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SUMMARY 

Fatigue cracks in steel bridges 

are considered a nuisance as 

they require periodic inspection 

and repair. Although the cracks 

are typically characterized by 

stable propagation rate, the 

scatter in fatigue performance is 

difficult to quantify and could 

be on the order of thousands or 

even millions of cycles. If left 

unattended, the cracks could 

grow to reach critical length and 

threaten the integrity of the 

structure. The concern over 

structural safety is further 

intensified for fracture critical 

bridges, resulting in a federal 

mandate of bi-annual hands-on 

inspection and causing financial 

strains on funding available to 

transportation departments. 

Given the scatter in fatigue data 

and the substantial cost 

associated with inspection and 

repair, the use of probabilistic 

life-cycle cost analysis could, 

therefore, provide a viable 

alternative for the development 

of maintenance and 

management programs for steel 

bridges. In this paper, a 

framework for probabilistic life-

cycle assessment is created and 

applied for minimizing the life-

cycle cost of a steel twin tub 

bridge. First, a detailed finite 

element model of the bridge is 

developed and probabilistic 

relationships of crack growth 

versus number of cycles are 

generated. Second, a life-cycle 

framework is devised and used 

to optimize the cost and 

schedule associated with repair 

and inspection of the bridge 

over its service life without 

comprising on safety. The 

results demonstrate that viability 

of using this framework for 

ensuring the lowest possible 

cost for addressing fatigue 

issues in steel bridges over a 

service life chosen by the bridge 

owner while ensuring safe 

operation of the bridge. 
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Hussam Mahmoud, Akshat Chulahwat, and Mazin Irfaee  

 

1. Introduction and Background 

In the first half of the 20th century few bridge 

failures caused nationwide concern over 

vulnerability of steel bridges. As a consequence, 

the American Association of State Highway and 

Transportation Officials, AASHTO, started to 

classify bridges more strictly so that those 

vulnerable to complete collapse can be 

identified. A new category for fracture critical 

bridges (FCB) was introduced. A FCB is defined 

as a bridge with at least one fracture critical 

member (FCM). Whereas a FCM is defined as a 

“component in tension whose failure is expected 

to result in the collapse of the bridge or the 

inability of the bridge to perform its function” 

(1). This implied that, two-girder steel bridges 

would be classified as nonredundant and fracture 

critical (FC). As a result, bi-annual hands-on 

inspection were mandated. In the United States, 

11% of the bridges are classified as fracture 

critical, 83% of which comprise of two girder 

steel bridges (2). The cost implications of the bi-

annual inspection mandate are enormous and 

imposes financial strain on taxpayer’s money 

and federal funding. This problem is further 

aggravated by the fact that most bridges in the 

United States were built around the 1960s and 

many of them have shown significant signs of 

aging and deterioration over the years. 

Demolition and replacement of these bridges is 

an expensive alternative. Therefore, relying on 

cost-effective maintenance and repair strategies 

in prolonging the life of a bridge, is ever 

pressing. The development of these cost-

effective strategies requires the formulation of 

life-cycle models, which need to include both 

epistemic and aleatory uncertainties associated 

with the specific bridge in question. Several 

researchers have developed comprehensive 

probabilistic life-cycle frameworks for optimal 

maintenance budget allocation regarding 

deteriorating structures (3,4,5,6,7). These studies 

have quite effectively highlighted the 

importance and need for efficient life-cycle 

strategies to establish well-balanced intervention 

schedules that consider various economic and 

safety requirements while taking into account 

uncertainties associated with the time-dependent 

structural performance. Accurate assessment of 

structural performance is key for reliable life-

cycle evaluation. With recent advancement in 

computing technologies, researchers and 

engineers can now develop detailed finite 

element models (FEM) that represent the true 

behavior of the structure in question. Life-cycle 

optimization frameworks combined with 

detailed FEM models can not only further 

improve the accuracy of maintenance strategies, 

but also give better understanding of the inherent 

redundancies within a system.  

