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Foreword 

The Steel Bridge Design Handbook covers a full range of topics and design examples to provide bridge 

engineers with the information needed to make knowledgeable decisions regarding the selection, design, 

fabrication, and construction of steel bridges.  The Handbook has a long history, dating back to the 1970s 

in various forms and publications. The more recent editions of the Handbook were developed and 

maintained by the Federal Highway Administration (FHWA) Office of Bridges and Structures as FHWA 

Report No. FHWA-IF-12-052 published in November 2012, and FHWA Report No. FHWA-HIF-16-002 

published in December 2015.  The previous development and maintenance of the Handbook by the FHWA, 

their consultants, and their technical reviewers is gratefully appreciated and acknowledged.   

This current edition of the Handbook is maintained by the National Steel Bridge Alliance (NSBA), a 

division of the American Institute of Steel Construction (AISC).  This Handbook, published in 2021, has 

been updated and revised to be consistent with the 9th edition of the AASHTO LRFD Bridge Design 

Specifications which was released in 2020.  The updates and revisions to various chapters and design 

examples have been performed, as noted, by HDR, M.A. Grubb & Associates, Don White, Ph.D., and 

NSBA. Furthermore, the updates and revisions have been reviewed independently by Francesco Russo, 

Ph.D., P.E., Brandon Chavel, Ph.D., P.E., and NSBA. 

The Handbook consists of 19 chapters and 6 design examples. The chapters and design examples of the 

Handbook are published separately for ease of use, and available for free download at the NSBA website, 

www.aisc.org/nsba.  

The users of the Steel Bridge Design Handbook are encouraged to submit ideas and suggestions for 

enhancements that can be implemented in future editions to the NSBA and AISC at solutions@aisc.org.  

 

 

  

http://www.aisc.org/nsba
mailto:solutions@aisc.org


 

 

TECHNICAL REPORT DOCUMENTATION PAGE 

1. Title and Subtitle 

Steel Bridge Design Handbook, Appendix 

Design Example 5: Three-Span Continuous 

Horizontally Curved Composite Steel Tub-Girder 

Bridge 

2. Report Date 

February 2022 

3. Original Author(s) 

Brandon Chavel, Ph.D., P.E. (HDR) and Julie 

Rivera, P.E. (HDR) 

4. Revision Author(s) 

Michael A. Grubb, P.E (M.A. Grubb & 

Associates, LLC) 

 

5. Sponsoring Agency Name and Address 

National Steel Bridge Alliance, a division of the 

American Institute of Steel Construction 

130 E. Randolph, Suite 2000 

Chicago, IL 60601 

 

6. Revision Performing Organization Name 

and Address 

HDR, Inc. 

301 Grant Street, Suite 1700 

Pittsburgh, PA 15219 

7. Supplementary Notes 

The previous edition of this Handbook was published as FHWA-HIF-16-002 and was developed to be 

current with the 7th edition of the AASHTO LRFD Bridge Design Specifications. This edition of the 

Handbook was updated to be current with the 9th edition of the AASHTO LRFD Bridge Design 

Specifications, released in 2020. 

 

8. Abstract 

Tub girders, as closed-section structures, provide a more efficient cross-section for resisting torsion 

than I-girders, which is especially important in horizontally curved highway bridges. The increased 

torsional resistance of a closed composite steel tub girder also results in an improved lateral distribution 

of live loads. For curved bridges, warping, or flange lateral bending stresses, are lower in tub girders 

when compared to I-girders, since tub girders carry torsion primarily by means of St. Venant torsional 

shear flow around the perimeter of the closed section, whereas I-girders have low St. Venant torsional 

stiffness and carry torsion primarily by means of warping. 

 

This design example illustrates the design calculations for a curved steel tub girder bridge with a span 

arrangement of 160.0 ft – 210.0 ft – 160.0 ft, considering the strength, service, fatigue and 

constructability limit states in accordance with the AASHTO LRFD Bridge Design specifications. This 

example illustrates the flexural design of a section in positive flexure, the flexural design of a section in 

negative flexure, the shear design of the web, computation of distortional stresses, the design of a 

bottom flange longitudinal stiffener, a bolted field splice design, an internal pier diaphragm design, the 

bearing stiffener design at an interior pier, and a top flange lateral bracing member design. 

 

9. Keywords 

Steel Tub Girder Bridge, Steel Box Girder Bridge, 

LRFD, Bolted Field Splice, Top Flange Lateral 

Bracing, Box Girder Distortional Stresses 

10. AISC Publication No. 

B956-22 

  



i 
 

Steel Bridge Design Handbook 

Design Example 5: Three-Span Continuous Curved 

Composite Tub-Girder Bridge 
 

Table of Contents 

 

1.0 INTRODUCTION ................................................................................................................. 1 

2.0 OVERVIEW OF LRFD ARTICLE 6.11 ............................................................................... 4 

3.0 DESIGN PARAMETERS ..................................................................................................... 7 

4.0 GENERAL STEEL FRAMING CONSIDERATIONS ......................................................... 9 

4.1 Span Arrangement ........................................................................................................... 9 

4.2 Field Section Sizes ......................................................................................................... 11 

4.3 Bridge Cross-Section and Girder Spacing ..................................................................... 11 

4.4 Intermediate Internal and External Cross-Frames ......................................................... 12 

4.5 Support Diaphragms ...................................................................................................... 14 

4.6 Top Flange Lateral Bracing ........................................................................................... 15 

5.0 FINAL DESIGN .................................................................................................................. 18 

5.1 Limit States .................................................................................................................... 18 

5.1.1 Strength Limit State .............................................................................................. 18 

5.1.2 Service Limit State ................................................................................................ 18 

5.1.3 Fatigue and Fracture Limit State........................................................................... 19 

5.1.4 Extreme Event Limit State .................................................................................... 19 

5.1.5 Constructability ..................................................................................................... 19 

5.2 Loads .............................................................................................................................. 19 

5.2.1 Dead Load ............................................................................................................. 19 

5.2.2 Deck Placement Sequence .................................................................................... 21 

5.2.3 Live Load .............................................................................................................. 23 

5.3 Centrifugal Force Computation ..................................................................................... 23 

5.4 Load Combinations ........................................................................................................ 27 

6.0 ANALYSIS .......................................................................................................................... 31 

6.1 Three-Dimensional Finite Element Analysis ................................................................. 32 

6.1.1 Bearing Orientation and Arrangement .................................................................. 33 



ii 
 

6.1.2 Live Load Analysis ............................................................................................... 33 

6.2 Analysis Results ............................................................................................................. 34 

7.0 DESIGN ............................................................................................................................... 43 

7.1 Girder Section Proportioning ......................................................................................... 43 

7.1.1 Girder Web Depth ................................................................................................. 45 

7.1.2 Cross-section Proportions ..................................................................................... 46 

7.2 Section Properties .......................................................................................................... 48 

7.2.1 Section G2-1: Span 1 Positive Moment Section Properties.................................. 49 

7.2.1.1 Effective Width of Concrete Deck ....................................................... 50 

7.2.1.2 Elastic Section Properties: Section G2-1 ............................................. 51 

7.2.1.3 Plastic Moment Neutral Axis: Section G2-1 ........................................ 52 

7.2.2 Section G2-2: Support 2 Negative Moment Section Properties ........................... 53 

7.2.2.1 Elastic Section Properties: Section G2-2 ............................................. 54 

7.2.3 Check of Minimum Negative Flexure Concrete Deck Reinforcement (Article 

6.10.1.7) ............................................................................................................................ 57 

7.3 Girder Check: Section G2-1, Constructability (Article 6.11.3) ..................................... 58 

7.3.1 Deck Overhang Bracket Load ............................................................................... 59 

7.3.2 Flange Lateral Bending Due to Horizontal Component of Web Shear ................ 60 

7.3.3 Flange Lateral Bending Due to Curvature ............................................................ 61 

7.3.4 Top Flange Lateral Bending Amplification .......................................................... 62 

7.3.5 Flexure (Article 6.11.3.2) ...................................................................................... 63 

7.3.5.1 Top Flange............................................................................................ 64 

7.3.5.2 Bottom Flange ...................................................................................... 69 

7.3.6 Shear (Article 6.10.3.3) ......................................................................................... 70 

7.3.7 Concrete Deck (Article 6.10.3.2.4) ....................................................................... 71 

7.4 Girder Check: Section G2-1, Service Limit State (Article 6.11.4) ................................ 71 

7.4.1 Permanent Deformations (Article 6.10.4.2) .......................................................... 71 

7.4.2 Web Bend-Buckling.............................................................................................. 72 

7.5 Girder Check: Section G2-1, Fatigue and Fracture Limit State (Article 6.11.5) ........... 72 

7.5.1 Special Fatigue Requirements for Webs ............................................................... 74 

7.5.2 Fracture (Article 6.6.2) ......................................................................................... 75 



iii 
 

7.6 Girder Check: Section G2-1, Strength Limit State (Article 6.11.6) .............................. 76 

7.6.1 Flexure (Article 6.11.6.2) ...................................................................................... 76 

7.6.1.1 Top Flange Flexural Resistance in Compression ................................. 79 

7.6.1.2 Bottom Flange Flexural Resistance in Tension ................................... 81 

7.6.1.3 Concrete Deck Stresses ........................................................................ 81 

7.7 Girder Check: Section G2-2, Constructability (Article 6.11.3) ..................................... 82 

7.7.1 Flexure (Article 6.11.3.2) ...................................................................................... 82 

7.7.1.1 Top Flange............................................................................................ 84 

7.7.1.2 Bottom Flange ...................................................................................... 84 

7.7.1.3 Shear (Article 6.11.3.3) ........................................................................ 89 

7.8 Girder Check: Section G2-2, Service Limit State (Article 6.11.4) ................................ 91 

7.8.1 Permanent Deformations (Article 6.10.4.2) .......................................................... 91 

7.8.2 Web Bend-Buckling.............................................................................................. 92 

7.8.3 Concrete Deck (Article 6.10.1.7) .......................................................................... 95 

7.9 Girder Check: Section G2-2, Fatigue Limit State (Article 6.11.5) ................................ 95 

7.9.1 Cross-section Distortion Stresses .......................................................................... 96 

7.10 Girder Check: Section G2-2, Strength Limit State (Article 6.11.6) ............................ 106 

7.10.1 Flexure (Article 6.11.6.2) .................................................................................... 106 

