
THREE-

DIMENSIONAL 

FINITE ELEMENT 

SOFTWARE FOR 

STEEL BRIDGE 

ERECTION AND 

CONSTRUCTION 

 

 
PAUL BIJU-DUVAL 

 

 
TODD HELWIG 

 

 

BIOGRAPHY 

Paul Biju-Duval is a PhD 

student at UT Austin from Paris, 

France. Before going back to 

school, Paul worked four years 

as construction engineer in 

Dubai and then design engineer 

in Paris. Paul holds a Master’s 

degree from Georgia Tech. 

Colter Roskos is a PhD student 

at UT Austin from Kalispell, 

MT. His research focuses on the 

use of precast concrete panels 

for curved bridges applications. 

Victoria McCammon, P.E., is a 

Master’s student at UT Austin. 

She has worked several years 

for TxDOT Bridge Division. 

Todd Helwig is a Professor at 

UT Austin in the CAEE 

Department. He is also Vice-

President of the SSRC. 

Eric Williamson is a Professor 

at UT Austin in the CAEE 

Department. He also serves as 

the ASCE/SEI Technical 

Administrative Committee 

Chair for Bridges. 

Oguzhan Bayrak is a Professor 

at UT Austin in the CAEE 

Department.  

Patricia Clayton is an Assistant 

Professor at UT Austin in the 

CAEE Department. 

Michael Engelhardt is a 

Professor at UT Austin in the 

CAEE Department. He is also 

the Director of the Ferguson 

Structural Engineering 

Laboratory.  

SUMMARY 

Evaluating the stability of 

curved and skewed I-girder 

bridges during construction is of 

critical importance to designers 

and erectors. The erection and 

construction phases are often 

the critical stage for stability of 

the system; however obtaining a 

good model of the bridge during 

these phases can be very 

difficult. The UT Bridge 

software, first released in 2010, 

was developed with a user-

friendly pre-and post-processor 

to provide a valuable tool for 

designers and erection engineers 

specifically targeting these 

critical stages. The program 

allows an engineer to create a 

three-dimensional model of 

straight and curved bridge 

systems so that the behavior 

during erection and construction 

can be evaluated while 

considering a wide variety of 

erection or deck placement 

scenarios. While the software 

has provided a valuable tool that 

has filled a void in the bridge 

industry for analyzing straight 

and curved steel bridge systems, 

there are a number of key 

features of the software that are 

being improved and expanded. 
This paper therefore focuses on 

an overview of the software 

capabilities and a discussion of 

the modifications currently 

underway as well as planned 

modifications. 
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THREE-DIMENSIONAL FINITE ELEMENT SOFTWARE FOR 

STEEL BRIDGE ERECTION AND CONSTRUCTION

Introduction and Background 

The critical stage for the stability of many bridges 

often occurs during construction when the loading 

and support conditions of the bridge are widely 

variable. Historically, the majority of bridge 

failures have occurred during construction due to 

the unpredictable behavior of the structural system 

from the perspective of loading, support 

conditions and stability. The safety of the erection 

scheme is dependent upon the evaluation of the 

behavior with several critical stages involving the 

partially erected structure when limited bracing 

may be available. In addition, a great deal of 

uncertainty on the structural behavior can occur 

during the concrete deck placement in which the 

steel girder alone must support the full 

construction load and the system is susceptible to a 

variety of potential instabilities. While most 

commercial software programs focus on the 

analysis of completed bridges in their fully-

composite state, the authors are aware of no 

commercial analysis programs that are currently 

available to model accurately in a fast way 

partially erected steel I-girder bridges. Curved 

bridges in particular are difficult to model, and the 

combined bending and torsion that occurs due to 

the geometry can result in a flexible structural 

system in cases with a partial erected system. In 

the development of a suitable erection and 

concrete deck placement scheme, obtaining a good 

prediction of the deformations and strength of the 

system at the various construction stages can be 

critical to the success of bridge construction. A 

structural analysis providing this valuable 

deformation and strength prediction will often 

result in the elimination of problematic conditions 

during construction and can therefore avoid costly 

construction delays or unsafe conditions for the 

construction personnel and travelling public.  