In this paper a steel-twin box-girder bridge is 

considered for optimal maintenance assessment 

by combining a detailed FEM model with a life-

cycle cost optimization strategy. Two models for 

the bridge are developed – with and without 

lateral bracings. The FEMs are first used to 

conduct probabilistic fatigue crack growth 

analysis, which include assessment under mixed 

modes fatigue loading. The crack propagation 

rate corresponding to the most conservative case 

is used as an input for the life-cycle framework. 

Within the life-cycle framework, costs 

associated with only repair and inspection are 

included. The optimization is used in 

conjunction with Monte Carlo simulation to 

optimize on maintenance schedule while 

accounting for the uncertainties associated with 

the FEMs. 

 

2. Finite Element Model 

The steel box-girder bridge, considered in this 

study, is located on W 44
th
 Avenue crossing I-25 

highway in Denver, CO. A suitable 3D finite 

element model of the bridge is constructed, 

which is further used to conduct probabilistic 
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risk assessment and life-cycle cost analysis, as 

discussed in the subsequent sections. 

3.1 Geometry 

Two models are built of the aforementioned 

bridge – (a) with bracings, and (b) without 

bracings between the girders. The bridge model 

is constructed to be 105.77 meters (347 ft) in 

length and 14.33 meters (47 ft) in width. Other 

geometric details of the bridge are shown in Fig. 

1. The finite element software ABAQUS ver. 

6.14 is used for model formulation and analysis. 

The model comprises of 34 single parts, which 

are assembled into 76 instances. A mix of three 

key element types – (a) line (Beam) element (b) 

shell element, and (c) solid element are used to 

simplify the model and reduce processing time. 

Line elements are used for the bracings, solid 

element for partition of the girder at the crack 

location, and shell elements for the remaining 

parts of the model. In addition, all steel 

connections are defined in the model as welded 

connections and interaction between concrete 

slab and girders is defined as fully composite. 

 

Fig. 1. Bridge geometric details 

 

3.2 Material Properties 

The model is constructed of primarily two 

materials – (a) steel of grade 50 (A572) with 

yield stress of 345 MPa, ultimate stress of 448 

MPa, elasticity module of 200,000 MPa and a 

Poisson ratio of 0.3 (b) reinforced concrete with 

compressive strength of 40 MPa, an elasticity 

module of 25,131 MPa, and Poisson ratio of 

0.26. The material properties of the reinforced 

concrete are calculated using rule of mixtures. 

This is essentially a weighted mean used to 

predict the properties of a composite 

material made up of continuous and 

unidirectional fibers. Eq. (1) defines the 

principle of rule of mixtures. 

𝑋𝑒𝑞 =
1

𝑉𝑡𝑜𝑡𝑎𝑙
∑ 𝑉𝑛 ∗ 𝑋𝑛

𝑛

1

                 (1) 

Where 𝑋𝑒𝑞 is the equivalent property, n is the 

number of material combine, 𝑉𝑛   is the volume 

https://en.wikipedia.org/wiki/Weighted_mean
https://en.wikipedia.org/wiki/Composite_material
https://en.wikipedia.org/wiki/Composite_material
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of material n, 𝑋𝑛 is the property for material n, 

and 𝑉𝑡𝑜𝑡𝑎𝑙 is the total volume for all materials 

used. Since the analysis is extended to plastic 

range the reinforced concrete slab is modeled to 

include reinforced steel rebars. Concrete damage 

plasticity (CDP) model from Jankowiak & 

Lodygowski (8) is used to evaluate the 

equivalent plastic strain as limit state for the 

collapse. 

 

Fig. 2. Bridge mesh details 

 

3.3 Mesh Formulation 

Three types of mesh element are used in the 

model – 3-node quadratic beam line element 

(B22), 8-node curved thick shell element with 

reduced integration (S8R) and 20-node quadratic 

brick element with reduced integration 

(C3D20R). The line elements are used for the 

bracings and diaphragms, the shell elements for 

the tubs and the concrete slab, and the brick 

elements for the mesh surrounding the crack 

region in the tub girder. This allowed for proper 

capturing of stresses in the tub through the 

thickness for accurate predictions of crack 

growth. In addition, a recursive mesh analysis is 

conducted to assess the optimum mesh size 

around the crack region, which converged to be 

20 mm. 