7.10.2 Top Flange .......................................................................................................... 109 

7.10.3 Bottom Flange ..................................................................................................... 110 

7.10.3.1 Cross-section Distortion Stresses ....................................................... 117 

7.10.4 Shear (Article 6.11.6.3) ....................................................................................... 118 

7.10.4.1 Interior Panel (Article 6.10.9.3.2) ...................................................... 119 

7.11 Bottom Flange Longitudinal Stiffener ......................................................................... 121 

7.12 Internal Pier Diaphragm Design .................................................................................. 122 

7.12.1 Web Shear Check ................................................................................................ 124 

7.12.1.1 Noncomposite Shear Force ................................................................ 124 

7.12.1.2 Composite Shear Force ...................................................................... 125 

7.12.1.3 Total Factored Shear Force ................................................................ 126 

7.12.1.4 Check of Internal Diaphragm Web .................................................... 126 

7.12.2 Bearing Stiffeners ............................................................................................... 129 



iv 
 

7.12.2.1 Bearing Resistance ............................................................................. 130 

7.12.2.2 Axial Resistance ................................................................................. 131 

7.13 Top Flange Lateral Bracing Design ............................................................................. 133 

7.14 Bolted Field Splice Design .......................................................................................... 142 

7.14.1 Bolt Resistance for the Service Limit State and Constructability....................... 145 

7.14.2 Bolt Resistance for the Strength Limit State....................................................... 146 

7.14.2.1 Bolt Shear Resistance (Article 6.13.2.7) ............................................ 146 

7.14.2.2 Bearing Resistance of the Connected Material (Article 6.13.2.9) ..... 147 

7.14.3 Flange Splice Design .......................................................................................... 148 

7.14.3.1 General ............................................................................................... 148 

7.14.3.2 Flange Splice Bolts............................................................................. 149 

7.14.3.3 Moment Resistance ............................................................................ 151 

7.14.3.4 Flange Splice Plates ........................................................................... 152 

7.14.3.5 Bearing Resistance Check .................................................................. 164 

7.14.3.6 Slip Resistance Check ........................................................................ 165 

7.14.3.7 Article 6.10.1.8 – Tension Flanges with Holes .................................. 168 

7.14.4 Web Splice Design .............................................................................................. 169 

7.14.4.1 General ............................................................................................... 169 

7.14.4.2 Web Splice Bolts ................................................................................ 169 

7.14.4.3 Web Splice Plates ............................................................................... 172 

7.14.4.4 Bearing Resistance ............................................................................. 177 

7.14.4.5 Slip Resistance ................................................................................... 178 

8.0 SUMMARY OF DESIGN CHECKS AND PERFORMANCE RATIOS ......................... 180 

9.0 REFERENCES .................................................................................................................. 182 

 



v 
 

LIST OF FIGURES 

 
Figure 1  Framing Plan of the Example Tub Girder Bridge (all lengths shown are taken along the 

centerline of the bridge) ................................................................................................................ 10 

Figure 2  Cross Section of the Tub Girder Bridge [4] .................................................................. 12 

Figure 3  Plan View of a Warren-type truss lateral bracing system ............................................. 16 

Figure 4  Plan View of a Pratt-type truss lateral bracing system .................................................. 17 

Figure 5  Assumed Deck Placement Sequence ............................................................................. 22 

Figure 6  Vehicular Centrifugal Force Wheel-Load Reactions .................................................... 24 

Figure 7  Effects of Superelevation of the Wheel-Load Reactions .............................................. 26 

Figure 8  Unit Wheel Load Factors due to Combined Effects of Centrifugal Force and 

Superelevation............................................................................................................................... 27 

Figure 9  Girder G2 elevation ....................................................................................................... 44 

Figure 10  Tub-Girder Cross–Section at Section G2-1 ................................................................. 50 

Figure 11  Moment of Inertia of an Inclined Web ........................................................................ 51 

Figure 12  Tub-Girder Cross–Section at Section G2-2 ................................................................. 54 

Figure 13  Deck Overhang Bracket Loading ................................................................................ 59 

Figure 14  Effective Width of Web Plate, do, Acting with the Transverse Stiffener .................... 99 

Figure 15  Concentrated Torque at Mid-panel on Continuous Beam - Distortional Bending Stress 

at Load (DGBGB Figure A6 [25]) .............................................................................................. 104 

Figure 16  Concentrated Torque at Mid-panel on Continuous Beam – Normal Distortional 

Warping Stress at Mid-panel (DGBGB Table A9 [25]) ............................................................. 106 

Figure 17  Internal Pier Diaphragm and Bearing Locations ....................................................... 123 

Figure 18  Computation of the Shear in the Internal Pier Diaphragm due to St. Venant Torsion 

and Tub Girder Flexure ............................................................................................................... 125 

Figure 19  Bolt Pattern for the Top Flange Field Splices ........................................................... 143 

Figure 20  Bolt Pattern for the Bottom Flange Field Splice, shown inside the tub girder looking 

down at the bottom flange ........................................................................................................... 143 

Figure 21  Bolt Pattern for the Web Field Splice, dimensions shown along the web slope ....... 144 

Figure 22  Assumed Block Shear Failure Planes for Top Flange Splice Plates ......................... 156 

Figure 23  Assumed Block Shear Failure Planes for Critical Top Flange at the Splice ............. 158 



vi 
 

Figure 24  Assumed Block Shear Failure Planes for Bottom Flange Splice Plates .................... 161 

Figure 25  Assumed  Block Shear Failure Planes for the Web Splice Plates ............................. 175 

 



vii 
 

LIST OF TABLES 

 
Table 1  Girder G1 Unfactored Shears by Tenth Point ................................................................. 36 

Table 2  Girder G2 Unfactored Shears by Tenth Point ................................................................. 37 

Table 3  Girder G1 Unfactored Major-Axis Bending Moments by Tenth Point .......................... 38 

Table 4  Girder G2 Unfactored Major-Axis Bending Moments by Tenth Point .......................... 39 

Table 5  Girder G1 Unfactored Torques by Tenth Point .............................................................. 40 

Table 6  Girder G2 Unfactored Torques by Tenth Point .............................................................. 41 

Table 7  Section G2-1 Unfactored Major-Axis Bending Moments and Torques ......................... 42 

Table 8  Section G2-1: Steel Only Section Properties .................................................................. 51 

Table 9  Section G2-1: 3n=22.68 Composite Section Properties ................................................. 52 

Table 10  Section G2-1: n=7.56 Composite Section Properties ................................................... 52 

Table 11  Section G2-2: Steel Only Section Properties ................................................................ 54 

Table 12  Section G2-2: 3n=22.68 Composite Section Properties with Transformed Deck ........ 55 

Table 13  Section G2-2: n=7.56 Composite Section Properties with Transformed Deck ............ 55 

Table 14  Section G2-2: 3n Composite Section Properties with Longitudinal Steel Reinforcement

....................................................................................................................................................... 56 

Table 15  Section G2-2: n Composite Section Properties with Longitudinal Steel Reinforcement

....................................................................................................................................................... 56 

Table 16  Unfactored Analysis Results for the Design of Field Splice #1 on Girder G2 ........... 144 

 

 

  





 

1 

 

1.0 INTRODUCTION 

 

Steel boxes may either be tub sections or closed-box sections, with either inclined or vertical webs. 

Most composite box girders built in the U.S. are tub girders having a solid bottom flange, two solid 

webs, and an open top with two separate top flanges on each web connected with top lateral bracing 

to form a pseudo-box to resist the torsion prior to hardening of the concrete deck. Narrow 

noncomposite closed steel boxes are often employed as straddle beams to provide support and 

necessary underclearance.  

 

Tub girders are sometimes selected over I-girders where aesthetic considerations are a significant 

factor because of their pleasing appearance offering a smooth, uninterrupted, cross section. 

Bracing, web stiffeners, utilities, and other structural and nonstructural components are typically 

hidden from view within the steel tub girder, leading to a clean, uncluttered appearance. 

Additionally, steel tub girder bridges offer some distinct advantages over other superstructure 

types in terms of span range, stiffness, durability and future maintenance.   

 

Steel tub girders can potentially be more economical than steel plate I-girders in long-span 

applications due to the increased bending strength offered by their wide bottom flanges, and 

because they require less field work due to the handling of fewer pieces. Steel tub girders can also 

be suitable in short span ranges as well, especially when aesthetic preferences or constructability 

considerations preclude the use of other structure types. However, tub girders should be no less 

than 5 feet deep to allow access for inspection, thus limiting the efficiency of conventional steel 

tub girders in short-span applications. 

 

Tub girders, as closed-section structures, provide a more efficient cross section for resisting torsion 

than I-girders. The increased torsional resistance of a closed composite steel tub girder also results 

in an improved lateral distribution of live loads. Tub girders offer some distinct advantages over 

I-girders for horizontally curved bridges since the torsional stiffness of a tub girder is much larger 

than the torsional stiffness of an I-girder. The high torsional resistance of individual tub-girder 

sections permits the tub girder to carry more of the load applied to it rather than shifting the load 

to the adjacent tub girder with greater radius, as is the case for torsionally weaker I-girders. The 

tendency to share gravity loads more uniformly reduces the relatively large deflection of the girder 

on the outside of the curve. Also less material needs to be added to tub girders to resist the torsional 

effects. Torsion in tub sections is resisted mainly by St. Venant torsional shear flow, rather than 

by warping torsion (which is the primary torsional response mechanism in I-shaped girders). Thus, 

warping shear and normal stresses due to warping torsion are typically quite small and Article 

C6.11.1.1 recommends that these stresses be neglected.. However, warping associated with 

distortion of the cross-section should be considered when evaluating the fatigue performance of 

tub girders in certain cases, as discussed further in Section 7.9.1 of this design example. 

 

The exterior surfaces of tub girders are less susceptible to corrosion since there are fewer details 

for debris to accumulate, in comparison to an I-girder structure. For tub girders, stiffeners and most 

diaphragms are located within the tub girder and are protected from the environment. Additionally, 

the interior surface of the tub girder is protected from the environment, further reducing the 

likelihood of deterioration. Tub girder bridges tend to be easier to inspect and maintain since much 

of the inspection can occur from inside the tub girder, with the tub serving as a protected walkway. 
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Erection costs for tub girders may be lower than that of I-girders because the erection of a single 

tub girder, in a single lift, is equivalent to the placement and connection of two I-girders. However, 

a single tub girder will typically require the use of a larger crane than an I-girder of the same 

length. Tub girders are also inherently more stable during erection, due to the presence of lateral 

bracing between the top flanges. Overall, the erection of a tub girder bridge may be completed in 

less time than that of an I-girder counterpart because there are fewer pieces to erect, a fewer number 

of external cross-frames or diaphragms to be placed in the field, and subsequently fewer field 

connections to be made. This is a significant factor to consider when available time for bridge 

erection is limited by schedule or site access. 