Most current commercial programs that are used 

in practice for the analysis and design of curved 

and skewed I-girder bridges (such as MDX or 

DESCUS) perform a refined grid analysis. Zureick 

(1) acknowledged that the most accurate means to 

analyze complex bridge geometries is with the use 

of 3D shell models and although it was believed 

that such models would eventually replace these 

simplified models, the complexity involved in 

creating 3D models as well as the post-processing 

required to comprehend the results from such a 

model have greatly hampered wide-spread use. UT 

Bridge aims at filling this gap. An improved 

modeling approach to conventional grid models 

was considered by Chang (2), using thin-walled 

beam theory. A program for simulating the 

construction of curved steel I-girders was 

proposed and used in NCHRP Report 725 

“Guidelines for Analysis Methods and 

Construction Engineering of Curved and Skewed 

Steel Girder Bridges” (3). However, the large size 

of the input files has also limited the use of such 

models. While historically the use of 3D 

modelling techniques were hampered by limited 

computational resources, technological 

improvements have resulted in the ability for 

simple laptop and desktop computers to carry out 

very sophisticated analyses. However the 

bottleneck that is slowing the use of 3D modelling 

in routine analyses is actually the necessary time 

for users to become proficient in the modelling 

techniques as well as the required time to create 

these detailed models and analyze the results.  

In an effort to fill the void of available analysis 

options for designers and erection engineers, the 

program UT Bridge was developed (Stith, 2010) 

through funding provided by the Texas 

Department of Transportation (TxDOT). The 

software allows the user to efficiently develop a 

3D model of steel I-girder bridges for the analysis 

during erection or deck placement. While such 

models can be generated in several general-

purpose finite element programs that are 

commercially available, the creation of such 

models can take several days or weeks even for 

the most experienced analyst. The UT Bridge 

software consists of three modules that include a 

pre-processor, processor, and a post-processor. 

The user defines the basic bridge geometry 

through a series of input forms in the pre-
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processor (as described in Figure 1), which was 

developed using a Visual Basic (VB) interface. 

The user can select either an eigenvalue analysis 

or a first-order structural analysis. Once the 

geometry of the bridge is defined, the pre-

processor also allows the user to specify the 

erection scenario or deck placement scheme 

considering temporary supports such as shore 

towers or holding cranes. When the user is 

satisfied with the geometry and erection/deck 

placement scenario, the input file is sent to the 

FORTRAN-based processor that is based upon the 

pre-processor to carry out the structural analysis. 

Upon completion of the analysis, the user can then 

open and review the results in the C++ based post-

processor.  

 

Figure 1 – Pre-processor (user-friendly VB forms) 

architecture of UT Bridge Version 2.0 

The program is currently in Version 1.6 and has 

been well accepted and used by a number of 

designers and erection engineers. As with most 

software packages, through the use, various bugs 

and limitations in the software have been 

identified since its release in 2010. Because the 

software is free, the developers have not had the 

resources to continually update the software; 

however a major effort began in 2014 to update 

and improve the software.  

The expected release date of Version 2.0 of the 

software (henceforth referred to as V2.0 in the 

remainder of the document) is expected in mid- to 

late- 2016. Although the basic framework of the 

software is the same (pre-processor, processor, 

post-processor), these individual components have 

been totally changed from Version 1.6 (henceforth 

referred to as V1.6). In addition to changing the 

pre- and post-processors, V2.0 also includes new 

element formulations with improved accuracy, a 

new solver, and a new eigensolver. V2.0 will 

result in significant improvements in the accuracy 

and capabilities of the software. The program 

provides a 3D model with improved modelling 

accuracy of curved and skewed I-girders systems 

using quadratic isoparametric shell elements for all 

primary steel members (connecting plates and 

stiffeners included) and truss or beam elements for 

all brace members, using state-of-the-art solver 

and eigensolver algorithms.  