 

3.3 Crack Propagation 

 

 

 

Fig. 3. Initial crack location and propagation 

direction 

The critical crack location is identified at a 

welded stiffener connection (Category C) 

located at midspan on one of the bridge girders, 

where the web and bottom flange are connected 

(Fig. 3), due to the maximum positive bending 

moment observed. An initial crack length of 127 

mm (5 inches) is assumed, with increments of 

127 mm. The initial crack location and the 
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directions of each tip of crack is shown in Fig. 3. 

Due to asymmetrical positioning of the two 

crack tips, the crack propagation rate is different 

for both tips as the crack propagates in the 

bottom flange plate and vertically in the web. 

The Paris Law is used to approximate the 

difference in propagation rates between the two 

crack tips, since the number of cycles at each 

crack increment would be the same.  

 

 

Fig. 4. Loading configurations and boundary conditions 

 

3.4 Load Configuration 

The loading configuration is assigned to the 

model based on the AASHTO, 2012 

requirements for fatigue and fracture analysis. 

Specifically, an HL-93 is considered with 

dynamic load allowance of 15% since the 

analysis is conducted statically. Furthermore, the 

loading on the bridge is divided to define the 

fatigue life and the fracture for different crack 

length. Two loading configurations are defined 

to represent the fatigue loading cycle, as shown 

in Fig. 4 (i.e. case #1 and case #2). The location 

of loads is determined based on the truck 

locations specified in  

 

 

 

accordance with AASHTO, 2012 to produce 

maximum positive and negative bending 

moments. The results from this loading case are 

utilized in the life-cycle analysis. To evaluate 

the potential for collapse in the presence of full 

fracture of one of the girders, another loading 

configuration is defined, which comprised of 

similar configuration as the first case (maximum 

bending) along with additional load due to self-

weight and lane load. The specified lane load is 

0.8677 KN/m (0.64 kips/ft) for 3.0 m (10 ft) 

width lane. The loads are magnified with 

additional factor of safety of 1.5 for dead load, 

1.75 for live load, and 1.15 for dynamic 

allowance. 
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Fig. 5. Number of Cycles Vs. Crack Length (Propagation Rate) for different modes of loading considered (a) Tip #1 

and (b) Tip #2 

 

 
Fig. 6. Propagation Rate with Variation in Paris Law Constants (a) Tip #1 and (b) Tip #2 

 

3. Fatigue and Fracture 

Assessment 

Stress intensity factor (SIF) corresponding to 

different crack lengths are evaluated and used in 

the Paris Law for the evaluation of crack growth 

rate. Paris hypothesized that the range in stress 

intensity factor, K, governs fatigue crack 

growth. Experimental da/dN versus K data 

typically exhibits a sigmoid here is a K 

threshold, Kth, below which cracks will not 

propagate. The Paris law is fit to the linear part 

(on a log–log scale) above Kth. At relatively 

high K levels, the crack growth rate 

accelerates, as the fatigue crack growth is 

accompanied by some ductile tearing or 

increments of brittle fracture in each cycle. 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚                          (2) 

where C and m are material constants. 

Utilizing the Paris Law, the analysis is 

performed twice to evaluate the effect of 

considering only mode I loading versus mixed 

modes on the resulting fatigue crack growth. A 

similar pattern of SIFs is observed for first and 

mixed mode analysis results for lower crack 

lengths, since the second and third modes 

showed relatively low SIF values. At higher 

crack lengths, some variation is observed, 
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however, resulting in a difference of 

approximately 7-10% in fatigue life (cycles to 

failure). Due to the limited scope of this study, 

the fracture results for each mode are not 

explicitly discussed. The Paris Law is used to 

evaluate the relation between crack propagation 

and total number of cycles to failure (Fig. 5). As 

expected, the model with braces shows higher 

fatigue life (approximately 20%-30%) than the 

model without bracings. 