 

In many instances, these advantages are not well reflected in engineering cost estimates based 

solely on material quantity comparisons. Consequently, tub girder bridges have historically been 

considered more economical than I-girder bridges only if their use resulted in a reduction in the 

total number of webs in cross section, particularly for straight bridges. However, if regional 

fabricators have the experience and equipment to produce tub girders efficiently, the 

competitiveness of tub girders in a particular application can be enhanced. Therefore, the 

comparative economies of I- and tub girder systems should be evaluated on a case-by-case basis, 

and the comparisons should reflect the appropriate costs of shipping, erection, and future 

inspection and maintenance, as well as fabrication. A more in-depth discussion on the relative 

advantages of steel tub girders and on steel tub girder design and construction may be found in the 

NSBA Publication Practical Steel Tub Girder Design [1], which is available on the NSBA website 

(www.aisc.org/nsba).   

 

Furthermore, designers should not feel limited by an overly strict interpretation of the AASHTO 

design provisions for tub girders in some cases. For example, there are currently cross-sectional 

restrictions placed on the use of approximate live load distribution factors for straight tub girders 

in the AASHTO LRFD Bridge Design Specifications [2], referred to hereafter as the AASHTO 

LRFD BDS. Limiting the proportions of tub girder cross-sections solely to allow for the use of 

these approximate live load distribution factors and more simplified analysis methods may reduce 

the efficiency and competitiveness of a tub-girder cross-section. However, these cross-section 

proportion restrictions do not apply when a refined analysis is employed; thus the use of a refined 

analysis method allows the designer to explore additional, and perhaps more economical, design 

options.   

 

This design example demonstrates the design of a horizontally curved three-span continuous 

composite tub girder bridge with a span arrangement of 160′-0″ – 210′-0″ – 160′-0″. This example 

illustrates the flexural design of a section in positive flexure, the flexural design of a section in 

negative flexure, computation of distortional stresses, the shear design of the web, the design of 

the bottom flange longitudinal stiffener, the design of an internal diaphragm, the design of a top 

flange lateral bracing member, the design of a bolted field splice, as well as other design and 

analysis related topics.   

 

The bridge cross-section consists of two trapezoidal tub girders with the top flanges of each tub 

spaced at 10′-0″ on centers, 12′-6″ between the centerline of adjacent top tub flanges, and 4′-0″ 

overhangs for a deck width of 40′-6″ out-to-out. For the sake of brevity, only the Strength I, Service 
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II, and Fatigue load combinations are examined for dead- and live-load force effects in this design 

example. The effects of wind loads, design permit loads, and other loads (braking forces, seismic 

forces, etc.) are not considered. It is recommended that the reader refer to NSBA’s Steel Bridge 

Design Handbook: Example 1: Three-Span Continuous Straight Composite Steel I-Girder Bridge 

[3] for information regarding additional load combination cases and design for wind-load force 

effects both during construction and in the final constructed condition. 

 

The example calculations provided herein comply with the provisions of the current AASHTO 

LRFD BDS, but the analysis described herein was not performed as part of this design example. 

The analysis results and general superstructure details contained within this design example were 

taken from the design example published as part of the National Cooperative Highway Research 

Program (NCHRP) Project 12-52 published in 2005, titled “AASHTO-LRFD Design Example: 

Horizontally Curved Steel Box Girder Bridge, Final Report” [4]. 
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2.0 OVERVIEW OF LRFD ARTICLE 6.11 

 

The design of composite tub girder flexural members is contained within Article 6.11 of the 9th 

Edition of the AASHTO LRFD BDS. The provisions of Article 6.11 are organized to correspond to 

the general flow of the calculations necessary for the design of tub girder flexural members. Most 

of the provisions are written such that they are largely self-contained, however to avoid repetition, 

some portions of Article 6.11 refer to provisions contained in Article 6.10 for the design of I-

section flexural members when applicable (particularly those pertaining to tub girder top flange 

design, which is fundamentally similar to I-girder design). The provisions of Article 6.11 are 

organized as follows: 

 

6.11.1 General 

6.11.2 Cross-Section Proportion Limits 

6.11.3 Constructability 

6.11.4 Service Limit State 

6.11.5 Fatigue and Fracture Limit State 

6.11.6 Strength Limit State 

6.11.7 Flexural Resistance - Sections in Positive Flexure 

6.11.8 Flexural Resistance - Sections in Negative Flexure  

6.11.9 Shear Resistance 

6.11.10 Shear Connectors 

6.11.11 Stiffeners 

 

It should be noted that Article 6.11, and specifically Article 6.11.6.2, does not permit the use of 

Appendices A6 and B6 because the applicability of these provisions to tub girders has not been 

demonstrated; however, Appendices C6 and D6 are generally applicable. Flow charts for flexural 

design of steel girders according to the LRFD provisions, along with an outline giving the basic 

steps for steel-bridge superstructure design, are provided in Appendix C6. Appendix C6 may also 

prove to be a useful reference for tub girder design. Fundamental calculations for flexural members 

are contained within Appendix D6. 

 

Example calculations demonstrating the provisions of Article 6.10, pertaining to straight and 

horizontally curved I-girder design and straight rolled-beam design, are provided in NSBA’s Steel 

Bridge Design Handbook: Examples 1, 2A, 2B and 3. [3, 5-7] This design example will 

demonstrate the application of the provisions of Article 6.11 of the AASHTO LRFD BDS as they 

relate to horizontally curved tub girder design. NSBA’s Steel Bridge Design Handbook: Example 

4: Three-Span Continuous Straight Composite Steel Tub-Girder Bridge [8] demonstrates the 

application of these provisions to a straight tub girder design. 

 

The provisions of Articles 6.10 and 6.11 provide a unified approach for consideration of major-

axis bending and flange lateral bending for both straight and horizontally curved bridges. Bottom 

flange lateral bending stresses in tub girders tend to be quite small since (as explained earlier) 

torsion in a tub girder is carried primarily by St. Venant torsional shear flow, rather than by 

warping torsion. Top flange lateral bending is caused by the outward thrust induced by the 

inclination of the webs, by wind loads, by eccentric loading of temporary support brackets for deck 

overhangs, curvature, and from loads introduced by the lateral bracing system. 



 

5 

 

 

In addition to providing adequate strength, the constructability provisions of Article 6.11.3 verify 

that nominal yielding does not occur and that there is no reliance on post-buckling resistance for 

main load-carrying members during critical stages of construction. The AASHTO LRFD BDS 

specifies that for critical stages of construction, both compression and tension flanges must be 

investigated, and the effects of top flange lateral bending should be considered. For noncomposite 

top flanges in compression, constructability design checks verify that the maximum combined 

stresses in the flange will not exceed the specified minimum yield strength, the compression 

flanges have sufficient strength to resist lateral torsional and flange local buckling, and that 

theoretical web bend-buckling and web shear buckling will not occur during construction. For 

noncomposite bottom flanges in compression during critical stages of construction, local buckling 

of the flange is checked in addition to the web bend-buckling and shear buckling resistance. For 

noncomposite top and bottom flanges in tension, constructability design checks verify that the 

maximum combined stress will not exceed the specified minimum yield strength of the flanges 

during construction. At the strength limit state, the top flanges are continuously braced by the 

hardened concrete deck and flange lateral bending stresses along with lateral torsional and flange 

local buckling of the flanges is not a concern. Also, due to the inherent torsional stiffness and 

strength of the closed section represented by the tub girder with the hardened composite concrete 

deck, global lateral torsional buckling of the composite tub girder is also not a concern.  

 

One additional requirement specified for tub-girder sections relates to the consideration of 

longitudinal warping and transverse bending stresses due to cross-section distortion. When tub 

girders are subjected to torsion, their cross-sections become distorted, resulting in secondary 

bending stresses. Therefore, as specified in Article 6.11.5, longitudinal warping stresses and 

transverse bending stresses due to cross-section distortion are to be considered for: 

 

• Single tub girders in straight or horizontally curved bridges; 

• Multiple tub girders in straight bridges that do not satisfy requirements of Article 6.11.2.3; 

• Multiple tub girders in horizontally curved bridges; or 

• Any single or multiple tub girder with a bottom flange that is not fully effective according 

to the provisions of Article 6.11.1.1. 

 

In accordance with Article 6.11.1.1, transverse bending stresses due to cross section distortion are 

to be considered for fatigue as specified in Article 6.11.5, and at the strength limit state.  Transverse 

bending stresses at the strength limit state are not to exceed 20.0 ksi. Longitudinal warping stresses 

due to cross-section distortion are to be considered for fatigue as specified in Article 6.11.5, but 

may be ignored at the strength limit state. Article C6.11.1.1 allows the use of the beam-on-elastic-

foundation (BEF) analogy developed by Wright and Abdel-Samad [9] for determining the 

transverse bending stresses and the longitudinal warping stresses due to cross-section distortion. 

The application of the BEF analogy for the calculation of these stresses is demonstrated in Section 

7.9.1 of this design example. 

 

Even though the longitudinal warping stresses and transverse stresses due to cross-section 

distortion are generally small and may often be neglected, there are cases where such an 

assumption may not be warranted. For example, these stresses may be of particular concern in 
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boxes that are subjected to large torques; e.g., single box sections, sharply curved boxes, and boxes 

resting on skewed supports.  
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3.0 DESIGN PARAMETERS 

 

The following data apply to this design example: 

 

Specifications: 2020 AASHTO LRFD Bridge Design Specifications, Customary U.S. 

Units, Ninth Edition  

Structural Steel: ASTM A709, Grade 50 with Fy = 50 ksi, and Fu = 65  ksi 

Concrete: f’c = 4.0 ksi,  = 150 pcf 

Slab Reinforcing Steel: ASTM A615, Grade 60 with Fy = 60 ksi 

 

The bridge has spans of 160′-0″ – 210′-0″ – 160′-0″ measured along the centerline of the bridge.  

