexities associated with the steel erection well in advance. Projects that involve complex erection or multi-agency reviews can be expected to require additional time for review of the submitted Erection Plans and Procedures. In these cases, the established submission dates and review periods should reflect the need for appropriate reviews by all involved parties. In some cases, particularly for bridges with complex erection schemes, it may be appropriate to establish one or more interim submittals including an early submittal of preliminary Erection Plans and Procedures that illustrate the proposed erection sequence and reflect any fabrication changes required to accommodate the proposed erection sequence.

2.1.3—Erection Engineering Calculations Submittal

Erection Engineering Calculations to substantiate the structural adequacy and stability of the erected structure and any associated temporary works, temporary components, or both, do not need to be included in the Erection Plans and Procedures submittal, unless otherwise specifically required on the Contract Plans or in special provisions. However, the Owner reserves the right to request the submittal of Erection Engineering Calculations for review and approval at any time. If requested, such calculations shall be submitted within 14 calendar days of request by the Owner.

In the absence of Erection Engineering Calculation submittal requirements, the Contractor may provide calculations in any format of their own choosing, including without limitation electronic analysis files, spreadsheets, copies of hand calculations, etc. The Contractor shall provide reading software for any electronic analysis files prepared using analysis software not otherwise already owned and used by the Owner or freely available to the Owner.

Complex or signature structures should have specific requirements noted in the Contract Documents. Complex erection projects may require input from the Design Engineer in addition to the original design calculations such that the Contractor can confirm constructability of the structure during various erection stages. The Owner should ensure that the Design Engineer is available to consult with the Contractor in these cases. Further, it is beneficial for the Owner to discuss with the Contractor particular issues or concerns with the Erection Plans and Procedures to secure an explanation.

When calculations are required, it is beneficial for the Owner to specify their preferred format for submittal. Printed (or PDF) reports of output are common; if the Owner would like actual data files, this should be explicit in the Contract Documents.

A checklist listing all items discussed below is provided in Appendix A as an aid for engineers preparing or reviewing erection submittals.
2.2—ERECTION PLANS AND PROCEDURES

2.2.1—Plan of Work Area

The Erection Plans shall include:

a) a plan of the work area showing the proposed bridge,
b) the permanent support structures (piers and abutments),
c) roads,
d) railroad tracks,
e) waterways (including location and dimensions of any navigational channel(s) and any navigational clearances to be respected during construction),
f) overhead and underground utilities,
g) structures and conditions that may limit access (consideration of clearance requirements over roadways or railroads),
h) staging or material storage areas,
i) right-of-way and property lines,
j) information, plans, etc. regarding maintenance of traffic requirements, lane or road closures, restrictions, durations, etc. necessary to protect public safety for all erection operations over or adjacent to live traffic, and
k) any other information that may be pertinent to the steel erection.

Unless otherwise clearly allowed by the Owner’s standard specifications or unless otherwise clearly allowed in the Contract Documents, erection of structural steel over live traffic shall not be permitted.

2.2.2—Erection Sequence

The Erection Plans and Procedures shall indicate the erection sequence for all primary members (including indication of any attached secondary members), noting the use of temporary support conditions, such as (but not limited to) holding crane positions, temporary supports, and falsework. The erection sequence shall be shown in an illustrative plan view of the bridge for each erection stage, highlighting the structural components to be erected, their weights and center of gravity locations, lifting crane locations for primary member picks, and any temporary support conditions that are necessary during that particular stage. The illustrative plan view shall be accompanied with a written narrative of the procedure to be followed by the steel
Erector, which shall state items such as structural components to be erected, use of temporary supports, use of temporary bracing, hold cranes, etc. Member reference marks, when reflected on the Erection Plans and Procedures, should be the same as used on shop detail drawings.

2.2.3—Delivery Location

The Erection Plans and Procedures shall indicate the delivery location and orientation of all primary members.

2.2.4—Crane Information

The Erection Plans and Procedures shall show the location of each crane to be used for each primary member pick (see Article 2.2.2), the crane type, crane pick radius, the crane support methods (crane mats, barges, work trestles, etc.), and the means of attachment to the girders being lifted or supported.

The erection submittal shall include capacity charts or tables that address, and demonstrate the adequacy of, each crane configuration, boom length, counterweight configuration, outrigger configuration, and pick weight required to do the proposed work. The Erection Plans and Procedures shall also indicate any potential above- or below-ground obstructions or restrictions to crane operations (existing structures, utilities, etc.). When cranes are required to be placed on or near new or existing structures (bridges, abutments, retaining walls, culverts, etc.), the structure shall be evaluated to ensure it has adequate capacity to withstand crane loading.

In the event that the submitted cranes are not available at the time of construction, the Contractor can propose alternate cranes, subject to review and approval by the Owner. The submittal package for alternate cranes shall include capacity charts or tables that address, and demonstrate the adequacy of, each crane configuration, boom length, counterweight configuration, outrigger configuration, and pick weight required to do the proposed work, but resubmittal of the full Erection Plans and Procedures and the Erection Engineering Calculations package is not required.

C2.2.3

The maximum crane lift radius is often controlled by the material delivery location, hence the need to indicate the delivery location on the Erection Plans and Procedures. Correct girder segment orientation at the delivery location is important since the ability to rotate long segments under the crane boom may be restricted.

C2.2.4

The erection submittal should include adequate documentation of any items needed to support cranes. For example, if a work trestle is used to support a crane, the erection submittal should include plans for the work trestle. Likewise, if the steel erection takes place on a navigable waterway, the configuration of the barges, loading sequence, and stability provisions (tie-downs, supports, etc.) should be provided in the Erection Plans and Procedures.

Communication between the Contractor and the Erection Engineer is vital to ensure the cranes assumed by the Erection Engineer are available to the Contractor. Providing the crane types, pick radii, pick weight, boom lengths, possible obstructions, etc. in the erection submittal will help to prevent crane failures, overloads, and interferences during the steel erection process in the field. Owners should recognize that it is not uncommon for Contractors to need to substitute alternate cranes at the time of construction, due to lack of availability of the originally proposed cranes, mechanical problems, etc. The Owner and the Contractor should agree to procedures and review times for alternate crane submittals as part of their establishment of dates and review periods for erection submittals. Typically, crane submittals are relatively simple to review, so it is generally appropriate to establish relatively short review periods to allow the Contractor reasonable flexibility in managing their equipment needs.
Any plans associated with crane supports (crane mats, barges, work trestles, etc.) shall also be included. When applicable, Manufacturers’ certification documents or catalog cuts for pre-engineered devices or equipment may be used to meet this requirement; these items shall be included with the Erection Plans and Procedures and shall be subject to review and approval by the Owner. Calculations for crane supports (crane mats, barges, work trestles, etc.) do not need to be included in the Erection Plans and Procedures and calculations submittal, unless otherwise specifically required on the plans or in special provisions, but the Owner reserves the right to request their submittal for review and approval at any time. If requested, such calculations shall be submitted within 14 calendar days of request by the Owner.

2.2.5—Primary Member Crane Pick Information

The Erection Plans and Procedures shall include the lifting weight of the primary member picks, including all rigging and pre-attached elements (such as cross-frames or splice plates). The Erection Plans and Procedures shall also include the approximate center of gravity locations for the primary member picks of non-symmetric girders and assemblies.

C2.2.5

The lifting weights and the approximate centers of gravity for each pick will provide the steel Erector with necessary information to safely lift various components. The centers of gravity provided on the plans should be taken as approximate locations, as these are typically calculated assuming nominal material sizes and approximations of minor items such as bolted connections, etc. The actual center of gravity locations should reasonably match these approximate locations and will aid the steel Erector in determining the proper lifting location in the field.

2.2.6—Lifting Devices and Special Procedures

The Erection Plans and Procedures shall include the details, weight, capacity, and arrangement of all rigging (beam clamps, lifting lugs, etc.) and all lifting devices (such as spreader and lifting beams) required for lifting primary members. The Erection Plans and Procedures shall also specify details for rigging or lifting devices bolted or welded to permanent members, including the method and time (shop or field) of attachment and capacity, as well as methods, time, and responsibility for removal.

C2.2.6

Assumptions regarding the weight of rigging, spreader beams, etc., should be included in the Erection Plans and Procedures. Explicitly indicating all details related to rigging and spreader or lifting beams will help to ensure that the appropriate devices are being properly used in the field. Special considerations may be required for lifting attachments, including additional bolt holes or welding to the top girder flange. Some proprietary beam clamps apply clamping forces to secure the clamp to the girder. Effects of clamping forces on the girder flange should be considered to ensure there will be no damage or effect on the in-service performance of the girders.
As necessary, the Erection Plans and Procedures shall provide special lifting/handling procedures for any primary member with potential stability or slenderness issues.

2.2.7—Bolting Requirements

The Erection Plans and Procedures shall indicate the bolting requirements for field splices and cross-frame (or diaphragm) connections for each stage.

Refer to Article 6.7 for minimum bolting requirements during erection.

2.2.8—Bearing Blocking and Tie-Down Details

The Erection Plans and Procedures shall indicate blocking details, tie-down details, or both for the bridge bearings, and associated force demands, as necessary.

Slender beams, traditionally defined as those having a length-to-flange-width ratio (L/b) greater than 85, are prone to lateral–torsional buckling and require particular attention during lifting/handling operations. The flange width, b, should be taken as the smallest width flange within the field section being lifted. The definition of a slender beam as having an L/b ratio greater than 85 should only be used as an approximate guide; research has suggested other means of identifying the potential for instability during lifting and handling. In addition, other types of structural members may also have issues of slenderness, stability, or both, which should be addressed in the Erection Plans and Procedures as appropriate.

C2.2.7

Steel I-girders depend on their connections to adjacent girders through bracing members for their stability and stiffness during steel erection. This is especially true for curved steel girders, as the cross-frames serve as primary load-carrying members. Therefore, loosely connected cross-frames should not be used during steel girder bridge erection, as this may compromise the girder alignment (geometry control) and stability. The bolting requirements for girder field splices during steel erection need to be considered as well. In accordance with the AASHTO LRFD Bridge Construction Specifications, Article 11.6.5, splices and field connections shall have one-half of the holes filled with bolts and cylindrical erection pins (half bolts and half pins) before installing and tightening the balance of the high-strength bolts.

In addition, the Erection Engineer developing the Erection Plans and Procedures shall ensure that the number of bolts or erection pins provides enough capacity for transfer of loads for the given stage of steel erection. The final tensioning sequence for field splices and cross-frames should be considered by the Erection Engineer when evaluating bolting requirements.

C2.2.8

Depending on their details, bridge bearings may allow movement (translation) in any direction and rotation about any axis. During steel erection, in addition to other stability provisions, the bearings may require blocking to prevent or limit the translational movements and rotations. In addition, bearings may need temporary tie-downs
2.2.9—Load Restrictions

Restrictions regarding wind loading and construction dead and live loadings, and any other applicable loading restrictions, shall be included on the Erection Plans and Procedures, as necessary. Limits may be placed on wind velocities during lifting of girder field pieces or during various stages of erection when the structure is only partially complete. The limitations on wind velocities are intended to prevent girder overstress and instabilities that could be caused by certain wind speeds and associated wind pressure loading. Calculations may show that a girder or girder system may not be stable at a certain wind velocity, and this needs to be communicated to the Contractor and Erector via the Erection Plans and Procedures. If appropriate, the Erection Plans and Procedures should include instructions and details for temporary support or tie-down of partially completed structures during high wind conditions. The Erection Plans and Procedures should also explicitly state restrictions on construction live loads (vehicles, equipment, personnel, etc.) and construction dead loads (formwork/falsework, stored materials, etc.). Inadvertent overloading by construction loads could lead to structural collapse and could also affect geometry control.

For additional recommendations and guidance on the application of wind loads during construction, see AASHTO's Guide Specifications for Wind Loads on Bridges During Construction.

2.2.10—Temporary Supports

The Erection Plans and Procedures shall include the location of any temporary support structures (see Article 2.2.2) and bracing, as well as details of the temporary support structure itself. If the temporary support is to be prefabricated (selected from a supplier’s catalog), the type and capacity shall be defined in the Erection Plans and Procedures; lateral capacity as well as vertical capacity requirements shall be considered, as appropriate. If the temporary support is to be constructed by the Contractor on site, a complete design with full details, including member sizes, material properties, connections, and bracing elements, shall be provided in the Erection Plans and Procedures. In either case, details regarding the upper grillage and temporary bearing assembly, to prevent uplift at various stages during construction. The Erection Engineer should determine the blocking and tie-down requirements such that the structure remains stable during all stages of erection and such that the behavior of the physical structure shall be consistent with the behavior determined in the analysis and assumed in the Erection Plans and Procedures.

C2.2.9

In many cases, temporary supports are integral to maintaining profile and alignment in the construction of a steel bridge. As such, they should be included in the Erection Plans and Procedures, whether the support is a falsework tower, hold crane, tie-down, bearing blocking, or other support.

Refer to Article C9.3 for discussion of “as-fabricated” camber and how it may influence girder erection elevations.
(e.g., details of how the steel girders will bear on the temporary support), including the top of falsework (bottom of structural steel) elevations, shall also be included in the Erection Plans and Procedures. In addition, all foundation requirements for temporary support structures shall be provided in the Erection Plans and Procedures.

The Erection Plans and Procedures shall indicate the location of hold cranes used to provide temporary support to the steel assembly (see Article 2.2.2) and the associated crane loads. The hold crane type, capacity, boom lengths, pick radius, and means of attachment to the girders shall also be indicated in the Erection Plans and Procedures.

The Erection Plans and Procedures shall include the location and details for temporary tie-downs that are required to facilitate the steel erection, as well as the associated tie-down loads. At a minimum, the details shall include the tie-down, girder attachment devices, and anchoring devices.

The Erection Plans and Procedures shall clearly indicate when, and under what conditions, any temporary supports or holding cranes may be released in the erection sequence, and if they may be left in place while subsequent erection proceeds.

The Erection Plans and Procedures shall clearly indicate appropriate restraint of girders from twisting or layover at supports. Girders should be restrained from twist or layover at supports unless the need for such restraint is demonstrated to be unnecessary by appropriate analysis in the Erection Engineering Calculations.

2.2.11—Jacking Devices

The Erection Plans and Procedures shall indicate jacking devices that will be required to complete the steel erection. Their location, type, size, and capacity shall be indicated on the Erection Plans and Procedures, as well as their intended use, sequence of engagement, load level, jack pressure table, and any other key parameters of their operation.