To account for uncertainties associated with 

fatigue crack growth, variation in the Paris Law 

constants, 𝐶 and 𝑚, are assumed in accordance 

with previous studies and guidelines (9,10). 

Normal distributions with a mean of 𝐶𝜇 = 

9.5x10
-12

, 𝑚𝜇 = 3 and standard deviation 𝐶𝜎 = 

0.25x10
-12

, 𝑚𝜎 = 0.03 are utilized. Using Monte-

Carlo simulation for 𝑁 = 100,000 iterations the 

distribution in fatigue life as a function of crack 

length is calculated (Fig. 6). A clear variation in 

fatigue life is observed, especially for crack tip 

#2. 

 

4. Life-Cycle Cost Optimization 

Inspection and maintenance are required at 

regular intervals to prolong the service life of a 

structure. However, the intervals at which these 

inspections and maintenance should be specified 

require careful deliberation as minimizing life-

cycle cost of structures while ensuring structural 

safety through proper resource allocation is a 

key consideration (11). In this section an 

optimization framework is proposed and 

discussed. The framework utilizes life-cycle cost 

information, along with the probabilistic curves 

obtained in the previous section, to calculate 

optimal inspection/repair routine. 

 

5.1 Parameters 

Assessment of life-cycle cost requires a 

sufficient understanding of the events involved 

in maintaining and prolonging the life of the 

structure. This may include but not limited to 

inspection, repair and maintenance. Depending 

on the nature of the method adopted for each 

activity, the life-cycle cost would vary 

significantly. In this study, only inspection and 

repair are considered. The total cost of an 

inspection-repair event is estimated by Eq. (3),  

𝐶𝑡(𝑡) = 𝑅[𝐶𝑖(𝑡, 𝑘) + 𝑃𝑑(𝑘, 𝑑(𝑡)). 𝐶𝑟(𝑡)]       (3) 

where 𝐶𝑖 is the total inspection cost of type 𝑘 

inspection at time 𝑡, 𝐶𝑟 is the total repair cost, 

𝑃𝑑 is the probability of detection of the type of 

inspection method used and 𝑅 is the cost 

inflation factor to a particular year. Depending 

on the crack size and inspection type, sometimes 

critical cracks would not be detected during the 

inspection phase; thus 𝑃𝑑 is introduced to 

account for this uncertainty. 

The cost inflation factor is defined by Eq. (4), 

where 𝑟 is the annual inflation rate and 𝑡 is the 

time. There exist several types of inspection 

methods, each with its own distinct accuracy. 

𝑅 =
1

(1 + 𝑟)𝑡
                          (4) 

The total inspection and repair cost are defined 

as shown in Eq. (5) and (6) as the sum of their 

direct (𝐶𝑖
𝑑 and 𝐶𝑟

𝑑) and indirect (𝐶𝑖
𝑖𝑛 and 𝐶𝑟

𝑖𝑛) 

costs. 

𝐶𝑖(𝑡, 𝑘) = 𝐶𝑖
𝑑(𝑡, 𝑘) + 𝐶𝑖

𝑖𝑛(𝑡, 𝑘)          (5) 

𝐶𝑟(𝑡, 𝑘) = 𝐶𝑟
𝑑(𝑡) + 𝐶𝑟

𝑖𝑛(𝑡)             (6) 

Both the direct and indirect inspection costs are 

dependent on the type of method used. Eq. (7) 

describes the indirect inspection cost as a 

function of time taken by the specific method 

(𝑡𝑖) and the closure cost per day (𝐶𝑐), which is 

independent of the method type. 

𝐶𝑖
𝑖𝑛(𝑡, 𝑘) = 𝑡𝑖(𝑡, 𝑘). 𝐶𝑐                  (7) 

In case of repair costs, both direct and indirect 

components are related to the crack length 𝑑, 

which in turn vary with time probabilistically 

and is defined by cumulative sum of crack 

length of tip#1 (𝑑1) and tip#2 (𝑑2) as per Eq. 