Span lengths are arranged to give relatively equal positive dead load moments in the end spans 

and center span. The radius of the bridge is 700 ft at the centerline of the bridge.   

 

The out-to-out deck width is 40.5 feet, and the bridge is to be designed for three 12-foot-wide 

traffic lanes. The roadway is superelevated at 5 percent. All supports are radial to the roadway.  

The framing consists of two trapezoidal tub girders with the top of the webs in each tub spaced 10 

feet apart at the top of the tub and with a deck span of 12.5 feet between the top of the interior 

webs of the two adjacent tubs. 

 

Structural steel having a specified minimum yield stress of 50 ksi is used throughout the bridge.  

The deck is a conventional cast-in-place concrete deck, with a specified minimum 28-day 

compressive strength of 4,000 psi. The structural deck thickness is 9.5 inches, and there is no 

integral wearing surface assumed. The deck haunch is 4.0 inches thick, measured from the top of 

the web to the bottom of the deck, and is constant throughout the structure. The width of the haunch 

is assumed to be 20.0 inches for weight computations.   

 

Shear connectors are provided along the entire length of each top flange; therefore, the tub girders 

in this example are composite throughout the entire span, including in regions of negative flexure 

as required in Article 6.11.10. The shear connectors are 7/8 inch diameter by 6 inches in length. 

All tub girders (whether straight or curved) are subject to torsional loading, and the use of shear 

connectors along the entire length of a tub girder bridge (in both the positive and negative flexure 

regions) is required to provide an adequate and continuous load path for the St. Venant torsional 

shear flow along the entire length of the girder. 

 

Permanent steel stay-in-place deck forms are used between the girders; the forms are assumed to 

weigh 15.0 psf since it is assumed concrete will be in the flutes of the deck forms. In this example, 

the steel stay-in-place deck forms are used between the top flanges of individual tub girders and 

between the top flanges of adjacent girders. Sequential placement of the concrete deck is 

considered in this design example. 

 

An allowance for a future wearing surface of 30.0 psf is incorporated in the design. Parapets are 

each assumed to weigh 495 lbs/ft. 

 

The bridge is designed for HL-93 live load, in accordance with Article 3.6.1.2. Multiple presence 

factors are accounted for in the analysis, as specified in Article 3.6.1.1.2. Live load for fatigue is 



 

8 

 

taken as defined in Article 3.6.1.4. The bridge is designed for a 75-year fatigue life, and the 

projected single lane Average Daily Truck Traffic (ADTT)SL in one direction is assumed to be 

1,000 trucks per day. 

 

The bridge site is assumed to be located in Seismic Zone 1, and so seismic effects are not 

considered in this design example. 

 

Composite tub girder bridges fabricated using uncoated weathering steel have performed 

successfully without any interior corrosion protection. However, the interior of tub girders should 

always be coated in a light color to aid visibility during girder inspection. Without Owner-agency 

direction towards a specific coating and preparation, the girder interior should receive a light brush 

blast and be painted with a white or light-colored coating capable of telegraphing cracks in the 

steel section. Specified interior coatings should be tolerant of minimal surface preparation. At the 

Engineer’s discretion, for painted tub girders, an allowance may be made for the weight of the 

paint as discussed in Article C6.11.3.1. 

 

Provisions for adequate draining and ventilation of the interior of the tub are essential. As 

suggested in the NSBA Publication Practical Steel Tub Girder Design [1], bottom flange drain 

holes should be 1 ½ inches in diameter and spaced along the low side of the bottom flange every 

50 feet, and be placed 4 inches away from the web plate. Access holes must be provided to allow 

for periodic structural inspection of the interior of the tub. The access holes should provide easy 

access for authorized inspectors. Solid doors can be used to close the access holes, however they 

should be light in weight, and they should be hinged and locked, but not bolted. Wire-mesh screens 

should always be place over copes and clips in end plates, and over the bottom flange drain holes 

to prevent entry of wildlife and insects. Wire mesh should be 10 gage to withstand welding and 

blasting and have a weave of approximately ½ inch by ½ inch.   

 

Additional detailing guidelines can be found on the NSBA website (www.aisc.org/nsba), with 

particular attention given to document AASHTO/NSBA Steel Bridge Collaboration document 

G1.4, Guidelines for Design Details [10].  Four other detailing references offering guidance 

include the NSBA Publication Practical Steel Tub Girder Design [1], the Texas Steel Quality 

Council’s Preferred Practices for Steel Bridge Design, Fabrication, and Erection [11], the Mid-

Atlantic States Structural Committee for Economic Fabrication (SCEF) Standards, and the 

AASHTO/NSBA Steel Bridge Collaboration document G12.1, Guidelines to Design for 

Constructability and Fabrication [12]. 
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4.0 GENERAL STEEL FRAMING CONSIDERATIONS 

 

4.1 Span Arrangement 

 

Often, site-specific features will influence the span arrangement required. Careful consideration 

of the layout of the steel framing is an important part of the design process and involves the 

investigation of alternative span arrangements based on the superstructure and substructure costs 

to arrive at the most economical solution. In the absence of site constraints, choosing a balanced 

span arrangement for continuous steel bridges (end spans approximately 80% of the length of the 

center spans) will typically provide an efficient design. The span arrangement for this example 

bridge has spans of 160′-0″ – 210′-0″ – 160′-0″. Refer NSBA’s Steel Bridge Design Handbook: 

Example 1: Three-Span Continuous Straight Composite Steel I-Girder Bridge [3] for further 

discussion on span arrangement considerations. The framing plan of the bridge for this example is 

shown in Figure 1. 
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Figure 1  Framing Plan of the Example Tub Girder Bridge (all lengths shown are taken 

along the centerline of the bridge) 
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4.2 Field Section Sizes 

 

The lengths of field sections are generally dictated by shipping (weight and length) restrictions.  

Generally, the weight of a single shipping piece is restricted to 200,000 lbs, while the piece length 

is limited to a maximum of 140 feet, with an ideal piece length of 120 feet. However, shipping 

requirements are typically dictated by state or local authorities, in which additional restrictions 

may be placed on piece weight and length. Handling issues during erection and in the fabrication 

shop also need to be considered in the determination of field section lengths, as they may govern 

the length of field sections. Therefore, the Engineer should consult with contractors and fabricators 

regarding any specific restrictions that might influence the field section lengths.   

 

Field section lengths should also be determined with consideration given to the number of field 

splices required, as well as the locations of the field splices. It is desirable to locate field splices as 

close as possible to dead load inflection points, so as to reduce the forces that must be carried by 

the field splice. Field splices located in higher moment regions can become quite large, with cost 

increasing proportionally to their size. The Engineer should determine an economical solution for 

the given span arrangement. For complex and longer span bridges, the fabricator’s input can be 

helpful in reaching an economical solution. 

 

The final girder field section lengths are shown on the framing plan in Figure 1. The longest field 

section is the field section of Girder G2 over the pier, and has a length of approximately 116.75 

feet. This field section is also the heaviest field section, with a total approximate weight of 99,000 

pounds (including internal cross-frames, top flange lateral bracing, and other steel details).    

 

In curved girder bridges, the Engineer must also consider the girder sweep and the subsequent total 

width when determining the lengths of the field sections. The curvature combined with the girder 

length can cause the field section to be too wide to transport, depending on shipping routes and 

local requirements. In the case of the field section of Girder G2 over the pier, the total width of the 

tub girder including girder sweep and the width of the top flanges is approximately 13.90 feet. 

 

4.3 Bridge Cross-Section and Girder Spacing 

 

When developing the bridge cross-section, the designer will evaluate the number of girder lines 

required, relative to the overall cost. Specifically, the total cost of the superstructure is a function 

of steel quantity, details and erection costs. Developing an efficient bridge cross-section should 

also consider the provision of an efficient deck design, which is generally influenced by girder 

spacing and overhang dimensions. Specifically, with the exception of an empirical deck design, 

girder spacing significantly affects the design moments in the deck slab. . Larger deck overhangs 

result in a greater load on the exterior web of the tub girder. Larger overhangs will increase the 

bending moment in the deck, caused by the cantilever action of the overhang, resulting in 

additional deck slab reinforcing for the overhang region of the deck.   

 

In addition, wider deck spans between top flanges can become problematic for several reasons.  

Some owners have economical deck detail standards for cast-in-place decks that may not be suited, 

or even permitted, for wider deck spans. At the same time, wider deck spans are progressively 

more difficult to form and construct.  
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Special attention should be paid to the design of decks for steel tub girder bridges in the area near 

the girder top flanges between adjacent girders. The inherent torsional stiffness of tub girders can 

produce a situation where the deck is subjected to a racking effect when there is differential vertical 

displacement between adjacent girders. This phenomenon is illustrated in Figure C9.7.2.4-1 of the 

AASHTO LRFD BDS [2]. This effect is not directly addressed in the empirical deck design method 

(as noted in the AASHTO LRFD BDS Commentary C9.7.4.2). When the traditional deck design 

method is used, the effects of this phenomenon should be addressed either by approximate 

calculation methods (when a line girder analysis method is being used) or by evaluating deck 

stresses (when a refined analysis model is being used). 

 

As shown in Figure 2, the example bridge cross-section consists of two trapezoidal tub girders 

with top flanges spaced at 10.0 feet within each tub girder, 12.5 feet between the centerline of 

adjacent top flanges, with 4.0 foot-wide deck overhangs, and an out-to-out deck width of 40.5 feet. 

The 37.5 feet roadway width can accommodate up to three 12-foot-wide design traffic lanes. The 

total thickness of the cast-in-place concrete deck is 9.5 inches with no integral wearing surface. 

The concrete deck haunch is 4.0 inches deep measured from the top of the web to the bottom of 

the deck.   

 

 
Figure 2  Cross Section of the Tub Girder Bridge [4] 

 

4.4 Intermediate Internal and External Cross-Frames 

 

Internal intermediate cross-frames are provided in tub girders to control cross-sectional distortion. 

Cross-sectional distortion results due to the St. Venant torsion shear flow changing direction at the 

corners of the tub. Cross-sectional distortion introduces additional stresses in the tub girder and, 

therefore, should be minimized. The distortion stresses basically occur because the section is not 

perfectly round. The shear flow must change direction at the corners, which tends to distort the 

cross-section. Adequate internal cross-bracing usually controls the magnitude of these stresses in 
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tub girders of typical proportion such that they are not critical to the ultimate resistance of the tub 

section at the strength limit state. As a minimum, internal cross-frames should be placed at points 

of maximum moment within a span and at points adjacent to field splices in straight bridges. 