While UT Bridge is able to perform a deck 

placement analysis, the scope of this paper is 

limited to the erection sequence analysis of I-

girder systems in V2.0. The goal of this paper is to 

outline the basic changes to the program and to 

demonstrate the use of the program. Validation 

results of V2.0 with commercially available 

general-purpose finite element programs are 

provided. In addition, a brief overview of 

subsequent changes that are under consideration 

for the software are also provided.  

Model Generation 

Modeling of the structure in UT Bridge is 

achieved through a user-friendly interface using a 

series of VB forms. The geometry is defined using 

a minimum number of parameters, namely the 

bridge type (straight or curved), the number of 
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girders, the length of each girder, the girder 

spacing (which may be non-uniform), the radius of 

curvature (in case of a curved bridge), and the 

support skew. Nodes are defined at the mid-plane 

of the shells. The program uses Cartesian 

coordinates for straight bridges and cylindrical 

coordinates for curved bridges (using the center of 

curvature of the bridge as the origin of the 

coordinate system), which allows for easy and 

exact nodes coordinates calculation. The accuracy 

of the node generation algorithm results in a 

proper shell orientation, which is critical to the 

definition of the shells stiffness matrices. 

Therefore, the nodes are defined in the local 

isoparametric coordinates and must be 

transformed to global coordinates. Shell 

kinematics is also kept accurate, as a set of local 

orthogonal vectors at each node is required. 

Separate sets of orthogonal vectors are defined, 

depending on whether the shell represents part of a 

flange, a web, a connecting plate or a stiffener. As 

a single node may be shared by a flange and/or a 

web and/or a connecting plate finite element, 

several local sets of vectors may be required for 

individual nodes. 

The finite element that was selected for V2.0 is an 

isoparametric eight-noded quadratic general shell 

element such as that depicted in Figure 2. The 

element uses five degrees of freedom per node 

(three displacements, two rotations, with no 

“drilling” degree of freedom). This element is 

commonly recommended to model thin shells. The 

element is very similar to the most commonly used 

elements in many general-purpose FEA programs. 

The program that is being used to validate Version 

2.0 is ABAQUS (5), which has the S8R5 element 

that is similar to the new element. Comparisons 

between V2.0 and the ABAQUS models are 

subsequently presented in this paper. Full 

integration on the element was adopted, using 

three integration points in each direction. 

Integration through the thickness is done using 

two Gauss points. Overall, a series of eighteen 

integration points are therefore considered. 

 

 

Figure 2 – 8-noded isoparametric finite element 

Applying boundary conditions to curved girders 

requires special care. While the overall stiffness 

matrix is defined in global Cartesian coordinates 

(even for curved girders), the restraints at each 

support, however, are specified in local 

coordinates as demonstrated in Figure 3. For 

example, restraining the out-of-plane displacement 

for a curved girder defining a 90° angle in plane 

means restraining the x-displacement for a node 

located at the start of the girder, but restraining the 

y-displacement for a node located at the end of the 

girder. Such restraints may be accomplished either 

numerically, by adding springs at the 

corresponding degrees of freedom, or through the 

definition of local degrees of freedom that are then 

restrained. Adding springs is often not the optimal 

solution, since a large stiffness value may result in 

an ill-defined stiffness matrix, while a low 

stiffness value may lead to insufficient restraint. 

However, working on local degrees of freedom for 

the stiffness matrix assembly and solving, and then 

back transforming the local displacements to 

overall Cartesian displacements, proves to be the 

most accurate method of applying boundary 

conditions to a curved girder.  

Specifically, the restrained degrees of freedom are 

the following: in the case of a single girder (no 

cross-frame), a pin support requires restraints in 

the three displacements in the bottom flange to 
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web node, as well as the out-of-plane displacement 

of the top flange to web node; a roller support 

requires restraints in the vertical and out-of-plane 

displacements of the bottom flange to web node, 

as well as the out-of-plane displacements of the 

top flange to web node. In the case of multiple 

girders braced together, the pin or roller restraints 

are applied only at the bottom flange to web 

support nodes. By restraining only the translations 

of only the flange to web nodes, twist can be 

adequately restrained, but warping is still allowed.  