(8). The direct repair cost is defined as the 

product of crack length and repair cost per unit 

length (𝐶𝑤) as shown in Eq. (9). The indirect 

cost is defined as the product of closure cost per 

day, crack length and amount of time taken to 

repair crack of length 𝑑 as per eq. (10). 

𝑑(𝑡) = 𝑑1(𝑡) + 𝑑2(𝑡)               (8) 

𝐶𝑟
𝑑(𝑡) = 𝐶𝑤 . 𝑑(𝑡)                     (9) 
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𝐶𝑟
𝑖𝑛(𝑡) = 𝑡𝑟. 𝑑(𝑡). 𝐶𝑐                    (10) 

5.2 Optimization 

The optimization framework implemented in 

this study entails the use of a non-linear heuristic 

optimization - ‘CMA-ES’ (Covariance Matrix 

Adaptation Evolution Strategy) (12) to calculate 

the optimal inspection and repair schedule. The 

optimization generates a sample population of 

solutions, tests the efficacy of each sample, 

creates an improved sample from previous one 

and continues the process until either 

convergence is achieved or until a desired 

number of runs are completed. As observed 

from the discussion in the previous section, one 

of the key parameters required for optimization 

is the functional relation between time and crack 

length (𝑑(𝑡)). By assuming an average number 

of load cycles per day (𝑁𝑎𝑣𝑔) the curves in Fig. 

6 are used to obtain the necessary curves from 

Eq. (10), where 𝑁𝑚𝑎𝑥 is the maximum cycles 

observed.  

𝑡𝑠𝑙 =
𝑁𝑚𝑎𝑥

365. 𝑁𝑎𝑣𝑔
                      (10) 

Because of uncertainties in variation of crack 

length with time (or number of cycles), Monte 

Carlo is combined into the fitness equation of 

the optimization, as given by Eq. (11), where 𝑡𝑠𝑙 

is the target service life, 𝑛𝑡 is the number of 

iterations for Monte Carlo, 𝑑𝑡ℎ is the threshold 

crack length not to be exceeded, 𝛽 is a penalty 

factor and 𝑠𝑔𝑛(𝑥) is the signum function which 

determines the sign of 𝑥. The optimization 

problem can be described as shown below: 

Optimization Variable: 𝑘 = {𝜆1, 𝜆2 … 𝜆𝑡𝑠𝑙
}, 

such that 𝜆𝑖 ∈ {0,1}. A value of 1 representing 

an inspection repair and 0 representing 

otherwise. For this study, only one type of 

inspection is considered but the framework can 

incorporate several types at the same time as 

desired. 

Constraints: 𝑡𝑖+1 − 𝑡𝑖 ≥ 2, such that 𝜆𝑖 = 1. 

The interval between any consecutive 

inspection-repair events needs to be at least 2yrs. 

Secondly, the threshold crack length (𝑑𝑡ℎ) 

should not be exceeded during the service life. 

Objective function: Minimize 𝐹 

𝐹 =
1

𝑛𝑡
∑ [∑ 𝐶𝑡(𝑡)

𝑡𝑠𝑙

𝑡=1

+ 𝛽[1 − 𝑠𝑔𝑛(𝑑𝑡ℎ − 𝑑(𝑡))]]

𝑛𝑡

𝑛=1

    (11) 

An important thing to note is that the crack 

length curves obtained from the FEM model are 

valid only to a certain number of cycles. It is 

assumed that as each time a repair is performed, 

the crack length is reset back to its initial value. 

In reality, this should result in shorter life for the 

new repair in comparison to the original detail. 

However, this was not accounted for in this 

study. Thus, based on the inspection-repair 

schedule pattern, a modified 𝑑(𝑡) curve is 

derived for each case.  

 

5.1 Results 

Life-cycle cost optimization is conducted using 

the framework discussed on the bridge model 

with bracings. The optimization is performed to 

obtain optimal inspection-repair schedule for 

each case, such that the service life can be 

extended to a desired target life, which is 

considered to be 70 yrs in this study. The mixed 

mode case is considered as the test case since it 

showed the lowest fatigue life among all modes. 