Spacing of internal diaphragms, considered during development of the framing plan, should be 

influenced by factors such as the angle and length of the lateral bracing members.   

 

Most internal cross-frames in modern tub girder bridges are K-frames, often without a bottom 

strut, which allow for better access during construction and inspection. Slenderness requirements 

(KL/r) generally govern the design of cross-frame members, however handling and strength 

requirements should always be considered. When refined analysis methods are used and the cross-

frame members are included in the structural model to determine force effects, the cross-frame 

members are to be designed for the calculated force effects. Consideration should be given to the 

cross-frame member forces during construction. When simplified analysis methods are used, such 

cross-frame forces due to dead and live loads are typically difficult to calculate. Therefore, the 

cross-frame members should at least be designed to transfer wind loads, carry any construction 

loads due to deck overhang brackets, control tub girder cross- section distortion, and satisfy 

appropriate slenderness requirements.   

 

External intermediate cross-frames may be incorporated to control the differential displacements 

and rotations between individual tub girders during deck placement. In a finished bridge, when the 

tub girders are fully closed and the concrete deck effectively attaches the girders together, twist 

rotation is expected to be small and the contribution of the external cross-frames is typically less 

significant.  However, during construction the rotational rigidity of the tub girder is not nearly as 

large and, since the two top flanges of a single tub girder are spaced apart but rotate together, the 

resulting differential deflections may be large even with a small girder rotation. Helwig et al. [13] 

present an approximate method for estimating these differential deflections that can be very helpful 

in evaluating the possible need for external intermediate cross-frames early in the design process.  

a 

External intermediate cross-frames typically utilize a K-frame configuration, with the depth 

closely matching the girder depth for efficiency and simplification of supporting details. Solid web 

(plate girder) diaphragms have been successfully used as well. At locations of external 

intermediate cross-frames, there should be bracing inside the tub girder to receive the forces of the 

external bracing. In some cases, for aesthetic reasons, it may be desirable to remove the external 

intermediate cross-frames after the deck has hardened.  However, extreme care should be taken in 

evaluating the effects that the removal of external intermediate cross-frames has on the structure. 

The NSBA Publication Practical Steel Tub Girder Design [1] offers further discussion on this 

topic. 

 

Based on the preceding considerations, the internal cross-frame spacings shown on the framing 

plan in Figure 1 were chosen for this example. The tub girders are braced internally at intermediate 

locations with K-type cross-frames, where the diagonals intersect the top strut at the top flange 

level. The internal cross-frames are uniformly spaced in the end span and center span field sections. 

Internal cross-frame spacing in the center span positive flexure region is 15 feet. The top struts, 

both the individual struts and the ones that are part of internal cross-frames, also serve as part of 

the top flange lateral bracing system. Article C6.11.3.2 allows top lateral bracing attached to the 

flanges at points where only struts exist between the flanges to be considered as brace points at the 
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discretion of the Engineer. In the case of this design example, which features a full-length top 

flange lateral bracing system, it is reasonable to consider both the struts with internal cross-frames 

and the alternating struts without internal cross-frames as brace points for the top flanges. 

 

The design of the internal cross-frame members is not shown in this example. Internal cross-frames 

were modeled as truss members in the three-dimensional analysis, with a cross-sectional area of 

5.0 square inches. There are no intermediate external cross-frames provided between the tub 

girders in this design example as the differential rotations and rotations between the individual tub 

girders during the deck placement were not anticipated to be significant in this case. 

 

4.5 Support Diaphragms  

 

Internal diaphragms at points of support are typically full-depth plates with a top flange. These 

diaphragms are subjected to bending moments which result from the shear forces in the inclined 

girder webs. If a single bearing is employed at the support, and the bearing sole plate does not span 

the full width of the girder bottom flange, bending of the internal diaphragm over the support will 

result, causing bending stresses in the top flange of the diaphragm and the bottom flange of the tub 

girder. Additionally, a torsional moment reaction in the tub girder at the support will induce a shear 

flow along the circumference of the internal diaphragm. To provide the necessary force transfer 

between the tub girder and the internal diaphragms, the internal diaphragms should be connected 

to the web and top flanges of the tub girder.   

 

Inspection access through the internal diaphragms at interior supports must be provided with 

access holes at least 18 inches wide and 24 inches high; however, if feasible, a larger hole at least 

36.0 in. deep is preferable. In addition to restraining distortion of the box section, the internal 

diaphragms at supports also transfer load from the girder webs to the bearing(s). If a single centered 

bearing is used, the diaphragm must be stout enough to resist the reaction and transfer the load 

around any access hole. Bearing stiffeners are usually attached to the diaphragms. If a single 

centered bearing is employed, two stiffeners are generally used. A bearing stiffener on each side 

of the access hole generally removes the shear from the diaphragm before it is engaged by the hole.  

Torsion generally causes a different magnitude of shear in the webs of the box on the two sides of 

the diaphragm. Reinforcement around the hole may be required, particularly if the access hole 

requires a large portion of the diaphragm or if a single bearing is located under the diaphragm.  

Auxiliary stiffeners on the diaphragm or webs may be employed to spread out the reaction. Sample 

design calculations for an internal diaphragm are provided in Section 7.2. 

 

As discussed in Article C6.7.4.3, external plate diaphragms with aspect ratios, or ratios of length 

to depth, less than 4.0 and internal plate diaphragms act as deep beams and should be evaluated by 

considering principal stresses rather than by simple beam theory.  Fatigue-sensitive details on these 

diaphragms and at the connection of the diaphragms to the flanges should be investigated by 

considering the principal tensile stresses. 

 

Similar to internal support diaphragms, external support diaphragms are typically full-depth plate 

sections, but with top and bottom flanges. As acknowledged in the NSBA publication Practical 

Steel Tub Girder Design [1], the behavior of an external diaphragm at a point of support is highly 

dependent on the bearing arrangement at that location. If dual bearings used at each girder 
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sufficiently prevent transverse rotation, external diaphragms at the point of support should 

theoretically be stress free. The force couple behavior of a dual bearing system resists the torsion 

that would otherwise be resisted by the external diaphragm and, in turn, minimizes the bending 

moments applied to the external diaphragm. 

 

If a single bearing under each tub girder is employed, torsional moments must be resisted by the 

external diaphragm through vertical bending. In a single bearing arrangement, the internal 

diaphragms of adjacent girders function with the external diaphragms to form a system (or beam) 

which resists the girder torsional moments. The total torque is resisted by differential reactions at 

the bearings of adjacent girders. The diaphragms then are subjected to bending and shear forces. 

Torsional moments resisted by the external diaphragm often require the use of a moment 

connection to the tub girder in which the flanges and webs of the external diaphragm are connected. 

The largest torsional moment will typically occur during the construction stage and can be quite 

large, particularly in horizontally curved structures. Torsional moments in straight bridges are 

typically smaller but should still be considered in the design. 

 

In accordance with Article 6.7.4.3, full-depth internal and external diaphragms are provided at the 

support lines in this design example. The web plates for the internal and external diaphragms in 

the three-dimensional analysis are assumed to have a thickness of 0.5 inches. The external 

diaphragm top and bottom flanges are assumed to have an area of 8.0 square inches for each flange. 

 

4.6 Top Flange Lateral Bracing 

 

Lateral bracing between common top flanges of a tub girder is required to provide proper shear 

flow in the individual tub girders. Without lateral bracing, the section acts as an open section and 

is much less stable under torsional loading. The bracing acts to enhance the global lateral torsional 

buckling stability of the section. Top lateral bracing raises the shear center to the inside of the tub 

section resulting in a pseudo-box section and significantly increasing the torsional stiffness. A 

single tub girder with a properly designed top flange lateral bracing system has substantially 

greater stability than an equivalent pair of I-shaped girders without lateral bracing, even if the pair 

of I-shaped girders has the same net major-axis bending section modulus as the single tub girder. 

 

In accordance with Article 6.7.5.3, for horizontally curved tub girders, a full-length lateral bracing 

system between common flanges of individual tub sections is to be provided, and the stability of 

compression flanges between panel points of the lateral bracing system is to be investigated during 

the deck placement. Generally, lateral bracing will not be required between adjacent tub girders. 

A full-length lateral bracing system is particularly important when the torques on the noncomposite 

section are large; e.g., in tub-section members on which the deck weight is applied 

unsymmetrically, or in members resting on skewed supports. A full-length lateral bracing system 

also helps to limit distortions that may result from temperature changes occurring prior to deck 

placement, and to resist the torsion and twist resulting from any eccentric loads that may act on 

the steel section during construction, including the effects of deck overhang brackets.   

 

Top lateral bracing is to be designed to resist shear flow in the pseudo-box section due to factored 

loads before the concrete deck has hardened or is made composite. Forces in the bracing due to 

flexure of the tub girder should also be considered during construction based on the Engineer’s 
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assumed construction sequence. The top lateral bracing member forces can be determined using a 

refined three-dimensional analysis where the bracing members are explicitly modeled. Or, in the 

absence of a refined analysis, design equations have been developed to evaluate the bracing 

member forces due to tub girder major-axis bending [13]. 

 

The lateral bracing is typically comprised of WT or angle sections and is often configured in a 

single diagonal arrangement, such as a Warren-type or Pratt-type truss system. The diagonal 

bracing members commonly frame into the work point of the girder top flange and internal 

diaphragm or strut connection. Alternatively, the length between internal cross-frames can be 

divided into multiple lateral bracing panels. Such framing arrangements usually include a single 

transverse strut at intermediate brace locations. The plane of the top flange lateral bracing system 

should be detailed to be as close as possible to the plane of the girder top flanges so as to increase 

the torsional stiffness of the section, while at the same time reducing connection eccentricities and 

excessive out-of-plane bending in the web. In most cases, the top flange lateral bracing is often 

attached directly to the top flange of the tub girders. Although not checked in this example, 

wherever the bracing members are bolted to a top flange subject to tension, AASHTO LRFD BDS 

Equation 6.10.1.8-1 must be satisfied at cross-sections of flexural members containing holes in the 

tension flange at the strength limit state and when checking constructability. 