2.3—GUIDELINES FOR METHODS OF STRUCTURAL ANALYSIS

The Owner may specify in the Contract Documents the minimum requirements regarding the methods of structural analysis used in any structural engineering calculations supporting the erection procedures submittal. Note that the Owner’s specification of minimum requirements for methods of analysis does not in any way relieve

C2.2.11

In some cases, jacking devices may be required at temporary support structures, or at the permanent supports, to align the structure during the erection process. If the Erection Plans and Procedures do indeed require jacking devices, they should be indicated in the Erection Plans and Procedures to alert the Contractor to their need, and their intended use should be explicitly presented.

C2.3

The Owner should specify their minimum expectations regarding the methods of structural analysis in order to identify prior to bidding what is required. This helps establish a uniform basis for bidding by communicating these requirements to the Contractor in advance. The required methods of analysis should reflect the complexity
the Contractor or the Erection Engineer of their obligations to perform correct and appropriate structural analyses.

If the Owner does not specify the minimum requirements regarding the methods of structural analysis to be used, the Contractor may elect to use any appropriate methods of analysis, provided that the methods can be demonstrated to be appropriate for the given analysis task(s), and that the methods meet or exceed the recognized or implied standard of care for similar analysis tasks.

If the Owner does not specify the minimum requirements regarding the methods of structural analysis to be used, the Contractor may elect to use any appropriate methods of analysis, provided that the methods can be demonstrated to be appropriate for the given analysis task(s), and that the methods meet or exceed the recognized or implied standard of care for similar analysis tasks.

Recommendations for the selection of the appropriate method of structural analysis can be found in NCHRP Report 725, Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges (NCHRP Project 12-79). NCHRP Report 725 provides recommendations on the appropriate methods of analysis to employ when investigating the adequacy of the erection sequence of curved or skewed steel girder bridges. The methods of analysis considered include 1D (approximate), 2D, and 3D methods. Tables are provided to aid in selection of the appropriate analysis method. For bridges with straight girders and non-skewed supports, 1D (approximate) analysis methods are generally adequate. A summary of these recommendations, including some more recent updated recommendations, can be found in Appendix B of AASHTO/NSBA Steel Bridge Collaboration document G13.1, Guidelines for Steel Girder Bridge Analysis.

The FHWA’s Engineering for Structural Stability in Bridge Construction, publication number FHWA-NHI-15-044, provides guidance for erection engineering analysis of steel girder bridges and preparation of erection submittals. It also serves as the reference manual for the identically named National Highway Institute training course, NHI 130102.

Note that a checklist, listing all items discussed below, is provided in Appendix B as an aid for preparing or reviewing erection submittals.

2.4—REQUIREMENTS FOR ERECTION ENGINEERING CALCULATIONS FOR STRUCTURAL ADEQUACY AND STABILITY

Appropriate Erection Engineering Calculations to substantiate the structural adequacy and stability of the bridge system for each step of the steel erection shall be performed to substantiate the erection procedures. Requirements addressing the submittal of calculations are presented in Appendix B as an aid for preparing or reviewing erection submittals.

This Section provides guidance on a variety of topics associated with calculations for structural adequacy and stability. As a general default, the AASHTO specifications referenced in this commentary are cited for criteria, but some opportunity is provided for the Erection Engineer.
Article 2.1 This Section only addresses the content of calculations.

The Erection Engineering Calculations shall be performed in accordance with erection design criteria established or approved by the Owner, or as stated in the Contract Documents.

2.4.1—Design Criteria

The Erection Engineering Calculations shall be prepared in accordance with the AASHTO LRFD Bridge Design Specifications, the AASHTO LRFD Bridge Construction Specifications, and the AASHTO Guide Design Specifications for Bridge Temporary Works, unless otherwise directed by the Owner or the Contract Documents. The Contractor can propose supplemental criteria for specific items necessary for erection engineering. Supplemental criteria shall be limited to specifications published by AISC, American Society of Civil Engineers (ASCE), American Concrete Institute (ACI), or other recognized, national specification-writing organizations. Proposals for supplemental design criteria shall be submitted by the Contractor for review and approval by the Owner prior to the Contractor or the Erection Engineer beginning work on the Erection Plans and Procedures, procedures, and calculations. Unless otherwise specified in the Contract Documents, the Owner shall be allowed a minimum of 10 working days to review the submittal, after which the Contractor may assume the submittal has been approved by the Owner, unless the Owner provides written notification that the submittal was not approved.

to exercise reasonable discretion, subject to the approval of the Owner in advance.

For each project, the Owner (or the Owner’s Design Engineer) should evaluate the complexity of the bridge and of the proposed erection sequence prior to bidding. If there are any particular areas of concern, the Owner (or the Owner’s Design Engineer) should specify their expectations explicitly in the Contract Documents. This may include specification of design criteria, analysis methods, or identification of specific items to be addressed in the Erection Plans and Procedures, procedures, and calculations submittal, including identification of how these items are expected to be addressed.

The specifications in this Section provide only the minimum requirements regarding calculations for structural adequacy and stability. This Section does not provide a comprehensive “checklist” of items needing evaluation for erection of any steel bridge; each project is unique and may have particular issues requiring the attention of the Erection Engineer. Only basic requirements and suggested evaluation items (in commentary) are presented herein.

C2.4.1

Traditionally, the Erection Engineer has been allowed reasonable discretion in identifying appropriate design criteria for Erection Engineering Calculations for the design of temporary works, etc. In some cases, the provisions published in AASHTO documents do not address the unique situations associated with erection engineering and temporary works. In other cases, Erection Engineers have established efficient and effective methods based on criteria other than AASHTO specifications. Commonly cited supplemental design specifications include AISC specifications for steel design and ASCE specifications for wind loads, among others. Applicable design criteria are provided in Appendix D of FHWA-NHI-15-044, Engineering for Structural Stability in Bridge Construction.
2.4.2—Loads and Load Combinations

The Erection Engineering Calculations shall consider all applicable loads, including permanent dead load, construction dead load, construction live load, and wind loads, and any other loads which may be applicable.

Wind loads shall be considered in each step of the steel erection analysis and are to be computed in accordance with the agreed erection design criteria. Provisions shall be made by the Erection Engineer to ensure that girders are stable in wind events. It is permissible to set limits on maximum wind velocities during steel erection; these limits shall be stated in the Erection Plans and Procedures. If applicable, include provisions in the Erection Plans and Procedures for temporary supports, tie-downs, or both to address high wind conditions.

Load combinations shall be in accordance with the AASHTO LRFD Bridge Design Specifications, unless otherwise noted in the Contract Documents, or unless otherwise approved by the Owner. If the Contractor proposes supplemental design criteria (in accordance with the provisions of Article 2.4.1), the Contractor may also propose supplemental load combinations for specific items provided the supplemental load combinations are consistent with the proposed design criteria. Proposals for supplemental load combinations shall be submitted by the Contractor for review and approval by the Owner prior to the Contractor or the Erection Engineer beginning work on the Erection Plans and Procedures and the Erection Engineering Calculations. Unless otherwise specified in the Contract Documents, the Owner shall be allowed a minimum of 10 working days to review the submittal, after which the Contractor may assume the submittal has been approved by the Owner, unless the Owner provides written notification that the submittal was not approved.

2.4.3—Girder and System Stability

The Erection Engineering Calculations supporting the erection procedures shall verify the stability both of individual girders and also of the entire erected steel framing for each step of the bridge erection. These calculations are dependent upon the particular features of the bridge being erected and also of the particular sequence of erection of each part of the bridge. The assumptions used in the analysis should directly support the design.

C2.4.2

Permanently dead loads typically include the self-weight of the structural members and detail attachments. Construction dead and live loads may consist of deck placement machinery, Contractor’s equipment, deck overhang brackets, concrete formwork, or other similar attachments applied in the appropriate sequence.

C2.4.3

The constructability provisions of Article 6.10.3 of the AASHTO LRFD Bridge Design Specifications should be referenced by the Erection Engineer when investigating structural adequacy and stability during steel erection. A partial list of suggested evaluation items and guidelines regarding appropriate investigations follows:
and fully conform to all steps and all details in the Erection Plans and Procedures.

Single-Girder Stability

Particular attention should be given to the lateral–torsional buckling capacity of a singly erected I-girder. One of the most critical stages during I-girder erection is when the first girder has been erected, but not yet connected to adjacent girders in the cross section. Assuming the girder is adequately braced at the supports, and there is no additional bracing within the span, the unbraced length for the girder will be the distance between supports. Long unbraced lengths typically correspond to very low lateral–torsional buckling capacity of the girder. Tub-girders typically have much higher lateral–torsional buckling capacity, but only if provided with a properly-designed top flange lateral bracing system that provides for quasi-closed section behavior of the girder.

Global overturning stability is also a concern for single curved girders, whether I- or tub-girders. The offset of the center of gravity of the girder from a chord line drawn between the support points results in an overturning moment. Single girders typically have no torsional restraint at their supports unless tie-downs or bracing, or temporary shoring or hold cranes, are provided.

Multi-Girder (Global) Stability

A girder system may be vulnerable to global buckling during the steel erection sequence, during deck placement, or both. Narrow, long-span segments during steel erection are the most susceptible to this global buckling phenomenon. Methods to investigate the global stability of girder systems are available in FHWA *Engineering for Structural Stability in Bridge Construction*, publication number FHWA-NHI-15-044.

Second-Order Amplification Estimates

Second-order amplification of the girder lateral–torsional stresses may cause a loading condition that is greater than the theoretical elastic buckling load. In this situation, the lateral–torsional displacement of the girder results in non-linear torsional loading. In addition, the displacement amplifications may complicate the prediction and control the structure’s geometry during erection. AASHTO/NSBA Steel Bridge Collaboration document G13.1, *Guidelines for Steel Girder Bridge Analysis*, provides further discussion of second-order amplification considerations.

In addition, a relatively simple method for identifying potentially adverse response
amplifications due to second-order effects was developed as part of NCHRP Project 12-79 (NCHRP Report 725). In this method, the linear response prediction obtained from any first-order analysis is multiplied by a simple amplification factor.

Cantilever Girders

During the various stages of erection of most steel girder bridges, there are often cases where field sections of girders are supported in a cantilevered position. Typically, these intermediate cantilever conditions were not addressed by the Design Engineer during the original bridge design, so it is incumbent on the Erection Engineer to investigate these conditions. For long cantilevers, lateral–torsional buckling will typically govern over yielding of the section. To examine cantilevers, the lateral–torsional buckling capacity can be estimated using the procedures provided in Ziemien (2010) or a similar appropriate method. For curved girders, additional consideration needs to be given to the torsional forces that develop due to the offset centroid of the cantilever.

2.4.4—Uplift

The potential for uplift at temporary and permanent supports during steel erection shall be considered and accounted for in the development of the Erection Engineering Calculations.

2.4.5—Temporary Hold Cranes

Hold crane loads (if used) shall be properly accounted for in the Erection Engineering Calculations.

C2.4.4

Typically, uplift is undesirable and should be prevented, either by changing the Erection Plans and Procedures or by providing tie-down restraints. If uplift is indicated in the analysis, but no tie-down restraint is provided, then the analysis should recognize the absence of vertical restraint at that particular support by modeling the boundary condition appropriately. Curved or skewed I-girder bridge systems are particularly susceptible to uplift during various stages of steel erection due to the torsional twisting of the system caused by curvature or skew. Incorrect consideration of uplift invalidates the analysis. If not considered correctly, uplift can result in girder misalignment, unintended lateral/longitudinal movement, or potential instability.

C2.4.5

Hold cranes are used to apply an upward load at some location within the span of a girder, thereby reducing the load carried by the girder. Often, the hold crane load is used to reduce the girder flexural moment due to self-weight (and any other applied loads) to a level at which the moment is less than
the lateral–torsional buckling capacity. Typically, a hold crane should not be considered as a brace point in the evaluation of the lateral–torsional buckling capacity of a girder; in most cases, the crane cable and crane system are flexible and not capable of providing the lateral resistance necessary to be considered as a brace point.

2.4.6—Temporary Support Loads

Temporary support loads (if used) shall be properly accounted for in the Erection Engineering Calculations. Calculations shall include computations for all loads on any and all temporary supports provided at critical stages of the erection sequence.

Temporary bracing shall be verified to have adequate strength and stiffness to provide stability to girders and resist appropriate force effects from assumed lateral loads that may occur during erection.

2.4.7—Bearings

The Erection Engineering Calculations shall consider bearing rotations during construction. Computed bearing rotations during construction shall not exceed the rotational capacity of the bearings.

2.4.8—Cross-Frames and Bracing

The number, size, and location of installed cross-frames and/or other bracing members required to ensure adequate strength and stability before girders are released from lifting cranes, hold cranes, or both shall be addressed in the Erection Engineering Calculations, including evaluation of associated connection details and evaluation of the strength and stiffness of the provided cross-frames. The required number, size, and location of cross-frames and other bracing members shall be indicated in the Erection Plans and Procedures.

These loads may include vertical and lateral reactions from the superstructure, self-weight of the temporary support, wind loads on the temporary support, etc.

C2.4.7

Skewed bridges are particularly vulnerable to twisting about the longitudinal axis of the girder. During steel erection, the girder could be rotated beyond the rotational capacity of the bearing, regardless of the vertical load on the bearing.

C2.4.8

The presence and correct installation of cross-frames in curved or skewed steel I-girder bridge erection is an important issue. The cross-frames and bracing members and their associated connections shall be structurally adequate, and they shall also provide sufficient stiffness to the bridge system.

During steel erection, the Erector may choose to install the minimum required number of cross-frames when initially erecting the girders, so as to decrease erection time, allowing a follow-up crew to install the remaining cross-frames later. Therefore, correct determination of the minimum number of required cross-frames to prevent lateral–torsional buckling of the girders is critical to ensuring the stability of the girders during erection. The FHWA’s Engineering for Structural Stability in Bridge Construction, publication number FHWA-NHI-15-044, provides a general method to check whether cross-frames in a girder system provide sufficient bracing for the girders. Additional calculations may be required to check that individual cross-frame members and connections have adequate capacity. Another reference available is Volume 13, Bracing System.