The crack length curves (𝑑(𝑡)) are derived based 

on separate propagation rates of tip#1 and tip#2 

(Fig. 6). The threshold crack length is decided 

upon based on the correlation between crack 

length and maximum displacement of girder. 

Based on the increase in displacement with 

respect to crack length two values are selected 

for threshold crack length (𝑑𝑡ℎ) – (1) 1000 mm 

and (2) 2000 mm. The average load cycle is 

assumed to be 1000 cycles/day and 2000 

cycles/day. In this study, only visual inspection 

is considered and the probability of detection is 

assumed to be 1, due to large size of the crack. 

The corresponding values of other input 

parameters are listed in Table 1. 

 

Table 1. Optimization input parameters 

Definition Variable Value Unit 

Inspection direct 𝐶𝑖
𝑑 20,000 $ 
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cost 

Inspection time 𝑡𝑖 3 days 

Closure cost 𝐶𝑐 3000 $ 

Inflation rate 𝑟 3 % 

Repair cost 𝐶𝑤 10 $/mm 

Repair time 𝑡𝑟 0.002 mm/days 

Penalty factor 𝛽 10
10

 - 

Monte Carlo 

iterations 
𝑛𝑡 1000 - 

 

 

Fig. 7. Life-cycle cost optimization results for different values of (𝑑𝑡ℎ, 𝑁𝑎𝑣𝑔) (a) (1000 mm, 1000 cycles/day) (b) 

(2000 mm, 1000 cycles/day) (c) (2000 mm, 2000 cycles/day) (d) (2000 mm, 2000 cycles/day)

 

The results for the four test cases are shown in 

Fig. 7. The figure clearly shows the variation in 

the scheduled inspection and repair schedule not 

to be confined to the bi-annual mandate. The 

figure presents the variation in net crack growth 

(crack tip#1 + tip#2) with time under a given 

maintenance schedule. After each inspection-

repair event the crack length is reset, and certain 

time is required for crack initiation and growth 

again. This period of inactivity is represented in 

the figures as the constant crack length versus 

time after each repair. The time to initiation for 

the Category C detail is calculated for the 2 

cases of average cycles (𝑁𝑎𝑣𝑔) assumed, and 

their respective values are found to be 2.71yrs 

(for 𝑁𝑎𝑣𝑔 = 2000 cycles/day) and 5.54yrs (for 

𝑁𝑎𝑣𝑔 = 1000 cycles/day). The lifecycle cost is 

observed to be maximum when the frequency of 

loading cycle is high, and the allowed crack 

(a) (b)

(c) (d)
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threshold length is low (Fig. 7(c)). Higher 

frequency of loading results in faster crack 

propagation rate, as observed from the increase 

in slope for cases (c) and (d). In case (a) and (b) 

low loading cycles result in higher initiation 

time and low rate of crack growth, as a result, 

the optimization larger intervals for maintenance 

to keep the lifecycle cost low. The threshold 

crack length selected also governs the interval 

between maintenance events. However, its effect 

is not as pronounced as compared to the loading 

cycles. The effect of threshold crack length is 

observed to be much higher between cases (c) 

and (d) than (a) and (b), suggesting that its effect 

would play a much important role at higher 

loading cycles. For the optimal schedule patterns 

observed in all test cases, the frequency of 

maintenance increased with time, which was 

probably due to the cost inflation. 

In this study, only a single crack location is 

considered of interest; however, in case of 

multiple crack locations by controlling multiple 

threshold values favorable failure sequences can 

be promoted. This would allow engineers to 

exploit any inherent redundancies present in the 

system. This further highlights the motivation 

behind this study. Given the substantial number 

of bridges of United States in their later stages, 

the need for efficient maintenance strategies are 

critical for ensuring minimal cost without 

compromising on safety. 