 

Single diagonal top lateral bracing systems are preferred over X-type systems because there are 

fewer pieces to fabricate and erect, and fewer connections. Warren-type and Pratt-type systems 

offer some advantages with regard to the behavior of each top flange lateral bracing system. In a 

Warren-type system, the bracing members alternate directions along the length of the bridge (see 

Figure 3). In most cases, the bracing forces will alternate from tension to compression along the 

length of the bridge. The tension and compression forces result from a combination of girder 

major-axis bending and girder torsion. If necessary, the flange lateral bending stresses and forces 

in the lateral bracing members can often be effectively mitigated by the judicious placement of 

parallel single-diagonal members in a Pratt-type configuration. In a Pratt-type system, the bracing 

members should be oriented based on the sign of the torque so that the forces induced in these 

members due to torsion resulting from the non-composite dead load offset the compressive or 

tensile forces induced in the same members due to major-axis bending of the tub section, thus 

allowing for smaller brace sizes (see Figure 4). NSBA’s Steel Bridge Design Handbook: Bracing 

System Design [14] discusses issues related to the selection of the lateral bracing configuration in 

greater detail.   

 
Figure 3  Plan View of a Warren-type truss lateral bracing system  
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Figure 4  Plan View of a Pratt-type truss lateral bracing system  

 

As shown in Figure 1, a Warren-type single diagonal top lateral bracing system is used in this 

design example. The bracing is assumed to be directly connected to the flanges at each internal 

cross-frame and internal top strut; thus the bracing is assumed to lie in the plane of the top flange 

in the design calculations. The connection of the top flange lateral bracing directly to the flanges 

may require wider flanges than might otherwise be required, however, this approach may still be 

more economical considering the high fabrication cost associated with the use of gusset plates for 

the connections. 

 

Truss members with an area of 8.0 square inches were assumed for the top flange lateral bracing 

members in the three-dimensional analysis. However, design calculations show that a WT9x48.5 

is required, which has a cross-sectional area of 14.3 square inches (Section 7.13). Although not 

done in this example, the designer should perform a second iteration of the analysis with this larger 

cross-sectional area, as the larger cross-sectional area will affect the load distribution in the bracing 

system in the noncomposite condition. 
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5.0 FINAL DESIGN 

 

5.1 Limit States 

 

The AASHTO LRFD BDS requires that bridges be designed for specified limit states to achieve the 

objectives of constructability, safety, and serviceability. These objectives are met through the 

strength, service, fatigue and fracture, and extreme-event limit states. These limit states are 

intended to provide a safe, constructible, and serviceable bridge capable of carrying the appropriate 

design loads for a specified service life. A brief discussion of these limit states is provided herein, 

but the reader can refer to NSBA’s Steel Bridge Design Handbook: Limit States [15] for a more 

detailed discussion. 

 

5.1.1 Strength Limit State 

 

At the strength limit state, it must be verified that adequate strength and stability are provided to 

resist the statistically significant load combinations the bridge is expected to experience over its 

design life. The strength limit state is not based upon durability or serviceability. Extensive 

structural damage may occur, but overall structural integrity is maintained. There are five different 

strength limit state load combinations that must be considered by the Engineer.   

 

In general, Strength I is the load combination used for checking the strength of a member or 

component under normal loading in the absence of wind. To check the strength of a member or 

component under Owner-specified special design vehicles and/or evaluation permit vehicles in the 

absence of wind, the Strength II load combination is used. The Strength III load combination is 

used for checking the strength of a member or component assuming the bridge is exposed to the 

design wind speed at the location of the bridge in the absence of live load. The Strength IV load 

combination basically relates to bridges with very high dead-to-live load force effect ratios. This 

load combination controls over Strength I for components with a ratio of dead load to live load 

force effects exceeding 7.0. The Strength IV load combination is not applicable to the investigation 

of construction stages. The Strength V load combination is used to check the strength of a member 

or component assuming the bridge is exposed to a wind velocity equal to 80 miles per hour in 

combination with normal vehicular use. 

 

5.1.2 Service Limit State 

 

To satisfy the service limit state, restrictions on stress and deformation under regular service 

conditions are specified to provide satisfactory performance of the bridge over its service life. As 

specified in Article 6.10.4.1, optional live load deflection criteria and span-to-depth ratios (Article 

2.5.2.6) may be invoked to control deformations. 

 

The AASHTO LRFD BDS includes four service limit state load combinations of which only two 

are applicable to steel bridges. The Service I load combination relates to normal operational use of 

the bridge and is used primarily for crack control in reinforced concrete structures. However, the 

live load portion of the Service I load combination is used for checking live load deflection in steel 

bridges. The Service II load combination only applies to steel superstructures, and is intended to 

be used to satisfy the requirements of Article 6.10.4.2, which are intended to prevent objectionable 
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permanent deformations, caused by localized yielding and potential web bend-buckling under 

expected severe traffic loadings, which might impair rideability. The live-load portion of the 

Service II load combination is intended to be the HL-93 design live load specified in Article 3.6.1.1 

(Section 5.2.3). For evaluation of the Service II load combination under Owner-specified special 

design vehicles and/or evaluation permit vehicles, a reduction in the specified load factor for live 

load should be considered for this limit-state check. The Service II load combination is also used 

to check for slip in bolted slip-critical connections.. 

 

5.1.3 Fatigue and Fracture Limit State 

 

To satisfy the fatigue limit state, restrictions on stress range under regular service conditions are 

specified to control crack growth under repetitive loads (Article 6.6.1). Material toughness 

requirements are specified to satisfy the fracture limit state (Article 6.6.2). 

 

For checking fatigue in steel structures, the fatigue load and fatigue load combinations apply. The 

Fatigue I load combination is related to infinite load-induced fatigue life, and the Fatigue II load 

combination is related to finite load-induced fatigue life. Fatigue resistance of details is discussed 

in Article 6.6. A special fatigue requirement for webs (Article 6.10.5.3) is also specified to control 

out-of-plane flexing of the web that might potentially lead to fatigue cracking under repeated live 

loading. 

 

5.1.4 Extreme Event Limit State 

 

Structural survival of the bridge must be verified during an extreme event, such as an earthquake, 

flood, vessel collision, vehicle collision, or ice flow. The Extreme Event I load combination is 

related to earthquake loading, while the Extreme Event II load combination relates to the other 

possible extreme events. 

 

5.1.5 Constructability 

 

Although not a specific limit state, the bridge must be safely erected and have adequate strength 

and stability during all phases of construction, as constructability is one the basic objectives of the 

AASHTO LRFD BDS. Specific constructability design provisions are given in Articles 6.10.3 and 

6.11.3 for I- and tub-girders, respectively. The constructability checks are typically performed on 

the steel section only under the factored noncomposite dead loads using appropriate strength load 

combinations, especially when considering the deck placement sequence. Article 3.4.2 provides 

further guidance on the specific strength load combinations to be considered in the constructability 

checks, and on the load factors to use for construction loads. 

 

5.2 Loads 

 

5.2.1 Dead Load 

 

As defined in Article 3.5.1, dead loads are permanent loads that include the weight of all 

components of the structure, appurtenances and utilities attached to the structure, earth cover, 

wearing surfaces, future overlays and planned widenings. 
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The component dead load (DC) consists of all the structure dead load except for non-integral 

wearing surfaces, if anticipated, and any specified utility loads. For composite steel-girder design, 

DC is further divided into:  

 

• Noncomposite dead load (DC1) is the portion of loading resisted by the noncomposite 

section. DC1 represents the permanent component load that is applied before the concrete 

deck has hardened or is made composite.  

• Composite dead load (DC2) is the portion of loading resisted by the long-term composite 

section. DC2 represents the permanent component load that is applied after the concrete 

deck has hardened or is made composite.  

 

The self-weight of the steel girders, cross-frames, diaphragms, lateral bracing and other 

attachments is applied to the fully erected steel structure in the three-dimensional model through 

the use of body forces in the various finite elements used to model the structure. The weight of the 

detail steel such as stiffeners and splices, which were not included in the analysis model, was 

accounted for in the analysis by increasing the density of the steel (490 pounds per cubic foot) by 

approximately 7 percent. The steel self-weight is a noncomposite dead load (DC1). 

 

The concrete deck weight is assumed to be placed at one time on the non-composite steel structure 

for the strength limit state checks. The concrete deck weight, haunch weight, and permanent metal 

deck form weight are all considered to be non-composite dead loads (DC1). The weight of the wet 

concrete of the deck was applied to the non-composite 3D model with concentrated loads at the 

nodes representing the top flanges of the girders. The wet concrete was assumed to have no 

stiffness. The concentrated loads applied to each top flange node were determined by the tributary 

area of deck associated with the distance between the adjacent top flange nodes. The deck overhang 

tapers (Figure 1) were considered in computing the concentrated loads applied to the top flange 

nodes on the fascia webs. The weight of the wet concrete in the deck haunches was included in the 

concentrated loads applied to each top flange node. An average deck haunch width of 20 inches 

and deck haunch thickness of 4 inches was assumed (the reduction in weight due to the concrete 

displaced by the top flanges was ignored). The unit weight of the concrete was taken equal to 0.150 

kcf, which includes an additional 0.005 kcf to account for the weight of the rebars. 

 

The assumed weight of the SIP deck forms (15 psf) was applied directly to the girders of the non-

composite 3D model as concentrated loads to each top-flange node as was done for the deck. The 

forms exist only between flange edges inside the tub girders and between the two tub girders; thus, 

the weight of the forms and the concrete in the forms was based on the associated clear span 

between the top flanges. 

 

The composite dead load (DC2), also referred to as a superimposed dead load, includes the weight 

of the parapets. The parapets are assumed to weigh 495 pounds per linear foot. The parapet weight 

was applied as line loads along the edges of the deck elements in the three-dimensional analysis. 

 

The component dead load (DW) consists of the dead load of any non-integral wearing surfaces 

and any utilities, which can also be considered as superimposed dead loads. For this example, a 
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future wearing surface of 30 pounds per square foot of roadway is assumed, but no utilities are 

included. DW was applied as a surface load on the deck in the 3D analysis.  

 

For computing flexural stresses from composite dead loads DC2 and DW, the stiffness of the 

long-term composite section in regions of positive flexure is calculated by transforming the 

concrete deck using a modular ratio of 3n (Article 6.10.1.1.1b).  In regions of negative flexure, the 

long-term composite section is typically assumed to consist of the steel section plus the 

longitudinal reinforcement within the effective width of the concrete deck (Article 6.10.1.1.1c). 