 

Figure 3 – Global vs. local degrees of freedom 

One of the strengths of the UT Bridge software 

has been the ability to model temporary supports 

such as shore towers or holding cranes to 

determine the impact on the behavior of the 

partially erected system. Shore towers are 

temporary restraints that physically behave similar 

to roller supports, restraining the bottom flange to 

web node vertical and out-of-plane displacements, 

and the top flange to web node out-of-plane 

displacement.  Therefore, it is assumed that the 

girder will be braced at the shore tower location.  

Holding cranes are modeled as an upward reaction 

at the point of support (on the top flange) – but 

twist and lateral deformation are not restrained.   

At each section along the length of a girder, a 

series of seventeen nodes are defined, which 

results in eight elements as depicted in Figure 4. 

The resulting cross-section consists of two 

elements for each flange and four for each web. 

Having two elements per flange was considered 

enough, especially when using a quadratic shell 

element. Based on an aspect ratio that is targeted 

to be close to one, or in the worst case under five, 

having four elements for the web was considered 

adequate. 

Although UT Bridge V1.6 models the cross frames 

as tension-only diagonal systems, V2.0 allows the 

user to specify either compression system x-

frames or k-frames (regular or inverted).  Another 

new addition to V2.0 is the ability to specify a 

lateral truss at the top and/or bottom flange. The x-

frames are modeled using three-dimensional truss 

bars connected to the mid-edge nodes of the outer 

web shells. The k-frames are connected to the 

same nodes but use beam elements for the top and 

bottom chords and truss bars for the diagonals. 

Finally, the lateral trusses are connected on the 

flanges exterior nodes and are modeled using truss 

bars. The truss and beam element stiffness is 

computed in the local coordinates and then 

converted to global Cartesian coordinates. 

Defining braces is easily achieved in the VB forms 

by specifying their location on the girders. For 

curved girders, working on cylindrical 

coordinates, and specifically, on the curvilinear 

coordinate along the girder, results in quick and 

accurate modeling. 

Meshing of the model is achieved automatically 

after the call to a separate FORTRAN program 

that stores a series of “key points” along each 

girder. Those key points may correspond to 

splices, supports, stiffeners, or any other location 

that the user selects based from the bridge framing 

plans. Exporting framing plans to actual models is 

therefore made relatively simply. For each girder, 

once the necessary parameters are defined, the 

program automatically meshes the model, based 

on a mesh size specified by the user. Modeling the 

structure and meshing the model can often be 

carried out in a matter of minutes. The automatic 

meshing does not prevent the user from selecting 

different mesh sizes for different segments. For 

example, to minimize the size of the stiffness and 
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geometric stiffness matrices, the user may opt to 

use a relatively coarse mesh. But at segments 

where the bridge behavior requires more precision, 

for example around negative moment regions, the 

user may define a finer mesh. 

 

Figure 4 – Mesh and node orientation 

Furthermore, by defining different steps and 

turning on user-specified segments for each girder 

at each step, UT Bridge is able to perform a full 

erection sequence analysis. Based on the selected 

segments, the program automatically activates or 

deactivates the corresponding nodes, elements, 

braces, loads and supports. The user is also 

prompted to specify when to activate and 

deactivate temporary supports. Altogether, this 

enables a quick analysis of a structure at different 

steps along the corresponding erection sequence 

instead of having to work on a different model for 

each step. 