2.4.9—Structural Adequacy of Temporary Components

Substantiate the structural adequacy and stability of any and all temporary support components (including temporary shoring, temporary crane supports, crane mats, barges, work trestles, girder tie-downs, jacking devices, or any other temporary components) necessary for each step of the steel erection. When applicable, Manufacturers’ ratings or catalog cuts for pre-engineered devices may be used to meet this requirement.

Lifting beams, lifting devices, rigging components (rigging), and jacking devices shall meet all applicable Occupational Safety and Health Administration (OSHA) requirements for marking with rated loads and for proof testing of special custom design grabs, hooks, clamps, or other lifting accessories for prefabricated structures to 125 percent of their rated loads. Below-the-hook lifting devices shall be designed in accordance with American Society of Mechanical Engineers (ASME) standard BTH-1.

Temporary works are a critical part of many steel bridge erection projects, and their design should be subject to a standard of care similar to other Erection Engineering Calculations. The Erection Engineering Calculations should be done in accordance with design criteria established by the Owner, or as stated in the Contract Documents.

An existing bridge may be used during steel erection, rehabilitation, or widening of an adjacent bridge. Typical uses of an existing structure may include temporary bracing to new members, supporting cranes, delivery trucks, construction materials, or other equipment. Analysis of the existing structure should be performed by the Erection Engineer and submitted in the same fashion as the Erection Engineering Calculations.

Temporary support structures should be designed by a licensed professional engineer to carry all applicable vertical and horizontal loads resulting from the proposed erection sequence and possibly occurring during construction. As necessary, calculations for the design of an upper grillage, temporary bearings, and foundations should also be included. The elevation of the bearing support (bearing seat elevation) at the top of the temporary support structure should be computed and provided in the Erection Plans and Procedures. The bearing seat elevations at the temporary supports can aid the steel Erector in controlling the geometry of the structure during steel erection.

Special custom design lifting accessories are a critical part of many steel bridge erection projects. Applicable OSHA regulations and other codes and standards require proof testing such devices to 125 percent of rated loads. OSHA requires marking rated loads on manufactured hooks, shackles, beam clamps, slings, etc.

Tie-downs are a critical part of many steel bridge erection projects and their design should be subject to a standard of care similar to other erection engineering calculations. The Erection Engineering Calculations should be done in accordance with design criteria established by the Owner, or as stated in the Contract Documents. Tie-downs may be used to resist wind loads, uplift, lateral dead load forces resulting from horizontal curvature, or other loads.
Jacking devices are a critical part of many steel bridge erection projects and the selection of appropriate jack types and the determination of jacking loads should be subject to a standard of care similar to other erection engineering calculations. Any load calculations should be done in accordance with design criteria established by the Owner, or as stated in the Contract Documents. Manufacturers’ rated jack capacities should not be exceeded. In addition, written jacking procedures should be prepared and submitted for review and approval and should be included with the Erection Plans and Procedures.

2.4.10—Miscellaneous Calculations
2.4.10.1—Crane Pick Locations

Crane pick locations shall be determined with consideration of the center of gravity of the entire assembly being lifted, including the girder as well as any attached cross-frames, splice plates, stiffening trusses, or other attached items.

2.4.10.2—Support Conditions

The boundary (support) conditions assumed in the erection analysis shall accurately reflect the actual support conditions in the structure at all stages of erection (including accurate consideration of any and all temporary supports). If the character of the support at a location changes at various stages in the erection sequence, this shall be considered in the analysis model.

2.5—COORDINATION ITEMS

The Erection Procedures submittal shall include documentation of all required coordination items. These include, but are not necessarily limited to, the following:

a) review/approval by other agencies as required, e.g., railroads, Coast Guard, local jurisdictions, and
b) construction activities which occur concurrently with steel erection, such as setting forms, or concrete deck pours.

C2.5

The Contractor should coordinate activities with the Owner/Engineer, Fabricator, and Erector. Special coordination requirements may be included in the Contract Documents. Examples would be maintenance and protection of traffic, waterway navigation, school bus routes, and emergency vehicle routes. Safety measures (e.g., emergency boat, notification plans), coordination plan for regulatory agencies and other water traffic, and the details and anticipated schedules of obstructing the navigable channel should be shown.
SECTION 3:
TRANSPORTATION

3.1—RESPONSIBILITY

The Contractor is responsible for coordinating delivery of the product from the Fabricator to the jobsite and for providing adequate site access.

Although some Contractors erect, haul, or even fabricate the product, this is relatively uncommon. Often, the Contractor will subcontract fabrication, hauling, erection, or a combination of these three to the Fabricator, a hauler, or Erector. Depending on the subcontract, some of these responsibilities may flow down to these other parties.

3.2—TRANSPORTATION PLAN

The Contractor shall prepare a Transportation Plan that addresses all requirements for transportation of primary members to the jobsite. If required in Contract Documents, the Contractor shall submit the Transportation Plan to the Owner. The Transportation Plan shall include, but not be limited to:

a) Hauling route, including identification of applicable permits
b) Vehicle geometry and loads (including vehicle overall length, gross vehicle weight, and axle spacing of trailer units)
c) Member dimensions and weights
d) Temporary support type and locations
e) Lateral bracing (if needed)
f) Tie-down configuration (including type, size, and location)

The Owner may choose to forgo formal submittal and review of Transportation Plans where the additional cost and time is not justified. For simpler structures where the risk is minimal, the Owner may choose to rely upon the Contractor’s expertise to ship bridge components without submittal. The Transportation Plan may be required for submittal if members are unusually heavy, wide, deep, or long for the selected transportation mode. If submittal of the Transportation Plan or calculations is required, it is best if this requirement is clear in the Contract Documents or provided well in advance of shipping to avoid potential delays during erection. Some examples when submittal of the Transportation Plan with supporting calculations may be warranted include, but are not limited to:

a) Members transported with webs in horizontal orientation
b) Curved members overhanging supports by more than 25 feet
c) Member overhanging supports by more than 30 feet
d) Curved members with radii smaller than 600 feet
e) Members with special stability considerations (e.g., long, slender members or high flange length-to-width ratios)

Calculations to substantiate the structural adequacy and stability of the member during transportation do not need to be submitted, unless specifically required in the Contract Documents.

The AASHTO LRFD Bridge Design Specifications and the AASHTO LRFD Bridge Construction Specifications do not specify load factors or deflection limitations during transportation of straight girders. Article 11.8.4 of the AASHTO LRFD Bridge Construction Specifications provides guidance for limiting stresses in curved girders which may be applicable to straight girders as well. Some Owners specify additional dynamic and wind loading during transportation.
When the truck and loaded member exceed the legal limits for weight, length, height, or width, permits shall be obtained from all applicable permitting agencies between the point of fabrication and the jobsite.

Permit cost and availability may vary depending on the extent of the oversize or overweight load, vehicle configuration, axle loads, and axle spacing. Although permitting requirements vary by jurisdiction, Table C3.2-1 provides general shipping guidance.

Table C3.2-1—Generalized Permit Types for Bridge Girder Loads

<table>
<thead>
<tr>
<th>Legal Load Limit</th>
<th>Overall Length</th>
<th>Overall Width</th>
<th>Overall Height (1)</th>
<th>Max Axle Weight</th>
<th>Gross Vehicle Weight (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80 ft</td>
<td>8 ft 6 in.</td>
<td>13 ft 6 in.</td>
<td>10 tons (17 T tandem)</td>
<td>40 tons</td>
</tr>
<tr>
<td>Permit Load Limit</td>
<td>140 ft</td>
<td>12 ft 3 in.</td>
<td>14 ft 0 in.</td>
<td>10 tons (varies)</td>
<td>80 tons</td>
</tr>
</tbody>
</table>

Notes: Values are approximate and may vary by individual agencies along haul route.
(1) Height must allow for camber.
(2) Unloaded vehicle assumed to weigh approximately 20 tons.
(3) Loads exceeding permit limit may be possible with special consideration in some jurisdictions.

Girder designs may designate optional field splices. While considering optional field splices, the Contractor should consult with the Fabricator, hauler, and Erector to evaluate the potential for unintended stresses or other complications for fabrication, handling, hauling, and erection (e.g., crane sizes, truck turning radii, availability of trucking equipment, rigging requirements, hauling permits).

3.3—HANDLING AND SECURING

All members shall be handled and supported in such a manner to avoid damage during loading, transportation, and unloading.

Wherever practical, girder sections should be shipped in the same orientation as in the completed structure (i.e., webs should be vertical). Girders shall be supported in such a manner to maintain stability without permanent deformation.

Care shall be exercised to avoid coating damage from slings, chokers, clamps, tie-down restraints, etc. when handling, hauling, or storing.

During transportation, members may experience loads and stresses that differ from design load cases. Damage to the members during handling and transportation can take several forms including:

a) Permanent deformation
b) Cracked welds or members from overstress or repeated stress reversals
c) Coating damage

Limiting the length of members overhanging the rear wheels of a trailer may reduce the range of stress reversals and potential damage from ground strikes.

Although fabricated structural steel is exempt from some sections of 49 CFR Part 393, Subpart I, “Protection Against Shifting and Falling Cargo,” this regulation provides guidance for tie-down design to secure loads. Use of additional tie-downs during
Members shall be securely and adequately fastened to the shipping vehicle to prevent the members from shifting during transportation.

The end-to-end orientation of the girder relative to the truck should be coordinated between the Fabricator and Erector to correspond to the Erection Plans prior to loading.

3.4—FASTENERS

Ship all fastener components in sealed, watertight containers, with contents clearly listed on external tags.

Transport should be considered for increased safety and redundancy.

Orienting the girder on the truck in accordance with the Erection Plans, e.g., piece mark toward cab end, will eliminate unnecessary movements at the project site. Rotating long, heavy girders end-to-end with jobsite cranes may not be possible. Depending on site constraints, the truck may not be able to turn around onsite to obtain the proper girder orientation.

C3.4

High-strength steel fastener thread lubrication requires protection from the elements. This does not apply to anchor rods or end-welded shear studs.
4.1—FABRICATED MATERIAL

Store fabricated material on blocking above the ground. Properly drain the ground and keep material clean. Store primary members upright and shored or braced for stability. Support all members to prevent permanent distortion or damage.

4.2—FASTENERS AND MACHINE-FINISHED PARTS

Store fasteners in covered containers to protect them from dirt and moisture. Store fastener containers and machine-finished parts inside covered structures or otherwise protect them from the weather. Install fasteners removed from covered containers by the end of the work shift. Return unused fasteners to covered containers at the end of a work shift or otherwise protect them from the weather. Do not install fasteners that have accumulated dirt or rust, or otherwise deviate from their manufactured condition. Fastener components, other than those incorporated into twist-off type fastener assemblies, may be cleaned and relubricated by the Erector. Relubricated fasteners shall be subsequently retested per Article 7.4 to verify bolt installation method.

Fastener manufactured condition is defined as that which exists when the Manufacturer’s sealed container is first opened.

Fastener Manufacturers apply various coatings and oils that become an essential variable in the bolt installation method. If these coatings are compromised after a tested lot of bolts have been verified for a specific installation method, the test is not valid for those bolts with the compromised coating.

4.3—WELDING CONSUMABLES

Store and handle welding consumables in accordance with the AASHTO/AWS D1.5M/D1.5 Bridge Welding Code (referred hereafter as “D1.5M/D1.5”).

4.4—DAMAGE

Report any damaged structural steel to the Owner, including a description of the damage and proposed Contractor disposition (repair or replace).
This page intentionally left blank.
SECTION 5:
BEARINGS AND ANCHORAGES

5.1—SURVEY
Prior to the start of erection operations, verify all substructure locations (lateral and longitudinal), existing anchor rod locations, bearing seat elevations, and other pertinent information in a Contractor survey. Resolve any discrepancies between the Contractor-conducted survey and Contract Plans with the Owner prior to performance of erection operations.

5.2—BRIDGE SEATS
Place bearing devices on properly finished bridge seat bearing areas. Notify the Owner if seats are not level or are at incorrect elevations and propose corrective actions.
Prior to placing girders, confirm that temporary blocking is not required.

C5.1
The Owner, Contractor, and Erector should review substructure survey data prior to beginning erection operations. The Contractor and Erector should propose actions to mitigate discrepancies in bridge seat elevations to the Owner for review; review by the Design Engineer may also be appropriate depending on the nature of the discrepancies and the proposed mitigation actions. See Article C5.2 for further discussion of bridge seat elevation discrepancies and possible mitigation actions. For straight I-girder bridges with simple framing arrangements, a discrepancy of 1/8 in. or less between adjacent beam seats or top of bearing elevations typically will not result in difficulties with cross-frame fit-up or gaps between the bearings or girders. However, more significant discrepancies in beam seats and top of bearing elevations (especially discrepancies in the relative heights of adjacent beam seats and bearings) often cannot be easily accommodated in the connections of cross-frames at the bearings when standard-size holes are used and/or when complicated framing arrangements result in greater stiffness of the structure. See Article C6.9 for further discussion on field reaming.

C5.2
Placing a girder on a bearing surface that is not within the geometric constraints required by the plans and specifications may affect the erection and performance of the bridge. Problems such as poor fit-up, beams that are not well-seated on bearings, and difficulty erecting skewed or curved steel structures may be caused by bearing surface discrepancies but may result from the geometry of the partially erected structure. The Engineer should evaluate the as-built bearing geometry to determine if adjustments are required to correct discrepancies in bearing surfaces. If fit-up issues occur during an intermediate stage of erection, the Erection Engineer should be consulted prior to determining if beam seat adjustments are warranted.
While various methods exist to rectify the situation, the chosen solution shall be approved by the Engineer. Various choices are available when a bearing seat does not have the as-designed geometry:
5.3—TEMPERATURE ADJUSTMENTS

When setting bearings, make appropriate corrections for ambient temperature and anticipated rotation due to dead load deflection of the supported member. Position high-load, multi-rotational bearings such that the initial position, including corrections for temperature and dead load rotation, is within Manufacturers’ requirements. Notify the Owner if anchor bolt locations do not permit proper positioning and propose corrective actions.