 

5. Discussion 

In this study, life-cycle cost analysis of a steel 

twin box-girder bridge was performed using 

probabilistic fracture mechanics. A 

computationally efficient, yet comprehensive, 

FEM model was developed to evaluate fatigue 

crack propagation life and failure mode. Critical 

crack location was identified from the model and 

its corresponding stress intensity factor are 

evaluated to define a relationship between crack 

length and fatigue life using Paris Law. The 

uncertainties associated with material properties 

are also accounted within the analysis. The 

functional relation of fatigue life with crack 

length was further used in conjunction with a 

life-cycle cost framework to conduct 

optimization and identify optimal schedule 

patterns so as to minimize the total cost over the 

lifetime of the structure. The following 

summarizes key discussion points of this study: 

 The FEM model with bracings showed 

higher fatigue life than the model 

without bracings, as the bracings 

provided redundancy and redistributed 

the loads. 

 Higher modes i.e. second and third 

mode showed relatively lower SIF 

values than first mode. As a result, 

mixed mode and first mode showed 

similar behavior for low crack lengths, 

but a slight deviation for higher crack 

lengths. 

 Uncertainty in material properties had 

an effect on crack propagation rate, 

which in turn resulted in large scatter in 

total lifecycle cost. 

 The load cycles had a significant effect 

on the total life-cycle cost, as expected. 

Crack length threshold had an inversely 

proportional effect, however, the effect 

was relatively mild. 

 The optimal schedules obtained for 

different cases showed similar pattern. 

The inspection-repair interval was 

observed to be higher in the early years, 

followed by reduction in the interval for 

later years. 

 Optimization was observed to be 

sensitive to crack propagation rate. 

Since in this study only one critical 

crack location was considered, the 

accuracy of the discussed framework 

can be significantly improved by 

considering multiple cracks. 

 Costs associated only with inspection 

and repair were considered in the life-

cycle cost framework. The framework 

can be improved by including costs 

pertaining to maintenance delay and 

monitoring. 

 



 10 

 

References 

1. AASHTO. (2012). AASHTO LRFD Bridge Desigin Specification. Washington, DC. 

http://doi.org/978-1-56051-523-4 

2. Connor, R., Dexter, R., & Mahmoud, H. (2005). NCHRP Synthesis 354: Inspection and 

Management of Bridges with Fracture-Critical Details. Transportation Research Board. 

3. Estes, A. C. & Frangopol, D. M. (1999). Repair optimization of highway bridges using system 

reliability approach, Journal of Structural Engineering, 125(7), 766-775. 

4. Faber, M. H. & Sorensen, J. D. (2002). Indicators for inspection and maintenance planning of 

concrete structures. Journal of Structural Safety, 24, 377-396.  

5. Kong, J. S. & Frangopol, D. M. (2003). Life-cycle reliability-based maintenance cost 

optimization of deteriorating structures with emphasis on bridges, Journal of Structural 

Engineering, 129(6), 818-828. 

6. Mahmoud, H. and Chulahwat, A., and Riveros, G. (2017) “Fatigue and Fracture Lifecycle Cost 

Assessment of a Miter Gate with Multiple Cracks”, Engineering Failure Analysis, 

doi.org/10.1016/j.engfailanal.2017.09.008. 

7. Stewart, M. G., Estes, A. C. & Frangopol, D. M. (2004). Bridge deck replacement for minimum 

expected cost under multiple reliability constraints. Journal of Structural Engineering, 130(9), 

1414-1419. 

8. Jankowiak, T., & Lodygowski, T. (2005). Identification of parameters of concrete damage 

plasticity constitutive model. Foundations of civil and environmental engineering, 6(1), 53-69‏. 

9. Mahmoud, H., & Riveros, G. (2013). Fatigue reliability of a single stiffened ship hull 

panel. Engineering Structures, 66, 89-99‏. 

10. BS-7910. (1997). Guide to methods for assessing the acceptability of flaws in metallic structures. 

BSI Standards Publication. 

11. Estes, A. C., Frangopol, D. M. & Foltz, S. (2004). Updating reliability of steel miter gates on 

locks and dams using visual inspection results. Engineering Structures, 26 (3), 319-333. 

12. Hansen, N. (2011). The CMA Evolution Strategy: A Tutorial.     

 