Processor 

A flow chart of the solution process is shown in 

Figure 5. Defining K as the overall structural 

stiffness matrix, U the displacement vector, and F 

the load vector, the equation K*U = F, is solved 

using the latest PARDISO solver available in the 

INTEL FORTRAN compiler. The PARDISO 

subroutine allows for a quick and accurate solution 

of a set of sparse linear equations. It should be 

noted that the stiffness matrix, as well as the 

geometric stiffness matrix, are stored in the 

Compressed Row Storage (CSR) format. This 

means that only the non-zero matrix coefficients 

are stored, which in the case of the highly sparse 

matrices defined in structural mechanics represent 

less than 1% of all the matrix coefficients for 

simple models, or even less than 0.1% or 0.01% 

for large or very large models. This allows for 

optimized memory storage and faster solving. 

 

Figure 5 – Processor architecture 

Once the linear elastic solution is found, the Von 

Mises stress invariant is calculated at each 

integration point of all the shells. The values at the 



 

Page 6 of 11 

 

integration points are extrapolated to the shell 

nodes, using the shape functions of a nine-noded 

isoparametric quadratic element, as there are nine 

integration points per plane through the shell 

thickness. Finally, the values at the nodes are 

averaged to achieve a smooth stress field. As 

bending and torsional stresses dictate the behavior 

of the girders, it was chosen to extrapolate the Von 

Mises stress invariant through the shell thickness, 

based on the line defined by the stress values at the 

two integration points. For the top and bottom 

flanges, the stress is displayed at the respective 

upper and lower surface, whereas for the webs and 

the stiffeners, the stress is displayed at the mid-

plane. Finally, to comply with the shell finite 

element theory, which assumes that there is no 

normal stress orthogonal to the shell surface, a 

total of three actual stress fields are represented: 

one for the flanges, one for the webs, and one the 

stiffeners and connecting plates. For example, for 

a node that is shared between a web element and a 

stiffener element around mid-span of a girder, two 

values are actually stored and displayed: one for 

the web, large due to the in-plane bending stress, 

and one for the stiffener, low as the in-plane 

bending stress for the web actually results in a 

zero out-of-plane stress for the stiffener. Typically, 

only the shear stress components contribute to the 

Von Mises stress invariant for stiffeners and 

connecting plates. 

For buckling analyses, once the static solution is 

obtained, the structural geometric stiffness matrix 

is assembled and the program performs an 

eigenvalue buckling analysis of the structure. This 

means that the equation (K + λ*Kg)*X = 0 is 

solved, where Kg is the geometric stiffness matrix, 

X an eigenvector and λ an eigenvalue. In the field 

of structural stability, the geometric stiffness 

matrix is computed from the stresses derived from 

the linear elastic static solution, an eigenvalue is a 

multiplier on the applied loads that leads to 

buckling of the structure, as defined by a 

bifurcation from the linear elastic solution, and an 

eigenvector is the deformed shape of the structure 

at that point. In V2.0, the FEAST eigensolver 

available in the Intel Math Kernel Library (MKL) 

was selected. The FEAST eigensolver was 

developed in the late 2000s at the University of 

Massachusetts (6). As stated by its author, it “takes 

its inspiration from a density-matrix representation 

and a contour-representation technique” originally 

developed in the field of quantum mechanics. This 

technique enables the quick solution of almost any 

eigenvalue problem, particularly in the case of 

symmetric real sparse matrices, which is the case 

in structural mechanics.  Each node is connected 

to a maximum of ten other nodes in an overall 

model that contains thousands of nodes, while the 

stiffness and geometric stiffness matrices are 

symmetric due to the virtual work principle. 

For the purpose of finding critical buckling modes, 

the user is prompted to enter a search interval 

within which all the modes will be encountered. 

For the sake of keeping a limited number of output 

files, a maximum of five modes is retained for 

each step, but this may be increased in the future. 

The eigensolver is able to capture either global or 

local (flange or web) buckling modes. 