5.4—TOLERANCES

In addition to the dimensional tolerances in D1.5M/D1.5 for steel bearing contact areas, members shall seat on bearing devices with no final gaps exceeding \(\frac{1}{16} \) in.

a) grinding of a concrete surface such as a concrete pedestal (assuming extra cover was provided to allow for the possibility),
b) providing steel fill plates of a material and finish compatible with the expected performance and serviceability of the bridge,
c) loosening bolts of select cross-frames to allow the framing to “settle” into the as-provided geometry, or
d) loosening and reaming the bolt holes of select cross-frames to allow the framing to “settle” into the as-provided geometry (provided that doing so will not result in a loss of control of the constructed geometry and potential fit-up problems elsewhere in the steel framing)

Some Owners also choose to provide one ply of one end of the connection to have oversized holes to provide for some erection tolerance.

C5.3

See recommendations in the AASHTO/NSBA Steel Bridge Collaboration’s G9.1—Steel Bridge Bearing Design and Detailing Guidelines for thermal movement calculations.
SECTION 6
LIFTING AND ASSEMBLY

6.1—GENERAL
Lift, position, and assemble all members in accordance with the procedures in Section 2. The proposed crane location(s) and member delivery location(s) may require modification in the field to suit changing jobsite conditions. However, cranes and material shall be located such that the lift is safe and within the crane Manufacturers’ rated capacity for all required positions.

6.2—LIFTING DEVICES
Install lifting devices, including welded lugs and bolted assemblies, in accordance with Erection Plans and Procedures.

6.3—ERECTION STABILITY
Girders shall be stabilized with falsework, temporary bracing, holding cranes, or a combination of thereof until a sufficient number of adjacent girders are erected with diaphragms or cross-frames connected to provide the necessary local and global stability, and make the structure self-supporting.

6.4—TRUSSES
Trusses erected by assembling individual components in place (stick built) shall be erected on falsework unless approved by the Owner. When erecting trusses on falsework, the falsework shall remain in place until all connections are completed and the truss is self-supporting. Specific cases that may not require falsework include balanced cantilevered erection, cable-stayed truss erection, and trusses spliced in the air while in the falls of two cranes.

6.5—FALSEWORK AND TEMPORARY SUPPORTS
Shoring towers may be used to provide stability and aid in fit-up during erection by providing additional supports, controlling deflections, and reducing the unbraced lengths. Therefore, the shoring should be lowered or removed before the concrete deck is placed, unless it is explicitly designed for by the Design Engineer.

C6.1
Jobsite conditions vary on a daily basis and are often not as they were anticipated to be when the erection procedure was conceived and submitted to the Owner. Consequently, the need to deviate from the submitted erection procedure may arise during the course of a bridge project. It is the Contractor’s responsibility to erect the steel in a safe and efficient manner. The Owner’s review and disposition of erection procedure changes to suit jobsite conditions should be handled in an expeditious fashion and avoid delaying the work.

C6.3
Removal of falsework, temporary bracing, or holding cranes shall be in accordance with stability calculations provided in the erection procedure.

C6.5
Shored construction is permitted by the AASHTO LRFD Bridge Design Specifications; however, per Article 6.10.1.1.a of those specifications, it is not recommended for composite bridges. Per the commentary, “there has been limited research on the effects of concrete creep on composite steel girders under large dead loads. Also, there have been only a very limited number of demonstration bridges built with shored construction in the U.S.
Furthermore, there is an increased likelihood of significant tensile stresses occurring in the concrete deck at permanent support points when shored construction is used.”

If dead load, beyond the steel dead load, is to be applied to the structure while temporary supports remain in place, provisions to release the temporary supports are required.

6.6—PINS

Pins are normally used to align holes for bolted field connections. Field reaming to facilitate fit-up will only be allowed in accordance with Article 6.9 or with the Owner’s prior approval. Any abnormal distortion of the member or of the holes during the alignment process shall be immediately reported to the Owner.

6.7—CONNECTIONS

For splice connections of primary members, as well as connections of diaphragms or cross-frames designed to brace curved girders, fill at least 50 percent of the holes prior to crane release. The 50 percent may be either erection bolts in a snug-tight condition or full-size erection pins, but at least half (25 percent of all holes) shall be bolts, and sufficient pins shall be used near outside corners of splice plates and at member ends near splice plate edges to ensure alignment. Uniformly distribute the filled holes. The 50 percent requirement may be waived if a reduced percentage is calculated as sufficient and shown on the approved erection procedure.

Permanent bolts may be used as erection bolts, provided they are installed in accordance with Article 7.5. For complex structures (arches, trusses, etc.), install bolts and pins in accordance with erection procedures.

Primary member splice connections that are made up on the ground (prior to erection) shall be 100 percent complete, in the no-load condition, prior to any lifting operation.

6.8—ABNORMALITIES

Any abnormal member deformation or brace deflection after crane release or temporary support removal shall be immediately reported to the Owner, seeking immediate resolution. Further work affecting the area, except for restoring support or adding bracing, shall be stopped until the deformation or deflection is resolved.

Examples of abnormal member distortion would include strain exceeding yield and perceptible web distortion. Abnormal hole distortion may include holes that are non-cylindrical, not perpendicular to the faying surface, or out of round by more than \(\frac{1}{16} \) in.

Filled holes should be distributed between the web and flange connections for primary members such that approximately 50 percent of the web connections are filled and approximately 50 percent of the flange connections are filled. For diaphragms or cross-frames, the filled holes should be uniformly distributed between all the bolt groups connecting the diaphragm or cross-frame to the primary member.

Achieving the no-load condition on the ground will require blocking. Refer to Article C9.3 for discussion on “as-fabricated” camber and how it may influence girder blocking.
6.9—FIELD REAMING

Field reaming may be used to correct minor misfits, without prior approval of the Engineer, subject to the following limitations:

a) Ream no more than 10 percent of the holes in a connection.
b) Ream no single hole more than 1/8 in. larger than the nominal bolt diameter.
c) Assemble and securely hold connecting parts together.
d) Perform reaming with twist reams placed perpendicular to connecting parts.
e) Remove burrs on the outside surfaces.

For members with defects that cannot be corrected by reaming within these limits or that prevent the proper assembly of parts, the Contractor shall submit proposed corrective methods to the Engineer for review and approval.

All field reaming shall be documented and performed in the presence of the Engineer or Inspector. Upon completion, documentation of field reaming shall be submitted to the Engineer for record purposes.

C6.9

Correction of misfit bolted connections within the limits of this Section should not significantly affect the performance of a connection from a strength or service perspective. For conditions outside these limits, review by the Engineer is necessary to investigate the potential reduction in connection capacity. In cases of substantial misfit at a connection, the Contractor’s proposed corrective plan should include a root cause analysis. When evaluating the as-built geometry of partially erected structural steel framing, a clear understanding of the anticipated behavior of the structure at the given stage of erection is critical and consultation with the Erection Engineer is encouraged. It is important to understand the cause of the misfit so that any underlying issues are also corrected and so the corrective action does not inadvertently cause additional problems.

If members are hot-dip galvanized after connections are initially drilled in the shop, holes may need to be reamed or otherwise cleaned and drips or runs on members may need to be ground to avoid interference during assembly. This work is typically performed during fabrication and is not associated with field reaming for misfit connections.
SECTION 7: FIELD-BOLTED CONNECTIONS

7.1—GENERAL

Final installation of high-strength structural bolts shall be performed in accordance with the AASHTO LRFD Bridge Construction Specifications and LRFD Steel Bridge Fabrication Specifications, unless the Contract Documents specify otherwise.

Although all pertinent provisions of the AASHTO LRFD Bridge Construction Specifications and LRFD Steel Bridge Fabrication Specifications apply to field bolting, the following provisions are shown below for emphasis.

7.2—ROTATIONAL-CAPACITY TESTING

Rotational-capacity testing by the Manufacturer shall be required for all fastener assemblies with ASTM F3125/F3125M Grade A325 or A490 bolts. Rotational-capacity testing shall not be required for twist-off bolts (ASTM F3125/F3125M Grade F1852 or F2280). Direct tension indicators (DTI) or captive DTI/nuts shall not be included in rotational-capacity testing assemblies. Assemblies specified as galvanized shall be tested after galvanizing. Washers shall be required as part of the test even though they may not be required as part of the installation procedure. Rotational-capacity testing shall be performed in accordance with ASTM F3125/F3125M Annex A2.

Additionally, perform the rotational-capacity test at the point of installation if the condition of the fastener assembly, the lubrication, or both are in question.

C7.2

An assembly lot is defined as a combination of fastener components of different types which are configured as they are to be installed in the steel. An example would be a bolt, nut, and washer. Each component in an assembly lot will have come from a production lot of similar components. Any change in component lots warrants additional testing of the assembly lots into which the component lots are integrated.

Rotational-capacity testing is not appropriate for twist-off bolts (ASTM F3125/F3125M Grade F1852 or F2280), or for DTIs and captive DTI/nuts, because these installation processes do not rely upon the ductility of the fastener. DTIs and captive DTI/nuts do not have to be included in rotational-capacity testing assemblies as this test is designed only to test the capacity of the nut and bolt.

The required starting tension in the ASTM F3125/F3125M rotational-capacity test is 10 percent of the required minimum installation tension and is assumed to bring the connection to a snug-tight condition.

The required nut rotations from the snug-tight condition in the rotational-capacity test are approximately twice the required rotations adjusted to provide roughly equal ductility demand across different bolt sizes.

7.3—FAYING SURFACES

No loose mill scale, dirt, metal shavings, or other conditions that would preclude solid seating of the parts or frictional transfer of load are allowed on faying surfaces of bolted connections.

C7.3

The steel Erector is generally not responsible for faying surface preparation, unless required by the Contract Documents or to correct impediments to proper assembly. The Erector is responsible for keeping the faying surfaces free from contamination during erection. If tightened fastener assemblies do not bring adjacent faying surfaces into complete contact due to non-parallel
areas, sufficient frictional transfer of load may be provided by the total clamping force acting on the areas that are in contact (see Article C7.5 for additional commentary).

7.4—PREINSTALLATION VERIFICATION

Verify bolt installation method prior to bolt installation, in accordance with the LRFD Steel Bridge Fabrication Specifications.

It is important to have the bolting crew rather than an inspector perform the installation verification test, because part of the function of this test is to verify that the installer’s notion of “snug-tight” leads to the required installation tension. If the same crew is repeatedly installing the same bolts, there should be no need to repeat the verification test for turn-of-the-nut or DTI installation. Daily verification is required for the calibrated wrench method to ensure that the equipment is still accurate.

Where daily testing is not required, it is recommended that tests on particular sizes, lengths, and grades be performed shortly before those particular fastener assemblies are installed, rather than testing all fastener assemblies at the beginning of the project. Testing each fastener assembly type as it comes up for installation will help keep the crew familiar with that particular fastener assembly. Too long a time interval between testing and installation may be considered reason to question the understanding of the crew. Owner and Contractor should agree on an appropriate interval, taking into account the complexity of the project and the experience of the crew.

7.5—INSTALLATION

Install fastener assemblies using any of the methods allowed per the Contract Documents. Pretension assemblies to the tension required by the specifications.

Fastener assemblies specified to be pretensioned may remain temporarily snug-tight but untensioned, if necessary to permit subsequent steel erection or adjustment before final tensioning.

Proceeding from the interior to the free edges, all bolts in a connection are typically brought to the snug-tight condition prior to pretensioning, which will follow a similar pattern. For large primary member connections, which have many bolts and/or plies of thick material, bringing all bolts to the snug-tight condition may require repeating the sequence multiple times as deformations in the plates are reduced. To expedite the snugging process, the Owner may permit filling a portion of the connection with pretensioned temporary fit-up bolts prior to installing permanent bolts in the remaining holes to the snug-tight condition. Snug-tight permanent bolts can then replace the temporary bolts, resulting in a connection completely filled with snug-tight bolts.

Thick elements (e.g., over 2 in. [50 mm]) at slip-critical joints may have deformations permitted by ASTM A6/A6M that prevent intimate contact with adjoining material by snug-tight or even fully pretensioned fastener assemblies. As long as these deviations affect a small percentage of the total.
faying surface, the connection should perform as designed. If the deviations cause a significant loss of contact between faying surfaces, the Engineer and Fabricator should be contacted to determine appropriate actions. Using higher strength fastener assemblies to increase clamping force or sealing the edges with structural epoxy are two options to prevent corrosion. In extreme cases, machining to remove high spots and refinishing surfaces may be an option if the remaining material will be adequate. When snug-tight fastener assemblies have suitably compressed the plies, pretensioning can proceed in accordance with the specifications.

When possible, pretension bolts before exposure to the elements, which can affect their rotational characteristics. Fastener assemblies left exposed for an extended period prior to pretensioning may experience a loss in their lubrication. Tension-control bolts and bolts installed using the calibrated wrench may not achieve the required pretension due to increased friction affecting their resistance to rotation. Bolts installed using turn-of-the-nut or DTIs may experience torsional distortion, affecting their tension and integrity. If there is a question regarding the adequacy of the lubrication, remove and test representative assemblies to determine if all fastener assemblies are required to be relubricated or replaced. Relubricated fastener assemblies should be subsequently retested per Article 7.4 to verify their adequacy. Tension-control bolts may only be relubricated by the Manufacturer.

If a fastener assembly with an indicating method, such twist-offs bolts or DTIs, is pretensioned before connection plates are drawn firmly together to a snug-tight condition, the fastener may loosen once the plies are pulled together. Therefore, care shall be taken not to engage the pretensioning indication mechanism until all the fastener assemblies are snug-tight with the plies solidly joined. Additionally, twist-off type bolts or direct tension indicators may provide false indications if over-tensioned while snug-tightening.

7.6—BROKEN FASTENERS

Any bolts broken during field erection shall be replaced by a bolt that meets the project specifications and functions properly.
This page intentionally left blank.
SECTION 8:
FIELD-WELDED CONNECTIONS

8.1—GENERAL

Field welding and nondestructive testing (NDT) shall be performed in accordance with D1.5M/D1.5 or other codes as specified in the Contract Documents. Field welding on permanent material is not allowed unless shown on the plans or approved by the Owner.

Although all pertinent provisions of D1.5M/D1.5 apply to field welding, the following provisions are shown below for emphasis.

D1.5M/D1.5 is written mostly for use in shop fabricating of structural steel members. Field-welding structural steel members presents environmental and geometric conditions that exceed those in the shop. Rain, humidity, temperature, and wind are examples of conditions that are more difficult to control in the field than in the shop. D1.5M/D1.5 does have provisions to address weather and wind. Difficulty in steel fit-up, access to the joint by the welder, and welding position are geometric constraints that can adversely affect the quality of the weld.