 

5.2.2 Deck Placement Sequence 

 

The deck is considered to be placed in the following sequence for the constructability limit state 

design checks (Figure 5) The concrete is first cast from the left abutment to a location near the 

dead load inflection point in Span 1. The concrete between approximate dead load inflection points 

in Span 2 is cast second. The concrete beyond the approximate dead load inflection point to the 

abutment in Span 3 is cast third. Finally, the concrete over the two piers is cast. In the analysis, 

earlier concrete casts are assumed fully composite for each subsequent cast. The modular ratio for 

the deck is assumed to be 3n to account for creep. A smaller modular ratio may be desirable for 

the staging analyses since full creep usually takes approximately three years to occur (note that 

one State DOT has found a composite stiffness calculated using 1.4n to be appropriate). A modular 

ratio of n should be used to check the deck stresses. 

 

For the constructability limit state design checks, the noncomposite section is checked for the 

moments resulting from the deck placement sequence or the moments computed assuming the 

entire deck is cast at one time, whichever is larger. 

 

The weight of the fresh concrete on the overhang brackets, along with other loads applied to the 

brackets, produces lateral forces on the outermost top flange of G2 and the innermost top flange 

of G1. This eccentric loading and subsequent lateral forces on the top flanges must be considered 

in the constructability limit state design checks. 
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Figure 5  Assumed Deck Placement Sequence  
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5.2.3 Live Load 

 

Live loads are assumed to consist of gravity loads (vehicular live loads, rail transit loads and 

pedestrian loads), the dynamic load allowance, centrifugal forces, and braking forces. Live loads 

illustrated in this example include the HL-93 vehicular live load and a fatigue load, with the 

appropriate dynamic load allowance and centrifugal force (see Section 5.3) effects included. 

 

Influence surfaces are utilized to determine the live load force effects in this design example.  More 

details regarding influence surfaces and the live load analysis associated with the 3D analysis 

model are provided in Section 6.1.2 of this example.   

 

Live loads are considered to be transient loads applied to the short-term composite (n) section. For 

computing flexural stresses from transient loading, the short-term composite (n) section in regions 

of positive flexure is calculated by transforming the concrete deck using a modular ratio of n 

(Article 6.10.1.1.1b). In regions of negative flexure, the short-term composite (n) section is 

assumed to consist of the steel section plus the longitudinal reinforcement within the effective 

width of the concrete deck (Article 6.10.1.1.1c), except as permitted otherwise for the fatigue and 

service limit states (see Articles 6.6.1.2.1 and 6.10.4.2.1). 

 

When computing longitudinal flexural stresses in the concrete deck due to permanent and transient 

loads, the short-term composite section should be used (see Article 6.10.1.1.1d).  

 

Design Vehicular Live Load (Article 3.6.1.2) 

 

The design vehicular live load is designated as the HL-93 and consists of a combination of the 

following placed within each design lane: 

 

• a design truck or design tandem. 

• a design lane load. 

 

The design vehicular live load is discussed in greater detail in NSBA’s Steel Bridge Design 

Handbook: Example 1: Three-Span Continuous Straight Composite Steel I-Girder Bridge [3]. 

 

Fatigue Load (Article 3.6.1.4) 

 

The vehicular live load for checking fatigue consists of a single design truck (without the lane 

load) with a constant rear-axle spacing of 30 feet (Article 3.6.1.4.1). The fatigue live load is 

discussed in greater detail in NSBA’s Steel Bridge Design Handbook: Example 1: Three-Span 

Continuous Straight Composite Steel I-Girder Bridge [3]. 

 

5.3 Centrifugal Force Computation 

 

The centrifugal force is determined according to Article 3.6.3. The centrifugal force has two 

components, the radial force and the overturning force. The radial component of the centrifugal 

force is assumed to be transmitted from the deck through the end cross-frames or diaphragms and 

to the bearings and the substructure. 
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The overturning component of centrifugal force occurs because the radial force is applied at a 

distance above the top of the deck. The center of gravity of the design truck is assumed to be 6 feet 

above the roadway surface according to the provisions of Article 3.6.3. The transverse spacing of 

the wheels is 6 feet per Figure 3.6.1.2.2-1. The overturning component causes the exterior (with 

respect to curvature) wheel line to be more than half the weight of the truck and the interior wheel 

line to be less than half the weight of the truck by the same amount. Thus, the outside of the bridge 

is more heavily loaded. The effect of superelevation, which reduces the overturning effect of 

centrifugal force, is considered as permitted by Article 3.6.3. Figure 6 shows the centrifugal force 

wheel-load reactions. The dimensions denoted by s and h in Figure 6 are both equal to 6 feet. 

 

 

 
Figure 6  Vehicular Centrifugal Force Wheel-Load Reactions 

 

Article 3.6.3 states that the centrifugal force is to be taken as the product of the axle weights of the 

design truck or tandem and the factor C, taken as: 

 

 
2v

C f 
g R

=      Eq. (3.6.3-1) 

 

where:  

 

 f  =  4/3 for load combinations other than fatigue and 1.0 for fatigue 

 v  = highway design speed (ft/sec) 

 g = gravitational acceleration = 32.2 ft/sec2 

 R  = radius of curvature (ft) 



 

25 

 

 

Use the average bridge radius, R = 700 ft, in this case. For the purpose of this design example, the 

design speed is assumed to be 35 mph = 51.3 ft/s.  Therefore, for the HL-93 design truck: 

 

( )( )

24 51.3
C 0.156

3 32.2 700

 
= = 

 
 

 

The next step is to compute the wheel load reactions, RCL and RCR, due to centrifugal force effects, 

as shown in Figure 6.  In the case of the design truck, the wheel spacing, s, and the height of the 

radial force, h, are both equal to 6.0 feet. Therefore, summing moments about Point A (Figure 6) 

and enforcing equilibrium, the wheel load reactions, RCL and –RCR are simply equal to C multiplied 

by W, as follows: 

 

( )

( )
CL CR

h cos
R R (C W) C W 0.156W

s
2  cos

2


= − =  =  =

 
 

 

 

where:  

 

 W  =  axle weight (kips) 

  

RCL is an upward reaction for the left wheel, and RCR is an equal but opposite downward reaction 

for the right wheel. 

 

As permitted by Article 3.6.3, the effects of superelevation on the individual wheel load reactions 

can be computed and combined with the centrifugal force effects. For the 5% deck cross slope, the 

angle  is equal to: 

 

  = tan-1 (0.05) = 2.86° 

 

The wheel-load reactions due to superelevation, RSL and RSR, as shown in Figure 7, are computed 

by summing the moments about the left wheel and enforcing equilibrium, as follows: 

 

( ) ( )

( )

( ) ( )

( ) ( )SR

6s
cos 2.86 6 sin(2.86 ) Wcos θ hsin θ W
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R 0.550W

scos θ 6 cos 2.86

   
 + +         = = =


 

 

 RSL = 1.0W - RSR = 1.0W – 0.550W = 0.450W 

 

If the superelevation is significant, the Engineer may wish to consider its effect for the case with 

no centrifugal force effects included (that is, a stationary vehicle), since the superelevation will 

cause an increase in the vertical wheel loads toward the inside of the bridge and an unloading of 

the vertical wheel loads toward the outside of the bridge, which may potentially be a more critical 

case for the interior girder. 
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Figure 7  Effects of Superelevation of the Wheel-Load Reactions 

 

For a refined analysis, as employed in this design example, unit wheel load factors can be 

computed based on the sum of the wheel load reactions due to the centrifugal force and 

superelevation effects. The unit wheel load factors are applied to the appropriate wheels in the 

analysis. Unit wheel load factors due to the combined effects of centrifugal force and 

superelevation can be computed for the left wheels, FL, and the right wheels, FR.  The sum of FL 

and FR must equal 2.0, as there are two wheel loads per one axle. The left and right unit wheel load 

factors, FL and FR, are computed as follows: 

 

CL SL
L

R R 0.156W 0.450W
F 2.0 2.0 1.212

W W

+ +
= = =  

 

CR RL
R

R R 0.156W 0.550W
F 2.0 2.0 0.788

W W

+ − +
= = =  

 

As shown in Figure 8, FL and FR represent the factors that must be multiplied by the left wheel and 

right wheel load, respectively, in the analysis to take into account the combined effects of both 

centrifugal force and superelevation. In this case, since FL is greater than FR, the outermost wheel 

of the design truck will receive a slightly higher load and the innermost wheel will receive a 

slightly lower load in the analysis. It is also necessary to compute the condition with no centrifugal 

force and no superelevation effects considered  and select the worst case. In the live load analysis 

performed for this design example, strength and service limit state force effects from an analysis 

due to live load cases with centrifugal force effects included (FL equals 1.212 and FR equals 0.788) 

are compared to force effects due to cases with no centrifugal force and superelevation effects 

included (i.e., FL and FR equal 1.0), and the maximum/minimum force effect is selected. 
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Figure 8  Unit Wheel Load Factors due to Combined Effects of Centrifugal Force and 

Superelevation 

 

In accordance with Article C3.6.3, centrifugal force is not required to be applied to the design lane 

load, as the spacing of vehicles at high speed is assumed to be large, resulting in a low density of 

vehicles following and/or preceding the design truck. The design lane load is still considered, as 

applicable, even though the centrifugal force is not applied to the load. 

 

From separate calculations for the fatigue limit state, similar to those shown previously, the 

centrifugal force factor C is equal to 0.117, and the unit wheel load factors, FL and FR, are 1.134 

and 0.866, respectively. 

 

5.4 Load Combinations 

 

For each limit state described previously in Section 5.1, the following basic equation (Article 

1.3.2.1) must be satisfied: 

 

 ΣiγiQi ≤ Rn = Rr                                                                                     Eq. (1.3.2.1-1) 

 

where: 

  

            i    = load modifier related to ductility, redundancy and operational importance 

 i     = load factor, a statistically based multiplier applied to force effects 

    = resistance factor, a statistically based multiplier applied to nominal resistance 

 Qi   = force effect 
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 Rn   = nominal resistance 

 Rr   = factored resistance 

 

The load factors are specified in Tables 3.4.1-1 and 3.4.1-2 of the specifications. For steel 

structures, the resistance factors are specified in Article 6.5.4.2.  