Examples 

An important step in program development is the 

validation of the program. A number of systems 

have been evaluated to date to ensure that proper 

modelling decisions have been made in the 

development of V2.0. For the purpose of 

validating the program, a series of benchmark 

problems have thus far been considered. The 

systems consist of full bridges with both straight 

and curved geometry. Cases with and without 

support skew have been modeled. For validation 

purposes companion models have been created 

using the general-purpose FEA program 

ABAQUS. Comparisons have been made with 

numerical comparisons of deflections, stresses, 

eigenvalues, etc. Some of these numerical 

comparisons are presented later in this paper in a 

table. Comparisons have also been made with the 

graphical output using contour plots from the UT 

Bridge V2.0 and ABAQUS. The modeling 

parameters in ABAQUS were selected to mirror as 

much as possible those assumed in UT Bridge. In 

particular, the ABAQUS S8R5 general shell was 



 

Page 7 of 11 

 

adopted since the element that has been 

incorporated into UT Bridge is based upon the 

same formulation. One of the few modelling 

differences between V2.0 and ABAQUS are how 

the cross-frames are actually attached to the 

girders. Since selecting the mid-edge nodes of 

quadratic elements is not possible in ABAQUS, an 

additional number of four elements were generated 

along the webs in order to maintain the same 

stiffness for the cross-frames, which results in a 

slight flexibility introduced into the connection. 

A number of screen captures are presented on the 

following pages that show comparisons between 

the UT Bridge program viewer and the ABAQUS 

model. Significant changes have been incorporated 

into the V2.0 post-processor compared to V1.6. 

The graphics of the viewer is very similar to the 

ABAQUS output. As with the other forms, the 

viewer is encoded in Visual Basic. The model 

itself is displayed using an algorithm encoded in 

OpenGL, which is with DirectX one of the two 

main standards used in three-dimensional graphics 

display. However, as OpenGL is specifically 

targeted at addressing C++ based codes, the Open 

Toolkit (OpenTK) library was added to the VB 

code in order to be able to use some of the already 

defined OpenGL functions. Generation of the 

model, its geometry, displaced shape, buckled 

shape, and Von Mises stress distribution, however, 

is achieved through a “manual” specific 3D 

rendering algorithm that allows for control of 

advanced parameters. These parameters include 

the magnification factor of the displaced shape and 

mode shapes, the rainbow pattern used to represent 

the magnitude of those displacements, the offset 

between the shells edges and their interior surface 

(in order to avoid the so-called “stitching” effect 

that may affect the overall quality of the 

rendering). The output files required for the 

rendering are generated at the end of the main 

FORTRAN calculations and are formatted 

similarly to the well-known .obj format 

encountered in three-dimensional graphics display. 

The viewer form allows for a rapid display of the 

model, boundary conditions, temporary supports, 

displaced shape, buckling eigenvalues, mode 

shapes and Von Mises stress distribution for each 

step of the erection sequence. One of the major 

improvements between V1.6 and V2.0 is that the 

Post-Processor of UT Bridge no longer requires 

opening separate program modules, which was 

required in the past. This allows the user to move 

around the program and switch between input 

screens and screens showing the model geometry 

much quicker.  

Curved Girder Example 

In order to validate the accuracy of V2.0 with 

ABAQUS, a highly curved prismatic girder was 

selected. The girder has a radius of curvature of 

26.5' and a span of 41.67' long. The respective 

flange and web dimensions are 12.0"x0.75" and 

60.0"x0.75". The tight radius of curvature was 

selected to validate the program and is not meant 

to reflect the curvature of actual road or railway 

bridges. However, such geometries may not be 

uncommon for other applications such as a 

pedestrian bridge. As the girder defines a 90° 

angle in plan, this benchmark problem can be 

potentially considered as a worst case scenario as 

far as checking boundary conditions. Figures 6 and 

7 show the displacement contours in the x- and y- 

directions with maximum values of 7.602". An 

interesting aspect of this problem is that the x- and 

y- displacements are symmetric due to the 

symmetry of the problem. The contour of the 

maximum resultant deformation from V2.0 is 

shown in Figure 8 with a maximum value of 

21.175". The corresponding contour of the 

maximum resultant displacement from ABAQUS 

for this problem is shown in Figure 9, with a 

maximum value of 21.210”, which is almost 

identical. It should be noted that there is a slight 

difference between the contour from V2.0 and 

ABAQUS. Whereas V2.0 displays a continuous 

(rainbow) contour, the contour graphs from 

ABAQUS are discretized.  