However, despite the environmental and geometric challenges, experience on numerous bridges over the past 50-plus years has shown that field welding can readily be accomplished successfully and provides a useful tool for experienced Contractors.

Because bridge field welding is not customary in many states, the Contract Documents should make it clear whether or not field welding is allowed.

Both shop and field welding require low-hydrogen practices and can produce good quality welds when done in accordance with D1.5M/D1.5. When wind speeds exceed 20 mph, the granular flux required for submerged arc welding (SAW) may blow away if precautions are not taken to block strong winds. Welding with gas shielded processes is prohibited when wind speeds exceed 5 mph (barely perceptible) because of potential loss of shielding gases; however, special wind shielding may alleviate this concern.

8.2—QUALIFICATION

8.2.1—Welder Qualification

Qualify welders in accordance with D1.5M/D1.5 and any additional Owner requirements for the positions and processes approved for field welding.

8.2.2—Welding Procedure Qualification

Field welding shall be performed in accordance with welding procedure specifications (WPSes) approved by the Owner for the specific application and location. Welding procedures that do not satisfy D1.5M/D1.5 requirements for prequalification shall be qualified by test per D1.5M/D1.5.

C8.1

D1.5M/D1.5 is written mostly for use in shop fabricating of structural steel members. Field-welding structural steel members presents environmental and geometric conditions that exceed those in the shop. Rain, humidity, temperature, and wind are examples of conditions that are more difficult to control in the field than in the shop. D1.5M/D1.5 does have provisions to address weather and wind. Difficulty in steel fit-up, access to the joint by the welder, and welding position are geometric constraints that can adversely affect the quality of the weld.

However, despite the environmental and geometric challenges, experience on numerous bridges over the past 50-plus years has shown that field welding can readily be accomplished successfully and provides a useful tool for experienced Contractors.

Because bridge field welding is not customary in many states, the Contract Documents should make it clear whether or not field welding is allowed.

Both shop and field welding require low-hydrogen practices and can produce good quality welds when done in accordance with D1.5M/D1.5. When wind speeds exceed 20 mph, the granular flux required for submerged arc welding (SAW) may blow away if precautions are not taken to block strong winds. Welding with gas shielded processes is prohibited when wind speeds exceed 5 mph (barely perceptible) because of potential loss of shielding gases; however, special wind shielding may alleviate this concern.

C8.2.1

Unlike shop welding, workers welding in the field for Contractors move from project to project and keeping track of welders that are qualified can be difficult. Some owners have programs that address qualification of field welders.

C8.2.2

Welding procedure qualification tests should be performed prior to arrival at the jobsite. Variations in consumables or geometry are governed by D1.5M/D1.5.
8.3—WELDING REQUIREMENTS

8.3.1—Welders

Welders shall have a written copy of the approved WPS.

8.3.2—Contact Surfaces

Prior to welding, the contact surfaces and joints to be field-welded and the surrounding area shall be cleaned of contaminants in accordance with D1.5M/D1.5.

8.3.3—Joined Parts

The parts to be joined shall be aligned in accordance with D1.5M/D1.5, and joint faces shall comply with the geometric tolerances of D1.5M/D1.5.

8.3.4—Environmental Conditions

Field welding shall not be allowed when the ambient air temperature is below 0°F or during periods of precipitation unless the welder is housed in a heated or protected area in a manner approved by the Owner.

8.3.5—Consumables

Electrodes and flux shall be purchased, stored, dried, and used in accordance with D1.5M/D1.5.

C8.3.4

When the ambient air temperature is below 0°F, when surfaces are wet or exposed to rain or snow, or the welders’ ability to make sound welds is a concern, heating, housing, or both should be used. See D1.5M/D1.5 Commentary for a detailed explanation of the effect of environmental conditions on welds.

C8.3.5

It is required that electrodes and flux be kept dry at all times. Electrodes should be purchased in hermetically sealed containers. If electrodes are not stored according to the requirements of D1.5M/D1.5, they will absorb moisture and produce poor quality welds during production welding. Electrode drying ovens should be at the project site located near the welders’ work station at all times. Once the electrode container is opened, electrodes should be placed in the ovens and stored at temperatures meeting the requirements of D1.5M/D1.5.

8.3.6—Preheat

Surfaces to be welded shall satisfy preheat requirements of D1.5M/D1.5 for 3 in. in all directions from the weld. Higher preheat, post-weld heating, or both may be required for fracture-critical welds, for welds in areas with high restraint, or to avoid defects. Preheating methods shall avoid damage to adjacent coated surfaces, neoprene bearings, and other heat-sensitive components. Damage caused by heating shall be corrected at the Contractor’s expense.
SECTION 9: INSPECTION

9.1—GENERAL

Inspect and test repaired welds, coatings, and base metal in accordance with this Section. Verify the alignment, profile, and fastening of the erected steel conforms to the Contract Documents.

9.2—GEOMETRIC CONTROL

The Contractor shall monitor profile and alignment throughout steel erection while considering support conditions and anticipated deflections from subsequent steel placement or support release.

The Contractor shall survey profile and alignment under steel dead load after completion of erection but prior to deck casting. The survey data shall be submitted to the Owner for verification.

9.3—TOLERANCES

Geometric tolerances for erected steel bridges shall be provided in the Contract Plans if required.

C9.1

Material quality, damage repair, and conformance to plan dimensions and assembly requirements are subject to the verification inspection of the Owner.

An erection inspection checklist can be found in Appendix C.

C9.2

The Owner should review the survey data to confirm the as-built geometry matches the design intent (e.g., deck can be formed with appropriate haunch dimensions).

Erection practices that may result in improper geometry or difficult fit-up including but not limited to:

a) bearings or temporary supports set to incorrect elevations, locations, levelness, or orientation,

b) cross-frames installed at incorrect locations or orientations,

c) girders erected at incorrect locations or orientations.

Correct steel fabrication, accurate deflection predictions in design, and proper choice of an effective fit condition of the bridge are also examples of factors that affect bridge geometry but are independent of erection means and methods.

C9.3

Special erection tolerances may be appropriate for complex steel bridges, such as arches or trusses, and should be provided in the Contract Plans or mutually agreed between the Owner, Contractor, and Erector.

Editions of this Guide Specification up through 2019 specified tolerances for horizontal alignment, vertical alignment, and web plumbness for I-girder bridges. The tolerances were developed to verify that the erected steel structure matched the intended design geometry, but in practice they were unsuitable because the criteria addressed by the tolerances were associated with some factors that are independent from erection practices. However, the previous tolerances are presented in commentary here because they may be useful for checking erected steel, under steel dead load condition, if there are concerns about the as-built geometry before casting the deck.
a) Horizontal Alignment: $\pm \frac{1}{8}$ in. \times (total length along girder, in feet, between supports)/10. Note this is the same as girder sweep tolerance under D1.5M/D1.5.
b) Vertical Alignment: $-0, + \frac{1}{4}$ in. \times (total length, in feet, from nearest support)/10, but not more than 1½ in. between supports.
c) Web Plumbness: not more than $\frac{1}{8}$ in. \times web depth (in feet) from the theoretical position.

Further discussion regarding vertical alignment

For typical bridges with top flanges not embedded in the deck or top flanges embedded in the deck haunch, there is no fabrication tolerance in the negative direction, i.e., vertical alignment lower than theoretical. This ensures that the distance between top of flange and top of deck can be maintained, thereby avoiding thickening the haunch (or deck) to suit. Installed locations lower than theoretical may be acceptable upon review by the Owner. For a typical girder bridge, some agencies may choose to control only the elevation of the girder splices and accept vertical alignment between splices (within the tolerance on shop camber). Some of the tolerance on vertical alignment may be “consumed” by the tolerance on shop camber of the fabricated girder.

Since there is no vertical fabrication tolerance below theoretical, Fabricators may elect to slightly increase cambers to ensure tolerances are met during fabrication. The Erection Engineer, Erector, and Contractor should consider the influence of “as-fabricated” cambers when developing Erection Plans and elevations.

Further discussion regarding web plumbness

The location and nature of the measurement for deviation from theoretical web position may vary depending on bridge type. Webs of straight girders in non-skewed bridges should be plumb at all locations under steel dead load and should typically remain plumb after placement of the deck. In straight-girder bridges with skewed supports, webs typically deform laterally, both at supports and away from supports, as load is applied; the magnitude and direction of deformation may change along the length of the bridge and from girder to girder. In curved-girder bridges with non-skewed (radial)...
supports, the webs typically remain plumb at the supports under all loading conditions, but the webs will typically deform laterally as load is applied. In curved-girder bridges with skewed (non-radial) supports, the webs may deform laterally, both at supports and away from supports, as load is applied; again, the magnitude and direction of deformation may change along the length of the bridge and from girder to girder. For other bridge types, measurement positions should be provided by the Owner.

Web position can be affected in the field by conditions not considered by the Design Engineer, beyond the control of the Contractor, or both. Web positions within the tolerance noted here are considered acceptable. Web positions beyond the tolerance noted here may be acceptable; however, they should be evaluated regarding cause and impact on bridge service and approved by the Owner.

Typical considerations include, but may not be limited to:

a) Bearing design (bearings are typically designed to accommodate 0.005 radians of rotational construction tolerance)
b) Girder stresses
c) Cross-frame fit-up and associated locked-in force effects

The actual plumb condition of each girder is influenced by many factors, including:

a) How well the design deflections predict the actual deflections
b) The fit condition chosen for establishing the connections between girders and cross-frames (the “drops”)
c) Fabrication tolerances
d) The erection sequence
e) The deck pouring sequence
f) Support conditions
g) Environmental conditions (sun position, temperature, etc.)

When attached to cross-frames, girders on skewed and curved bridges rotate laterally as the girders deflect from the no-load to the steel dead load and finally the full dead load condition. The condition of plumb in each of these three states depends heavily (but not entirely) on the fit condition chosen for the drops. For example, if a skewed bridge is detailed for steel dead load fit, the girders should be nominally plumb at erection but laying over
somewhat in the final condition, or if a skewed bridge is detailed for full dead load fit, the girders will be laying over at erection but should be nominally plumb under full dead load. Therefore, when considering use of a tolerance for girder plumbness in the field, it is important to be mindful of the fit condition used in detailing and fabrication.

9.4—BOLTING

Bolting inspection shall conform to the requirements of the LRFD Steel Bridge Fabrication Specifications.

9.5—WELDING

Unless the Owner requires otherwise, visual inspection and NDT shall be performed on field welds in accordance with D1.5M/D1.5. Welds shall be evaluated for acceptance in accordance with D1.5M/D1.5.

Plans or specifications shall indicate “tension or stress reversal areas” so the Contractor knows where to apply tension/stress reversal acceptance criteria under D1.5M/D1.5.

C9.5

Certain nondestructive tests required for welds, especially radiographic (e.g., X-ray) testing, are difficult to perform in the field.
SECTION 10: REPAIR

10.1—DOCUMENTATION

The Contractor is responsible for documenting damage due to handling, removal of erection aids, aligning members and other actions, uncorrected misfits at connections or misalignments exceeding tolerances in erected members, and as-received damage attributable to transport or fabrication.

10.2—IMPLEMENTATION

The Contractor shall propose a method of repair and basis for acceptance for the Owner’s review.

10.3—REPAIR PROCEDURES

Submit repair procedures for damaged or misaligned steel in the form of sketches, written procedures, or both as applicable. Information shall provide sufficient detail for the Owner to adequately review the repair application. After repairs are complete, the Contractor shall provide to the Owner as-built detailed drawings, NDT results, and procedures/materials used for inclusion in the project file.

10.4—WELDS

Field or shop welds that are unacceptable shall be repaired in accordance with D1.5M/D1.5. Responsibility for the cost of the repair and subsequent inspection shall be based on the cause.

C10.1

Damage such as minor arc strikes or handling damage to paint may not need extensive documentation, unless it is a recurring problem. Widespread problems such as paint damage throughout several girders, especially if the cause is not apparent, or multiple misaligned girders may require the services of outside expertise.
This page intentionally left blank.
The following list of references is for information only and should be considered as reference text to supplement the commentary provided within this document.

- 49 CFR Part 393, Subpart I.
- ASCE Standard ASCE/SEI 7-22, Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers and Structural Engineering Institute, Reston, VA.
- ASCE Standard ASCE/SEI 37-14, Design Loads on Structures During Construction. American Society of Civil Engineers and Structural Engineering Institute, Reston, VA.

APPENDIX A:
ERECITION PLAN AND PROCEDURES CHECKLIST

<table>
<thead>
<tr>
<th>√ or N/A</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan of Work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Permanent and temporary structures shown</td>
</tr>
<tr>
<td></td>
<td>All roads, railroads, waterways, clearances, overhead and underground utilities, potential conflicts shown</td>
</tr>
<tr>
<td></td>
<td>Framing plan with member shipping marks (matching those on shop drawings) and field splice locations as applicable</td>
</tr>
<tr>
<td>Erection Sequence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step-by-step procedure—figures and narrative dictating work. Written procedure should indicate erection sequence for primary and secondary members (typically cross-frames, diaphragms, etc.), as well as the following: methods of tie down of individual pieces, time and method of connection of diaphragm, lateral bracing, and field splices.</td>
</tr>
<tr>
<td></td>
<td>Delivery location of components shown and member orientation on truck, as applicable</td>
</tr>
<tr>
<td></td>
<td>Crane locations shown</td>
</tr>
<tr>
<td></td>
<td>Temporary supports, hold cranes, blocking, tie-downs shown</td>
</tr>
<tr>
<td></td>
<td>Load restrictions for certain stages (e.g., wind)</td>
</tr>
<tr>
<td></td>
<td>Bracing of girders at supports</td>
</tr>
<tr>
<td>Crane Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crane capacity charts indicating crane type, lifting capacity at given radius and orientation, counterweight requirements, and boom length</td>
</tr>
<tr>
<td></td>
<td>Approximate crane pick points shown</td>
</tr>
<tr>
<td></td>
<td>Crane pick weights shown. Pick weights should include weight of member, rigging, and any other attachments.</td>
</tr>
<tr>
<td></td>
<td>Hold crane loads</td>
</tr>
<tr>
<td></td>
<td>Crane support method: barges, mats, etc.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>√ or N/A</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details of Lifting Devices and Special Procedures</td>
<td>Detail and arrangement of member rigging: showing sizes, capacities, and location of member pick points (or center of gravity)</td>
</tr>
<tr>
<td></td>
<td>Include in the submittal Manufacturer cut sheets for rigging devices: beam clamps, wire rope, shackles, turnbuckles, chains, straps, etc., and pre-engineered falsework, as applicable.</td>
</tr>
<tr>
<td>Bolting Requirements</td>
<td>Bearing Blocking and Tie-Down Details</td>
</tr>
<tr>
<td>Temporary Supports</td>
<td>Temporary supports details should include capacities and sizes</td>
</tr>
<tr>
<td></td>
<td>Loads and elevations indicated</td>
</tr>
<tr>
<td>Jacking Devices and Procedures</td>
<td>Coordination Items</td>
</tr>
<tr>
<td></td>
<td>Include in the submittal statements as to the status of coordination with parallel entities requiring review: railroads, Coast Guard, Corps of Engineers, etc.</td>
</tr>
</tbody>
</table>
APPENDIX B: ERECTION CALCULATIONS CHECKLIST

<table>
<thead>
<tr>
<th>√ or N/A</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete analysis of erection sequence</td>
</tr>
<tr>
<td></td>
<td>Proper level of analysis used</td>
</tr>
<tr>
<td></td>
<td>Support conditions modeled appropriately at all stages</td>
</tr>
<tr>
<td></td>
<td>Appropriate design criteria employed</td>
</tr>
<tr>
<td></td>
<td>Appropriate loads and load combinations investigated</td>
</tr>
<tr>
<td></td>
<td>Complete checks of structural adequacy of bridge components</td>
</tr>
<tr>
<td></td>
<td>Calculations should substantiate that members do not experience loads greater than their capacities prior to completion of the bridge assembly.</td>
</tr>
<tr>
<td></td>
<td>Complete checks of stability of girder and bridge system</td>
</tr>
<tr>
<td></td>
<td>Calculations should substantiate structural stability of members and sub-assemblies prior to completion of the bridge assembly.</td>
</tr>
<tr>
<td></td>
<td>Girder second-order amplification effects are addressed as needed</td>
</tr>
<tr>
<td></td>
<td>Girder reactions checked for uplift</td>
</tr>
<tr>
<td></td>
<td>Calculations for temporary hold crane loads</td>
</tr>
<tr>
<td></td>
<td>Calculations for temporary support loads</td>
</tr>
<tr>
<td></td>
<td>Calculations for substantiating that bearing capacity and design rotations are not exceeded during steel erection</td>
</tr>
<tr>
<td></td>
<td>Calculations indicating structural integrity of the sub-assembly for cross-frame and bracing placement (adequate bracing strength and stiffness verified)</td>
</tr>
<tr>
<td></td>
<td>Calculations substantiating the stability and structural adequacy of temporary supports and devices</td>
</tr>
<tr>
<td></td>
<td>Falsework towers/temporary support structures and foundations</td>
</tr>
<tr>
<td></td>
<td>Girder tie-downs</td>
</tr>
<tr>
<td></td>
<td>Lifting and/or spreader beams</td>
</tr>
<tr>
<td></td>
<td>Jacking devices</td>
</tr>
<tr>
<td></td>
<td>Calculations of loads</td>
</tr>
<tr>
<td></td>
<td>Calculations of support elevations</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>√ or N/A</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculations for temporary bracing</td>
</tr>
<tr>
<td></td>
<td>Calculations indicating capacity of temporary crane supports</td>
</tr>
<tr>
<td></td>
<td>Calculations to substantiate structural integrity of abutment and retaining walls affected by surcharge from cranes</td>
</tr>
<tr>
<td></td>
<td>Calculations for crane pick locations (center of gravity)</td>
</tr>
<tr>
<td></td>
<td>Calculations indicating structural integrity of any partially bolted primary splices after release of external support system</td>
</tr>
<tr>
<td></td>
<td>Checks of displacements at field splices</td>
</tr>
<tr>
<td></td>
<td>Checks of web layover of erected girders at supports, differential deflection potential at traffic staging, etc. (see Article 9.3)</td>
</tr>
<tr>
<td></td>
<td>Inclusion of crane charts</td>
</tr>
<tr>
<td></td>
<td>Inclusion of cut sheets for pre-engineered components</td>
</tr>
</tbody>
</table>
APPENDIX C:
ERECTION INSPECTION CHECKLIST

(See Article 1.1.7 for definition)

Sheet 1 of 2

PART 1—PRE-ERECTION

- **Erection Procedure**—approved

- **Site preparation**—access roads, crane pads, bearing pedestals, finish & elevation, anchor bolts survey, falsework foundation pads, all obstacles noted

- **Personnel**
 - foreman—competent person (as defined by OSHA)
 - crane operators—qualified, licensed, training, medical
 - welders—certification current, qualified for positions
 - any required training & instruction complete

- **Lifting Equipment**
 - crane inspection—current, schedule during project
 - lifting devices & rigging—certification, inspection

- **Bolted Connections**
 - check bolt quality, size & lengths, certifications
 - installation procedure, method of tensioning
 - Skidmore machine—calibration, certification
 - impact wrenches—condition, proper size & capacity
 - torque wrenches—calibration

- **Welded Connections**
 - welding procedure specifications (WPS)—approved
 - welding equipment—sufficient capacity, grounding
 - welding consumables—proper storage, drying ovens

- **Safety/Fall Protection**—nets, life-line lanyards, platforms, scaffolds, manlifts, floats, emergency boat

- **Coordination Items**—railroads, local agencies, Coast Guard, emergency services, etc.

PART 2—ERECTOR RESPONSIBILITY

- **Provide for Inspector, prior to erection**
 - framing plan, erection procedure
 - crane operator qualifications
 - welder certifications
 - crane inspection certifications
 - Skidmore and torque wrench calibration certifications
 - bolt Manufacturer certifications
 - WPS

- **Provide for Inspector, during erection**
 - access to work—ladders, manlift, scaffold or platform
 - torque wrench
 - Skidmore
 - temperature indication crayons

Continued on next page
PART 3—INSPECTOR RESPONSIBILITY

- [] Check all personnel certifications—crane operator, welders, etc.
- [] Check all equipment certifications—cranes, etc.
- [] Check fall protection—requirements, installation
- [] Check crane radii
- [] Check temporary supports—installed per erection procedure
- [] Check assembly marks—proper location and orientation
- [] Check minimum number of bolts and pins installed before release of crane/temporary supports
- [] Monitor bolt installation procedure
- [] Check field weld size/geometry, consumables, and variables per WPS, and NDT results
- [] Check bearing alignment/adjustment
APPENDIX D:
SAMPLE ERECTION PLANS

The sets of sample bridge girder erection plans contained in this Appendix are provided to illustrate typical contents of such plans. They are not intended as definitive examples, nor to convey a standard of care for Erection Plan preparation. The actual contents of any specific set of Erection Plans will depend upon the Erector’s proposed means and methods, Owner requirements, and the complexity of the bridge. These drawings should be developed in conjunction with Erection Procedures and Erection Engineering Calculations.
<table>
<thead>
<tr>
<th>DRAWING NO.</th>
<th>SHEET NO.</th>
<th>ALL DIMENSIONS IN ft UNLESS OTHERWISE NOTED</th>
</tr>
</thead>
</table>

BEAM CLAMPS

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>WORKING LOAD LIMITS (TONS)</th>
<th>FLANGE GRIP</th>
<th>V-CLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-15</td>
<td>15</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>F-20</td>
<td>20</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>F-25</td>
<td>25</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>F-35</td>
<td>35</td>
<td>45</td>
<td>6</td>
</tr>
</tbody>
</table>

BEAM (TYP.)

- W8xXX SKID
- TOWER LEG
- TOWER
- BEAM (TYP.)
- W8xXX SKID
- SHORING TOWER SKID FRAME (TWO TOWERS)
- BOLSTER W10xXX
- TOWER BEAM W10xXX
- LEG BEAM W10xXX

SHORING TOWER SKID FRAME (TWO TOWERS)

NOTES:

GENERAL BRIDGE ERECTION DETAILS - 2

BEAM CLAMPS

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>WORKING LOAD LIMITS (TONS)</th>
<th>FLANGE GRIP</th>
<th>V-CLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-15</td>
<td>15</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>F-20</td>
<td>20</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>F-25</td>
<td>25</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>F-35</td>
<td>35</td>
<td>45</td>
<td>6</td>
</tr>
</tbody>
</table>

BEAM (TYP.)

- W8xXX SKID
- TOWER LEG
- TOWER
- BEAM (TYP.)
- W8xXX SKID
- SHORING TOWER SKID FRAME (TWO TOWERS)
- BOLSTER W10xXX
- TOWER BEAM W10xXX
- LEG BEAM W10xXX

SHORING TOWER SKID FRAME (TWO TOWERS)

NOTES:

GENERAL NOTES

1. **These Sample Erection Plans are intended for use as a supplement to the contract documents and are applicable to the entire span and only those spans referenced in the title block and apply only to this specific application.**

2. **All vertical and horizontal shoring installations shall comply with safe practice and with the requirements of governmental regulations, codes, and ordinances.**

3. **Shoring plans are prepared as applied conditionally to their vertical support members.**

4. **Shoring shall be Waco 100 Kip/leg shoring erected in accordance with manufacturers' specifications.**

5. **Shoring shall be spaced and adjusted to support the loads shown or associated with these erection plans.**

6. **All CRANES shall be erected plumb and level, unless otherwise instructed on these plans.**

7. **All shoring foundations are designed for a maximum soil bearing pressure of 1 0 psi.**

8. **Contractor shall protect shoring foundations from slope failure, scour, and other undermining.**

9. **All steel shims shall be ASTM A 36 or A 572.**

10. **All steel rolled shapes and plates used for shoring shall be ASTM A 36 or A 572, except all HP shapes shall be ASTM A 572, Grade 50.**

11. **All shoring blocking and bracing shall be done excluding plywood shims.**

12. **Plywood shims shall be a single structural face rated shoring material.**

13. **Sand, salt, or other systems shall be used as indicated in contractor's equivalent.**

14. **Contractor shall provide sand and water for a wet working load greater than 500 tons.**

15. **Contractor shall provide plans for protecting live from weather and accidental damage.**

16. **Cables shall be ANSI EPAC size wire rope or better.**

GENERAL NOTES (CONT'D.)

17. **Cables shall be 6X19 EIP IWRC wire rope or better.**

18. **All steel shims shall be ASTM A-36 or equivalent.**

19. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

20. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

21. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

22. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

23. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

24. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

25. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

26. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

27. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

28. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

29. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

30. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

31. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

32. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

33. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

34. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

35. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

36. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

37. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

38. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

39. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

40. **Contractor shall provide and install temporary and permanent ground anchors as needed.**

SEQUENCE OF OPERATIONS

1. **Place shoring as shown on shoring layout.**

2. **Check stages 1-5 in order.**

3. **Complete final bolting.**

4. **Remove all shoring.**

5. **Check shoring and place and grout anchor rods.**

6. **Remove restraints.**

7. **Pour deck (sequence, details, and stability checks by others).**

8. **Temporarily shoring and bracing is designed for a XX mm maximum wind load.**

9. **During the entire period of shoring there is no gross change of at least a 50% of the walls shall be bolted, and may be closed, with the same or less shoring.**

10. **Contractor shall complete work in the intended sequence and remove all shoring.**

11. **Contractor shall complete work in the intended sequence and remove all shoring.**

12. **Contractor shall complete work in the intended sequence and remove all shoring.**

13. **Contractor shall complete work in the intended sequence and remove all shoring.**

14. **Contractor shall complete work in the intended sequence and remove all shoring.**

15. **Contractor shall complete work in the intended sequence and remove all shoring.**

16. **Contractor shall complete work in the intended sequence and remove all shoring.**

17. **Contractor shall complete work in the intended sequence and remove all shoring.**

18. **Contractor shall complete work in the intended sequence and remove all shoring.**

19. **Contractor shall complete work in the intended sequence and remove all shoring.**

20. **Contractor shall complete work in the intended sequence and remove all shoring.**

21. **Contractor shall complete work in the intended sequence and remove all shoring.**

22. **Contractor shall complete work in the intended sequence and remove all shoring.**

23. **Contractor shall complete work in the intended sequence and remove all shoring.**

24. **Contractor shall complete work in the intended sequence and remove all shoring.**

25. **Contractor shall complete work in the intended sequence and remove all shoring.**

26. **Contractor shall complete work in the intended sequence and remove all shoring.**

27. **Contractor shall complete work in the intended sequence and remove all shoring.**

28. **Contractor shall complete work in the intended sequence and remove all shoring.**

29. **Contractor shall complete work in the intended sequence and remove all shoring.**

30. **Contractor shall complete work in the intended sequence and remove all shoring.**

31. **Contractor shall complete work in the intended sequence and remove all shoring.**

32. **Contractor shall complete work in the intended sequence and remove all shoring.**

33. **Contractor shall complete work in the intended sequence and remove all shoring.**

34. **Contractor shall complete work in the intended sequence and remove all shoring.**

35. **Contractor shall complete work in the intended sequence and remove all shoring.**

36. **Contractor shall complete work in the intended sequence and remove all shoring.**

37. **Contractor shall complete work in the intended sequence and remove all shoring.**

38. **Contractor shall complete work in the intended sequence and remove all shoring.**

39. **Contractor shall complete work in the intended sequence and remove all shoring.**

40. **Contractor shall complete work in the intended sequence and remove all shoring.**

COMPANY LOGO

PROJECT NAME: BRIDGE X

PROJECT NUMBER: 599-99-44674 aircrafts ML

COUNTY, STATE: PROJECT XXXXX-9999-9999

SCALE: 1" = 50'
ERECTION SEQUENCE

1. 16CD1/17D1 - 23CD2/24D2 PAIR
2. 30CD3/31D3
3. 37CD4/38D4

ERECTION PROCEDURE

1. PLACE CRANES IN POSITIONS 1 AND 2.
2. DELIVER GIRDERS 16CD1 AND 23CD2 TO UNLOAD POSITION.
3. PAIR GIRDERS BY CONNECTING ALL CROSS FRAMES.
4. DELIVER ORDER 23CD2 TO UNLOAD POSITION, COMPLETE SPlice WITH ORDER 24D2.
5. DELIVER ORDER 16CD1 TO UNLOAD Position, COMPLETE SPlice WITH ORDER 17D1.
7. PICK GIRDERS AND SWING INTO PLACE ON TO BENTS 4 AND 5.
8. SECURE GIRDERS AT BENT 4 AS PER DETAIL D AND ON BENT 5 AS PER DETAIL E, AS SHOWN ON SHEET 5.
9. TRANSFER LOAD TO PERMANENT BEARINGS AND RELEASE GIRDERS FROM CRANES.
10. DELIVER GIRDER 31D3 TO UNLOAD POSITION AND ATTACH CROSS FRAMES TO BOTH SIDES OF GIRDER. COMPLETE SPLICE WITH GIRDER 32D6.
12. PICK GIRDERS AND SWING INTO PLACE ON TO BENTS 4 AND 5, AND THEN HOLD.
13. SECURE GIRDERS AT BENT 4 AS PER DETAIL D AND ON BENT 5 AS PER DETAIL E, AS SHOWN ON SHEET 5.
15. TRANSFER LOAD TO PERMANENT BEARINGS AND RELEASE GIRDER FROM CRANES.
16. DELIVER GIRDER 38D4 TO UNLOAD POSITION.
17. DELIVER GIRDER 37CD4 TO UNLOAD POSITION. COMPLETE SPLICE WITH GIRDER 38D4.
18. PICK GIRDERS AND SWING INTO PLACE ON TO BENTS 4 AND 5, AND THEN HOLD.
19. SECURE GIRDERS AT BENT 4 AS PER DETAIL D AND ON BENT 5 AS PER DETAIL E, AS SHOWN ON SHEET 5.
21. TRANSFER LOAD TO PERMANENT BEARINGS AND RELEASE GIRDERS FROM CRANES.