Although an eigenvalue buckling analysis is not 

very meaningful for a girder with significant 

horizontal curvature, the analysis was carried out 

in the two programs. The eigenvectors (buckled 

shapes) for the first mode from the V2.0 and 

ABAQUS models are shown in Figures 10 and 11, 

respectively. As noted in the captions, there is 

excellent agreement between the corresponding 

eigenvalues for the two programs. Similar 

agreement was also achieved for higher modes.  
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Figure 6 – Curved girder deformed shape (UT 

Bridge, Ux,max = -7.602”) 

 

Figure 7 – Curved girder deformed shape (UT 

Bridge, Uy,max = 7.602”) 

 

Figure 8 – Curved girder deformed shape (UT 

Bridge, Umax = 21.175”) 

 

Figure 9 – Curved girder deformed shape 

(ABAQUS, Umax = 21.21”) 

 

Figure 10 – Curved girder 1
st
 mode shape (UT 

Bridge, λ = 11.438) 

 

Figure 11 – Curved girder 1
st
 mode shape 

(ABAQUS, λ = 11.411) 
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Skewed bridge 

Similar to the relatively severe case of the 

horizontally curved girder from the last example, 

an equally severe case was also considered for a 

straight bridge with skewed supports. A plan view 

of the girder system is shown in Figure 12. 

 

Figure 12 – Skewed bridge framing plan 

The structure is a straight, four-girder system with 

a relatively extreme support skew angle of 70°. 

The bridge had 12 intermediate cross frames and 6 

locations where “lean-on” bracing was used where 

only the top and bottom struts were provided. The 

girders were prismatic with top flange dimensions 

of 18"x0.945", bottom flange dimensions 

20"x2.165", and web dimensions 56.1"x0.5625". 

As noted above, a framing plan taking advantage 

of lean-on bracing is considered. Four steps are 

defined for the erection sequence, with one full 

girder lifted at each step. Nearly exact correlation 

was achieved between the V2.0 and ABAQUS 

models for each stage of the erection. Figures 13 

and 14 show a comparison of the contour graph of 

the result displacement for V2.0 and ABAQUS. 

The maximum value from each analysis was 2.8".  

The results from the eigenvalue buckling analyses 

from each stage were also nearly exact between 

the two programs. The eigenvectors (buckled 

shapes) from the two programs are shown in 

Figures 15 and 16, with the corresponding 

eigenvalues being 2.6 and 2.5.  

 

Figure 13 – Skewed bridge deformed shape, step4 

(UT Bridge, Umax = 2.8”) 

 

Figure 14– Skewed bridge deformed shape, step4 

(ABAQUS, Umax = 2.8”) 
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Figure 15 – Skewed bridge 1
st
 mode shape, step 2   

(UT Bridge, λ = 2.6) 

 

Figure 16 – Skewed bridge 1
st
 mode shape, step 2   

(ABAQUS, λ = 2.5) 

Curved bridge 

An additional validation analysis was carried out 

on the four-girder system depicted in Figure 17. 

The two-span bridge had a radius of curvature of 

the inner girder equal to 288' and was braced with 

63 cross-frames oriented in a radial manner. The 

cross-section was kept uniform for the sake of 

faster modelling in ABAQUS. The cross-sectional 

dimensions were equal to 28"x2.5" for both the top 

and bottom flanges, and 114"x1.25" for the web. 

Four steps were defined in the erection sequence, 

with two girders lifted at each step. Temporary 

supports were modeled for steps 1, 2 and 3 to 

prevent excessive deflections. Good correlation 

was achieved between both programs at all steps 

of the erection. Contours of the maximum 

displacement in the fully erected structures are 

shown in Figures 18 and 19 with the maximum 

displacement of 4.1" in V2.0 and 4.3" in 

ABAQUS.  