DRAWN
LTM1300
ARC
A

CHECKED
48,970
PICK WT.
39,500 LB
97,940

25x44
37CD4/38D4
30CD3/31D3
23CD2/24D2
16CD1/17D1

PIECE MARK

[Diagram and tables with specific details and calculations for crane capacities and lifting plans, including crane notes and project details.]
APPENDIX D: SAMPLE ERECTION PLANS

ERECTION SEQUENCE

<table>
<thead>
<tr>
<th>Stages</th>
<th>Erection Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PLACE CRANES IN POSITIONS 1 AND 2.</td>
</tr>
<tr>
<td>2.</td>
<td>DELIVER GIRDER 35BC4 TO UNLOAD POSITION. COMPLETE SPLICE WITH GIRDER 36C4.</td>
</tr>
<tr>
<td>3.</td>
<td>DELIVER GIRDER 36C4 TO UNLOAD POSITION. COMPLETE SPLICE WITH GIRDER 39BC4.</td>
</tr>
<tr>
<td>4.</td>
<td>TRANSFER LOAD TO PERMANENT BEARING AND RELEASE GIRDER FROM CRANES.</td>
</tr>
<tr>
<td>5.</td>
<td>COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.</td>
</tr>
<tr>
<td>7.</td>
<td>COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.</td>
</tr>
<tr>
<td>8.</td>
<td>PICK GIRDERS AND SWING INTO PLACE INTO SPLICE 5 AND ON TO BENT 3, AND THEN HOLD.</td>
</tr>
<tr>
<td>9.</td>
<td>DELIVER GIRDER 29C3 TO UNLOAD POSITION AND ATTACH CROSS FRAMES TO BOTH SIDES OF GIRDER.</td>
</tr>
<tr>
<td>10.</td>
<td>TRANSFER LOAD TO PERMANENT BEARING AND RELEASE GIRDER FROM CRANES.</td>
</tr>
<tr>
<td>11.</td>
<td>COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.</td>
</tr>
<tr>
<td>12.</td>
<td>PICK GIRDERS AND SWING INTO PLACE INTO SPLICE 5 AND ON TO BENT 3, AND THEN HOLD.</td>
</tr>
<tr>
<td>13.</td>
<td>COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.</td>
</tr>
<tr>
<td>15.</td>
<td>TRANSFER LOAD TO PERMANENT BEARING AND RELEASE GIRDER FROM CRANES.</td>
</tr>
<tr>
<td>16.</td>
<td>DELIVER GIRDER 35BC4 TO UNLOAD POSITION. COMPLETE SPLICE WITH GIRDER 36C4.</td>
</tr>
<tr>
<td>17.</td>
<td>COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.</td>
</tr>
<tr>
<td>18.</td>
<td>PICK GIRDERS AND SWING INTO PLACE INTO SPLICE 5 AND ON TO BENT 3, AND THEN HOLD.</td>
</tr>
<tr>
<td>19.</td>
<td>COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.</td>
</tr>
<tr>
<td>21.</td>
<td>TRANSFER LOAD TO PERMANENT BEARING AND RELEASE GIRDER FROM CRANES.</td>
</tr>
</tbody>
</table>

ERECTION PROCEDURE

1. PLACE CRANES IN POSITIONS 1 AND 2.
2. DELIVER GIRDER 35BC4 TO UNLOAD POSITION.
3. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
4. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
5. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
6. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
7. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
8. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
9. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
10. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
11. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
12. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
13. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
14. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
15. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
16. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
17. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
18. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
19. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
20. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
21. COMPLETE SPLICE 5 AND SECURE GIRDER AT BENT 3 AS PER DETAIL D, AS SHOWN ON SHEET 5.
ERECTION PROCEDURE

1. **INSTALL SHORING, TOP CRIBBING AND SHIMS AS SHOWN ON SHEET 4.** ADJUST TOPS OF SHIMS TO ELEVATION "A".

2. **PLACE CRANE IN POSITION 1.**

3. **DELIVER GIRDERS 11A1 AND 18A2 TO UNLOAD POSITION.**

4. **PAIR GIRDERS BY CONNECTING ALL CROSS FRAMES.**

5. **PICK GIRDERS AND SWING INTO PLACE ON TO BENT 1 AND SHORING TOWER, AND THEN HOLD.**

6. **SECURE GIRDERS AT BENT 1 AS PER DETAIL D AND AS PER DETAIL E, AS SHOWN ON SHEET 5.**

7. **TRANSFER LOAD TO SHORING AND PERMANENT BEARING, AND RELEASE GIRDERS FROM CRANES.**

8. **DELIVER GIRDER 25A3 TO UNLOAD POSITION AND ATTACH CROSS FRAMES TO BOTH SIDES OF GIRDER.**

9. **PICK GIRDER AND SWING INTO PLACE ON TO BENT 1 AND SHORING TOWER, AND THEN HOLD.**

10. **SECURE GIRDER AT BENT 1 AS PER DETAIL D AND AS PER DETAIL E, AS SHOWN ON SHEET 5.**

11. **ATTACH CROSS FRAMES BETWEEN GIRDERS 18A2 AND 25A3.**

12. **TRANSFER LOAD TO SHORING AND PERMANENT BEARING, AND RELEASE GIRDER FROM CRANES.**

13. **DELIVER GIRDER 32A4 TO UNLOAD POSITION.**

14. **PICK GIRDER AND SWING INTO PLACE ON TO BENT 1 AND SHORING TOWER, AND THEN HOLD.**

15. **SECURE GIRDER AT BENT 1 AS PER DETAIL D AND AS PER DETAIL E, AS SHOWN ON SHEET 5.**

16. **ATTACH CROSS FRAMES BETWEEN GIRDERS 25A3 AND 32A4.**

17. **TRANSFER LOAD TO SHORING AND PERMANENT BEARING, AND RELEASE GIRDER FROM CRANES.**

ORDER PICK LEGEND

- \(\text{Lift point on girder} \)
- \(\text{Crane lift point} \)
- \(\text{Attached splice} \)
- \(\text{Attached cross frame} \)
- \(\text{Crane center pin} \)

ERECTION SEQUENCE

- \(\text{25A3 - 32A4 pair} \)
- \(\text{11A1 - 18A2 pair} \)

STAGE 3 ERECTION PROCEDURE

- \(\text{STAGE 3 STEEL ERECTION.} \)

- \(\text{THERE ARE NO LANE CLOSURES DURING STAGE 3 TRAFFIC.} \)

TIME AND MATERIALS

- \(\text{COMPANY LOGO} \)

SCALE: SHEET BY REVISIONS DATE DESIGNED DRAWN CHECKED

PROJECT XXXXX-9999-99(999) COUNTY, STATE

PROJECT NAME: BRIDGE X

DATE: JANUARY 2017

MARK PIECE A ARC CHORD DETAIL B ARC CHORD ARC C LIFT POINT LOCATIONS D ARC WEIGHT PIECE E ARC WEIGHT TOTAL PICK WEIGHT CROSS FRAME WEIGHT PLATES SPLICE PICK WEIGHTS (LB) (EACH)

<table>
<thead>
<tr>
<th>Weight</th>
<th>Radii</th>
<th>Pick</th>
<th>Pick</th>
<th>Pick</th>
<th>Pick</th>
</tr>
</thead>
<tbody>
<tr>
<td>57,200</td>
<td>104.65'</td>
<td>105.42'</td>
<td>106.19'</td>
<td>106.96'</td>
<td>104.67'</td>
</tr>
<tr>
<td>2,400</td>
<td>23.42'</td>
<td>23.81'</td>
<td>24.21'</td>
<td>24.59'</td>
<td>23.25'</td>
</tr>
<tr>
<td>76,260</td>
<td>58.00'</td>
<td>58.00'</td>
<td>58.00'</td>
<td>58.00'</td>
<td>58.00'</td>
</tr>
<tr>
<td>13,130</td>
<td>24.38'</td>
<td>24.00'</td>
<td>23.62'</td>
<td>23.25'</td>
<td>24.00'</td>
</tr>
<tr>
<td>75,560</td>
<td>24.00'</td>
<td>24.38'</td>
<td>23.62'</td>
<td>23.25'</td>
<td>24.00'</td>
</tr>
<tr>
<td>3,530</td>
<td>58.00'</td>
<td>58.00'</td>
<td>58.00'</td>
<td>58.00'</td>
<td>58.00'</td>
</tr>
</tbody>
</table>

45°, 50°, 55°, MAX.
ERECTION SEQUENCE

1. PLACE CRANES IN POSITIONS 1 AND 2.
2. DELIVER GIRDERS 12AB1 AND 19AB2 TO UNLOADED POSITION.
3. TRANSFER LOAD TO PERMANENT BEARING AND ATTACH CROSS FRAMES.
4. PICK PAIRED GIRDERS AND SWING INTO PLACE INTO SPLICE 1 AND ATTACH CROSS FRAME.
5. COMPLETE SPLICE 1 AND SECURE AT BEAM 2 AS PER DETAIL D, AS SHOWN ON SHEET 5.
6. TRANSFER LOAD TO PERMANENT BEARING AND ATTACH CROSS FRAMES.
7. TRANSFER LOAD TO PERMANENT BEARING AND ATTACH CROSS FRAMES.
8. PICK GIRDER AND SWING INTO PLACE ON TO SPLICE 1 AND ATTACH CROSS FRAME.
9. COMPLETE SPLICE 1 AND SECURE AT BEAM 2 AS PER DETAIL D, AS SHOWN ON SHEET 5.
10. TRANSFER LOAD TO PERMANENT BEARING AND RELEASE GIRDER FROM CRANES.

CRANE NOTES:
1. LIEBHERR LTM 1300-6.2 CRANE WITH 128' BOOM.

ERECTION PROCEDURE

1. PLACE CRANES IN POSITIONS 1 AND 2.
2. DELIVER GIRDERS 12AB1 AND 19AB2 TO UNLOADED POSITION.
3. TRANSFER LOAD TO PERMANENT BEARING AND ATTACH CROSS FRAMES.
4. PICK PAIRED GIRDERS AND SWING INTO PLACE INTO SPLICE 1 AND ATTACH CROSS FRAME.
5. COMPLETE SPLICE 1 AND SECURE AT BEAM 2 AS PER DETAIL D, AS SHOWN ON SHEET 5.
6. TRANSFER LOAD TO PERMANENT BEARING AND ATTACH CROSS FRAMES.
7. DELIVER GIRDERS 26AB3 AND 33AB4 TO UNLOADED POSITION.
8. PICK GIRDERS AND SWING INTO PLACE ON TO SPLICE 1 AND ATTACH CROSS FRAME.
9. COMPLETE SPLICE 1 AND SECURE AT BEAM 2 AS PER DETAIL D, AS SHOWN ON SHEET 5.
10. TRANSFER LOAD TO PERMANENT BEARING AND ATTACH CROSS FRAMES.
11. TRANSFER LOAD TO PERMANENT BEARING AND ATTACH CROSS FRAMES.
12. DELIVER GIRDER 33AB4 TO UNLOADED POSITION.
13. PICK GIRDER AND SWING INTO PLACE ON TO SPLICE 1 AND ATTACH CROSS FRAME.
14. COMPLETE SPLICE 1 AND SECURE GIRDER AT BEAM 2 AS PER DETAIL D, AS SHOWN ON SHEET 5.
15. ATTACH CROSS FRAMES BETWEEN GIRDER 26AB3 AND 33AB4.
16. TRANSFER LOAD TO PERMANENT BEARING AND RELEASE GIRDER FROM CRANES.

CRANE NOTES:
1. LIEBHERR LTM 1300-6.2 CRANE WITH 128' BOOM.
2. ALL CAPACITIES SHOWN WITH 123,500 LB. COUNTERWEIGHT.