 

Figure 17 – Curved bridge framing plan 

 

Figure 18 – Curved bridge deformed shape, step 4 

(UT Bridge, Umax = 4.1”) 

 
Figure 19 – Curved bridge deformed shape, step 4 

(ABAQUS, Umax = 4.3”) 
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Validation 

The erection conditions of three bridges with 

relatively severe geometries were analyzed using 

UT Bridge and ABAQUS. The geometries 

included severed curvature as well as significant 

support skew. In all of the analyses, the UT Bridge 

and ABAQUS models had excellent correlation in 

the results. A summary of the displacements and 

eigenvalues are provided in Table 1. Although 

severe geometrical conditions were modeled, the 

maximum difference between UT Bridge and a 

widely used general purpose FEA program was 

approximately 6%, while for the majority of the 

results, the percent difference was less than 1%. 

The differences are likely due to the fact that UT 

Bridge performs a full integration versus the 

reduced integration in ABAQUS. Another 

potential source of the differences is the reduced 

number of shell elements for the webs for UT 

Bridge. However, even for the extreme 

geometries, UT Bridge V2.0 has excellent 

agreement with the ABAQUS solutions.  

 

Table 1 – Results summary 

Potential Modifications Under 

Consideration 

Although V2.0 is already very promising, the 

authors are considering further improvements, 

which would include the following features: 

 The ability to perform a large 

displacement second-order analysis 

 Modeling of dapped ends and/or tapered 

girders 

 Modeling of other types of bracing, such 

as diaphragms  

 Display of moment and shear diagrams. 

Summary and Conclusions 

A 3D finite element program able to capture the 

linear elastic behavior and the stability of straight, 

curved, or skewed steel I-girder bridges was 

presented. The program was validated with a 

series of tests on ABAQUS, using similar 

modeling assumptions. The user-friendliness and 

accuracy of the UT Bridge program make it a 

reliable tool for designers and erectors. Modeling 

time in UT Bridge is significantly reduced.  Even 

very complex structural systems can be quickly 

modeled.   

References 

(1) Zureick, A. & Naqib, R., 1999, “Horizontally 

Curved Steel I-Girders State-of-the-Art 

Analysis Methods”, Journal of Bridge 

Engineering, vol. 4, no. 1, pp. 38-47.  

(2) Chang, C. 2006, Construction simulation of 

curved steel I-girder bridges, PhD Thesis, 

Georgia Institute of Technology, Atlanta, 

Georgia. 

(3) NCHRP Report 725 “Guidelines for Analysis 

Methods and Construction Engineering of 

Curved and Skewed Steel Girder Bridges”, 

2012, Transportation Research Board. 

(4) Stith, J. 2010, Predicting the behavior of 

horizontally curved I-girders during 

construction, PhD Thesis, The University of 

Texas at Austin, Austin, Texas. 

(5) ABAQUS Version 6.12, Dassault Systèmes 

Simulia Corporation, 2012. 

(6) Polizzi, E., 2009, “Density-matrix-based 

algorithm for solving eigenvalue problems”, 

Physical Review B, vol. 79, no. 11. 

Step UT Bridge ABAQUS ∆

Ux -7.602" -7.614" -0.2 %

Uy 7.602" 7.614" -0.2 %

Uz -19.675" -19.70" -0.1 %

Umax 21.175" 21.21" -0.2 %

λ1 11.438 11.411 0.2 %

λ2 58.277 56.398 3.3 %

1 Umax 2.427" 2.430" -0.1 %

1 λ1 1.121 1.117 0.4 %

2 Umax 2.498" 2.501" < -0.1 %

2 λ1 2.575 2.513 2.5 %

3 Umax 2.651" 2.661" -0.4 %

4 Umax 2.798" 2.796" < 0.1 %

1 Umax 0.183" 0.185" -1.1 %

2 Umax 0.173" 0.175" -1.1 %

3 Umax 0.301" 0.311" -3.2 %

4 Umax 4.069" 4.325" -5.9 %

Highly curved girder 1

Skewed bridge

Curved bridge