LIFT POINT LOCATIONS

<table>
<thead>
<tr>
<th>PIECE</th>
<th>DETAIL</th>
<th>ARC</th>
<th>CURVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18484</td>
<td>A</td>
<td>105°</td>
<td>106°</td>
<td>95.6°</td>
<td>95.6°</td>
<td>57.6°</td>
<td>22.6°</td>
<td>22.6°</td>
<td></td>
</tr>
<tr>
<td>18482</td>
<td>A</td>
<td>105°</td>
<td>106°</td>
<td>95.6°</td>
<td>95.6°</td>
<td>57.6°</td>
<td>22.6°</td>
<td>22.6°</td>
<td></td>
</tr>
<tr>
<td>26483</td>
<td>0</td>
<td>105°</td>
<td>106°</td>
<td>95.6°</td>
<td>95.6°</td>
<td>57.6°</td>
<td>22.6°</td>
<td>22.6°</td>
<td>47,400</td>
<td>8000</td>
<td>4000</td>
<td>4000</td>
<td>8000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31484</td>
<td>0</td>
<td>105°</td>
<td>106°</td>
<td>95.6°</td>
<td>95.6°</td>
<td>57.6°</td>
<td>22.6°</td>
<td>22.6°</td>
<td>41,700</td>
<td>8000</td>
<td>0</td>
<td>0</td>
<td>8000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PIECE WEIGHTS (LB)

<table>
<thead>
<tr>
<th>PIECE</th>
<th>DETAIL</th>
<th>ARC</th>
<th>CURVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18484</td>
<td>A</td>
<td>105°</td>
<td>106°</td>
<td>95.6°</td>
<td>95.6°</td>
<td>57.6°</td>
<td>22.6°</td>
<td>22.6°</td>
<td></td>
</tr>
<tr>
<td>18482</td>
<td>A</td>
<td>105°</td>
<td>106°</td>
<td>95.6°</td>
<td>95.6°</td>
<td>57.6°</td>
<td>22.6°</td>
<td>22.6°</td>
<td></td>
</tr>
<tr>
<td>26483</td>
<td>0</td>
<td>105°</td>
<td>106°</td>
<td>95.6°</td>
<td>95.6°</td>
<td>57.6°</td>
<td>22.6°</td>
<td>22.6°</td>
<td>47,400</td>
<td>8000</td>
<td>4000</td>
<td>4000</td>
<td>8000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31484</td>
<td>0</td>
<td>105°</td>
<td>106°</td>
<td>95.6°</td>
<td>95.6°</td>
<td>57.6°</td>
<td>22.6°</td>
<td>22.6°</td>
<td>41,700</td>
<td>8000</td>
<td>0</td>
<td>0</td>
<td>8000</td>
<td>8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIFTING PLAN

STAGE 4- STEEL ERECTION
ERECTION PROCEDE
1. PLACE CRANES IN POSITION 1 AND 2.
2. DELIVER GIRDER 13B1 TO UNLOAD POSITION.
3. PICK ORDER AND SWING ORDER INTO PLACE INTO SPLICE 2 AND 3, AND THEN HOLD.
4. COMPLETE SPLICE 2 AND RELEASE FROM CRANE 1.
5. COMPLETE SPLICE 3 AND RELEASE FROM CRANE 2.
7. PICK ORDER AND SWING ORDER INTO SPLICE 2 AND 3, AND THEN HOLD.
8. COMPLETE SPLICE 2 AND RELEASE FROM CRANE 1.
9. COMPLETE SPLICE 3 AND RELEASE FROM CRANE 2.
11. COMPLETE SPLICE 2 AND RELEASE FROM CRANE 1.
12. PICK ORDER AND SWING ORDER INTO SPLICE 2 AND 3, AND THEN HOLD.
13. COMPLETE SPLICE 2 AND RELEASE FROM CRANE 1.
15. COMPLETE SPLICE 3 AND RELEASE FROM CRANE 2.
16. PICK GIRDER AND SWING INTO PLACE INTO SPLICE 2 AND 3, AND THEN HOLD.
17. COMPLETE SPLICE 3 AND RELEASE FROM CRANE 2.
18. ATTACH CROSS FRAMES BETWEEN GIRDERS 27B3 AND 34B4.
19. COMPLETE SPLICE 2 AND RELEASE FROM CRANE 1.
20. COMPLETE SPLICE 3 AND RELEASE FROM CRANE 2.

NOTE:
GIRDER 20B2 SHALL BE PLACED WITHIN 24 HOURS OF PLACING.
GIRDER 27B3 SHALL BE PLACED IF WINDS ARE EXPECTED TO EXCEED 10 MPH IN THE FOLLOWING 48 HOURS.

ERECTION SEQUENCE
1. PLACE CRANES IN POSITION 1 AND 2.
2. DELIVER GIRDER 13B1 TO UNLOAD POSITION.
3. PICK GIRDER AND SWING GIRDER INTO PLACE INTO SPLICE 2 AND 3, AND THEN HOLD.
4. COMPLETE SPLICE 2 AND RELEASE FROM CRANE 1.
5. COMPLETE SPLICE 3 AND RELEASE FROM CRANE 2.
6. DELIVER GIRDER 20B2 TO UNLOAD POSITION.
7. PICK GIRDER AND SWING INTO PLACE INTO SPLICE 2 AND 3, AND THEN HOLD.
8. COMPLETE SPLICE 2 AND RELEASE FROM CRANE 1.
9. COMPLETE SPLICE 3 AND RELEASE FROM CRANE 2.
11. DELIVER GIRDER 27B3 TO UNLOAD POSITION.
12. ATTACH CROSS FRAMES BETWEEN GIRDERS 27B3 AND 34B4.
13. COMPLETE SPLICE 2 AND RELEASE FROM CRANE 1.
14. COMPLETE SPLICE 3 AND RELEASE FROM CRANE 2.
15. ATTACH CROSS FRAMES BETWEEN GIRDERS 20B2 AND 27B3.
16. PICK GIRDER AND SWING INTO PLACE INTO SPLICE 2 AND 3, AND THEN HOLD.
17. COMPLETE SPLICE 2 AND RELEASE FROM CRANE 1.
18. COMPLETE SPLICE 3 AND RELEASE FROM CRANE 2.
20. COMPLETE SPLICE 3 AND RELEASE FROM CRANE 2.
APPENDIX D: SAMPLE ERECTION PLANS

Copyright © 2023 by the AASHTO/NSBA Steel Bridge Collaboration
All rights reserved.

ERECION PLAN 2 OF 2

SCALE 1:250

Copyright © 2023 by the AASHTO/NSBA Steel Bridge Collaboration
All rights reserved.
<table>
<thead>
<tr>
<th>Crane position 1A</th>
<th>Lifting sequence</th>
<th>Load Length (ft)</th>
<th>Weight of Girder (lbs)</th>
<th>Weight of Diaphragm (lbs)</th>
<th>Total Pick Load (lbs)</th>
<th>Boom Length (ft)</th>
<th>Max Crane Capacity (lbs)</th>
<th>Crane Capacity/load ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>G8A with diaphragms</td>
<td>47.0</td>
<td>16,470</td>
<td>36.32</td>
<td>1,436</td>
<td>2.94</td>
<td>10.70</td>
<td>49.96</td>
<td>80</td>
</tr>
<tr>
<td>G7A</td>
<td>16,226</td>
<td>35.78</td>
<td>0.00</td>
<td>10.70</td>
<td>46.48</td>
<td>50</td>
<td>78.40</td>
<td>1.69</td>
</tr>
<tr>
<td>G8A</td>
<td>16,262</td>
<td>35.73</td>
<td>0.00</td>
<td>10.70</td>
<td>46.43</td>
<td>70</td>
<td>111.60</td>
<td>2.41</td>
</tr>
<tr>
<td>G10A with diaphragms</td>
<td>16,101</td>
<td>35.50</td>
<td>1,436</td>
<td>2.94</td>
<td>10.70</td>
<td>49.15</td>
<td>60</td>
<td>138.60</td>
</tr>
<tr>
<td>G11A</td>
<td>15,867</td>
<td>35.25</td>
<td>0.00</td>
<td>10.70</td>
<td>45.95</td>
<td>50</td>
<td>179.60</td>
<td>3.52</td>
</tr>
<tr>
<td>G12A</td>
<td>15,536</td>
<td>34.26</td>
<td>0.00</td>
<td>10.70</td>
<td>44.96</td>
<td>50</td>
<td>179.60</td>
<td>4.00</td>
</tr>
<tr>
<td>G8B with diaphragms</td>
<td>115.0</td>
<td>35,768</td>
<td>78.93</td>
<td>4,308</td>
<td>8.83</td>
<td>14.00</td>
<td>101.77</td>
<td>170</td>
</tr>
<tr>
<td>G7B</td>
<td>35,004</td>
<td>77.18</td>
<td>0.00</td>
<td>14.00</td>
<td>91.18</td>
<td>75</td>
<td>101.50</td>
<td>1.11</td>
</tr>
<tr>
<td>G8B</td>
<td>33,658</td>
<td>74.22</td>
<td>0.00</td>
<td>14.00</td>
<td>86.22</td>
<td>55</td>
<td>157.10</td>
<td>1.76</td>
</tr>
<tr>
<td>G10B with diaphragms</td>
<td>33,406</td>
<td>73.66</td>
<td>4,308</td>
<td>8.83</td>
<td>14.00</td>
<td>96.50</td>
<td>46</td>
<td>203.00</td>
</tr>
<tr>
<td>G11B</td>
<td>33,159</td>
<td>73.12</td>
<td>0.00</td>
<td>14.00</td>
<td>87.12</td>
<td>46</td>
<td>203.00</td>
<td>2.33</td>
</tr>
<tr>
<td>Crane position 1B</td>
<td>Lifting sequence</td>
<td>Load Length (ft)</td>
<td>Weight of Girder (lbs)</td>
<td>Weight of Diaphragm (lbs)</td>
<td>Total Pick Load (lbs)</td>
<td>Boom Length (ft)</td>
<td>Max Crane Capacity (lbs)</td>
<td>Crane Capacity/load ratio</td>
</tr>
<tr>
<td>G139</td>
<td>115.0</td>
<td>31,862</td>
<td>70.23</td>
<td>0.00</td>
<td>14.00</td>
<td>84.23</td>
<td>170</td>
<td>65</td>
</tr>
<tr>
<td>G8C with diaphragms</td>
<td>112.0</td>
<td>45,197</td>
<td>99.66</td>
<td>3,950</td>
<td>8.10</td>
<td>14.00</td>
<td>121.76</td>
<td>170</td>
</tr>
<tr>
<td>G7C</td>
<td>44,619</td>
<td>98.38</td>
<td>0.00</td>
<td>14.00</td>
<td>112.38</td>
<td>65</td>
<td>124.10</td>
<td>1.10</td>
</tr>
<tr>
<td>G8C</td>
<td>41,731</td>
<td>92.02</td>
<td>0.00</td>
<td>14.00</td>
<td>106.02</td>
<td>50</td>
<td>179.60</td>
<td>1.70</td>
</tr>
<tr>
<td>Crane position 3B</td>
<td>Lifting sequence</td>
<td>Load Length (ft)</td>
<td>Weight of Girder (lbs)</td>
<td>Weight of Diaphragm (lbs)</td>
<td>Total Pick Load (lbs)</td>
<td>Boom Length (ft)</td>
<td>Max Crane Capacity (lbs)</td>
<td>Crane Capacity/load ratio</td>
</tr>
<tr>
<td>G10C with diaphragms</td>
<td>112.0</td>
<td>41,657</td>
<td>91.41</td>
<td>3,950</td>
<td>8.10</td>
<td>14.00</td>
<td>113.51</td>
<td>60</td>
</tr>
<tr>
<td>G11C</td>
<td>41,245</td>
<td>90.95</td>
<td>0.00</td>
<td>14.00</td>
<td>104.95</td>
<td>50</td>
<td>179.60</td>
<td>1.71</td>
</tr>
<tr>
<td>G12C</td>
<td>40,097</td>
<td>88.41</td>
<td>0.00</td>
<td>14.00</td>
<td>102.41</td>
<td>50</td>
<td>179.60</td>
<td>1.76</td>
</tr>
<tr>
<td>Crane position 4A</td>
<td>Lifting sequence</td>
<td>Load Length (ft)</td>
<td>Weight of Girder (lbs)</td>
<td>Weight of Diaphragm (lbs)</td>
<td>Total Pick Load (lbs)</td>
<td>Boom Length (ft)</td>
<td>Max Crane Capacity (lbs)</td>
<td>Crane Capacity/load ratio</td>
</tr>
<tr>
<td>G8D with diaphragms</td>
<td>107.0</td>
<td>32,928</td>
<td>72.83</td>
<td>4,308</td>
<td>8.83</td>
<td>14.00</td>
<td>95.48</td>
<td>170</td>
</tr>
<tr>
<td>G7D</td>
<td>32,116</td>
<td>70.82</td>
<td>0.00</td>
<td>14.00</td>
<td>84.82</td>
<td>80</td>
<td>92.70</td>
<td>0.99</td>
</tr>
<tr>
<td>G8D</td>
<td>31,531</td>
<td>69.53</td>
<td>0.00</td>
<td>14.00</td>
<td>83.53</td>
<td>75</td>
<td>101.50</td>
<td>1.22</td>
</tr>
<tr>
<td>Crane position 4B</td>
<td>Lifting sequence</td>
<td>Load Length (ft)</td>
<td>Weight of Girder (lbs)</td>
<td>Weight of Diaphragm (lbs)</td>
<td>Total Pick Load (lbs)</td>
<td>Boom Length (ft)</td>
<td>Max Crane Capacity (lbs)</td>
<td>Crane Capacity/load ratio</td>
</tr>
<tr>
<td>G10D</td>
<td>107.0</td>
<td>31,303</td>
<td>69.02</td>
<td>0.00</td>
<td>14.00</td>
<td>83.02</td>
<td>80</td>
<td>92.70</td>
</tr>
<tr>
<td>G11D with diaphragms</td>
<td>30,767</td>
<td>68.52</td>
<td>4,308</td>
<td>8.83</td>
<td>14.00</td>
<td>91.35</td>
<td>75</td>
<td>101.50</td>
</tr>
<tr>
<td>G12D</td>
<td>28,807</td>
<td>65.66</td>
<td>0.00</td>
<td>14.00</td>
<td>79.66</td>
<td>75</td>
<td>101.00</td>
<td>1.27</td>
</tr>
</tbody>
</table>

PICK SCHEDULE

SCALE: 1 IN = 1 FT

BRIDGE 00172 ERECTION PLAN

Copyright © 2023 by the AASHTO/NSBA Steel Bridge Collaboration. All rights reserved.
TYP. JACKING & CONNECTION

SCALE: 1:25

CABLE BRACING DETAIL

SCALE: 1:20

NOTES:

1) ALL TOWERS SHALL BE SET PLUMB. STEEL SHIMS MAY BE USED FOR ADJUSTMENT.
2) ALL TOWER SEGMENTS, HEADER, AND BRACE SHALL BE CONNECTED BY (4) 1-3/8" H/D WASH-BOLT AT ALL LOCATIONS.
3) ABOVE BOLT CONNECTION CAN BE SUBMITTED WITH WELDING METHOD SHOWN BELOW.

Copyright © 2023 by the AASHTO/NSBA Steel Bridge Collaboration
All rights reserved.