 

As evident from the above equation, in the LRFD specifications, redundancy, ductility, and 

operational importance are considered more explicitly in the design. Ductility and redundancy 

relate directly to the strength of the bridge, while the operational importance relates directly to the 

consequences of the bridge being out of service. The grouping of these three effects on the load 

side of the above equation through the use of the load modifier ηi represents an initial attempt at 

their codification. Improved quantification of these effects may be possible in the future. For loads 

for which a maximum value of i is appropriate: 

 

 i D R Iη η η η 0.95=          Eq. (1.3.2.1-2) 

 

where:  

 

            D = ductility factor specified in Article 1.3.3 

 R = redundancy factor specified in Article 1.3.4 

 I = operational importance factor specified in Article 1.3.5 

 

For loads for which a minimum value of i is appropriate: 

 

 i

D R I

1
1.0 = 

  
        Eq. (1.3.2.1-3) 

 

Eq. (1.3.2.1-3) is only applicable for the calculation of the load modifier when dead- and live-load 

force effects are of opposite sign and the minimum load factor specified in Table 3.4.1-2 is applied 

to the dead-load force effects (e.g., when investigating for uplift at a support or when designing 

bolted field splices located near points of permanent load contraflexure); otherwise, Eq. (1.3.2.1-

2) is to be used. 

 

For typical bridges for which additional ductility-enhancing measures have not been provided 

beyond those required by the specifications, and/or for which exceptional levels of redundancy are 

not provided, the D and R factors have default values of 1.0 specified at the strength limit state. 

Note that some owner-agencies specify redundancy factors greater than 1.0 for certain types of 

steel tub girder bridges depending on the number of girders in the cross-section and the existence 

and number of external intermediate diaphragms. The value of the load modifier for operational 

importance I should be chosen with input from the Owner-agency. In the absence of such input, 

the load modifier for operational importance at the strength limit state should be taken as 1.0. At 

all other limit states, all three  factors must be taken equal to 1.0. For this example, i will be 

taken equal to 1.0 at all limit states.  
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Table 3.4.1-1 is used to determine load combinations for strength. The Strength I load combination 

is to be used for checking the strength of a member or component under normal use in the absence 

of wind. Load Combinations Strength III and V from Table 3.4.1-1 are checked for temperature 

and wind loadings in combination with vertical loading. 

 

As described previously, Service I relates to normal operational use of the bridge in combination 

with a 70-mph wind with all loads taken at their nominal values and would be used primarily for 

crack control in reinforced concrete structures. However, the live-load portion of the Service I load 

combination is used for checking live-load deflection in steel bridges. Service II is used only for 

steel structures to control permanent deformations due to local yielding and slip of slip-critical 

connections under vehicular live load. 

 

Two Fatigue load combinations are given in Table 3.4.1-1. The Fatigue I load combination is to 

be used when designing a detail or component for infinite fatigue life, and the Fatigue II load 

combination is to be used when designing a detail or component for finite fatigue life.  

 

The following load combinations and load factors are typically checked in girder designs similar 

to this design example. For this example, it has been assumed that the Strength I load combination 

governs for the strength limit state, so only Strength I loads are checked in the sample calculations 

for the strength limit state included herein. In some design instances, other load cases may be 

critical, but for this example, these other load cases are assumed not to apply. Refer to NSBA’s 

Steel Bridge Design Handbook: Example 1 Three-Span Continuous Straight Composite Steel I-

Girder Bridge [3] for further detail on all of the load combinations specified in Table 3.4.1-1. 

 

From Table 3.4.1-1 (minimum load factors of Table 3.4.1-2 are not considered here): 

 

Strength I  η x [1.25(DC) + 1.5(DW) + 1.75((LL + IM) + CE + BR) + 1.2(TU)] 

Strength III  η x [1.25(DC) + 1.5(DW) + 1.0(WS) + 1.2(TU)] 

Strength V  η x [1.25(DC) + 1.5(DW) + 1.35((LL + IM) + CE + BR) + 1.0(WS) + 1.0(WL) + 

1.2(TU)] 

Service I  η x [DC + DW + ((LL + IM) + CE + BR) + 1.0(WS) + 1.0(WL) + 1.2(TU)] 

Service II  η x [DC + DW + 1.3((LL + IM) + CE + BR) + 1.2(TU)] 

Fatigue I η x [1.75((LL + IM) + CE)] 

Fatigue II η x [0.80((LL + IM) + CE)] 

 

where: 

 

η  =  Load modifier specified in Article 1.3.2 

DC  =  Dead load: components and attachments 

DW  =  Dead load: wearing surface and utilities 

LL =  Vehicular live load 

IM  =  Vehicular dynamic load allowance 

CE  =  Vehicular centrifugal force 

WS  =  Wind load on structure 

WL  =  Wind on live load 

TU  =  Uniform temperature 
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BR  =  Vehicular braking force 

 

When evaluating the strength of the structure for the maximum force effects during construction, 

the load factor for construction loads, for equipment and for dynamic effects (i.e., temporary dead 

and/or live loads that act on the structure only during construction) is not to be taken less than 1.5 

in the Strength I load combination (Article 3.4.2.1). Also, the load factors for the weight of the 

structure and appurtenances, DC and DW, are not to be taken less than 1.25 when evaluating the 

construction condition. The load factor for wind load when evaluating the Strength III load 

combination during construction is to be specified by the Owner-agency (Article 3.4.2.1). Any 

applicable construction loads are to be included with a load factor not less than 1.25. Also, the load 

factors for the weight of the structure and appurtenances, DC and DW, are not to be taken less than 

1.25 when evaluating the construction condition. The Strength II, IV, and V load combinations are 

not applicable to the investigation of construction stages. 

 

Article 3.4.2.1 further states that unless otherwise specified by the Owner, primary steel 

superstructure components are to be investigated for maximum force effects during construction 

for an additional load combination consisting of the applicable DC loads and any construction 

loads that are applied to the fully erected steelwork. For this additional load combination, the load 

factor for DC and construction loads including dynamic effects (if applicable) is not to be taken 

less than 1.4. For steel superstructures, the use of higher-strength steels, composite construction, 

and limit-states design approaches in which smaller factors are applied to dead load force effects 

than in previous service-load design approaches, have generally resulted in lighter members 

overall. To provide adequate stability and strength of primary steel superstructure components 

during construction, an additional strength limit state load combination is specified for the 

investigation of loads applied to the fully erected steelwork (i.e., for investigation of the deck 

placement sequence and deck overhang effects). 

 

Construction: Strength I:                               η x [1.25(D) + 1.5(C)] 

                       Strength III:                            η x [1.25D + Owner-specified load factor * (WC)] 

                       Special Load Combination:    η x [1.4(D + C)] 

 

where: 

 

D  =  Dead load 

C  =  Construction loads 

WC =  Wind load for construction conditions  

 

In this design example, it has been assumed that there is no equipment on the bridge during 

construction and wind load is not considered during construction or in the final condition. Refer 

to NSBA’s Steel Bridge Design Handbook: Example 1: Three-Span Continuous Straight 

Composite Steel I-Girder Bridge [3]. for an illustration of these wind-load checks. Thermal loads 

and vehicular braking forces are also not considered. 
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6.0 ANALYSIS 

 

Article 4.4 of the AASHTO LRFD BDS requires that the analysis be performed using a method that 

satisfies the requirements of equilibrium and compatibility and utilizes stress-strain relationships 

for the proposed materials. Article 4.6.1.2 provides additional guidelines for structures that are 

curved in plan. The moments, shears, and other force effects required to proportion the 

superstructure components are to be based on a rational analysis of the entire superstructure. 

Equilibrium of horizontally curved I-girders is developed by the transfer of load between the 

girders, thus the analysis must recognize the integrated behavior of structural components. 

Equilibrium of horizontally curved tub girders can be somewhat less dependent on the interaction 

between girders, as there are typically fewer external bracing members between adjacent tub 

girders as compared to I-girder bridges, but the analysis should still recognize the integrated 

behavior of the structural components. 

 

Furthermore, in accordance with Article 4.6.1.2, the entire superstructure, including bearings, is to 

be considered as an integral structural unit in the analysis. Boundary conditions should represent 

the articulations provided by the bearings and/or integral connections used in the design. 

 

In most cases, small deflection elastic theory is acceptable for the analysis of horizontally curved 

steel girder bridges. However, curved girders, especially I-girders, are prone to deflect laterally 

when the girders are insufficiently braced during erection, and this behavior may not be 

appropriately recognized by small deflection theory. In most all curved tub-girder bridge 

construction, there is typically sufficient bracing provided during steel erection so that deflections 

do not invalidate the use of small deflection elastic theory. 

 

In general, three levels of analysis exist for horizontally curved girder bridges: approximate 

methods of analysis, 2D (two-dimensional) methods of analysis, and 3D (three-dimensional) 

methods of analysis. The V-load method and the M/R methods are approximate analysis method 

that may be used to analyze curved I-girder bridges and curved tub girder bridges, respectively. 

Both methods are developed based on the understanding of the distribution of forces through the 

curved bridge system. The two primary types of 2D analysis models are the traditional grid (or 

grillage) model and the plate and eccentric beam model. In a traditional 2D analysis model, the 

girders and external cross-frames and diaphragms are modeled using beam elements, with the 

nodes for the grid representing the steel superstructure in a single horizontal plane. In a plate and 

eccentric beam model, the girders and cross-frames are modeled using beam elements, with nodes 

in a single horizontal plane, and the deck is modeled with shell elements offset a vertical distance 

from the steel superstructure elements. A 3D model recognizes the depth of the superstructure. 

Two planes of nodes are typically used for each girder, one in the plane of the top flanges and the 

second in the plane of the bottom flange. The deck in a 3D model is typically modeled with shell 

elements or solid elements. Further details regarding these methods of analysis can be found in  

NSBA’s Steel Bridge Design Handbook: Structural Analysis [16] and in the FHWA Manual for 

Refined Analysis in Bridge Design and Evaluation [17].  

 

It should be noted that when a tub-girder bridge satisfies the requirements of Article 4.6.1.2.4c, 

the effects of curvature may be ignored in the analysis for determining the major-axis bending 

moments and bending shears. If the requirements of Article 4.6.1.2.4c are satisfied, the  tub girders 
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may be analyzed as individual straight girders with span lengths equal to the arc lengths. Internal 

cross-frame or diaphragm spacing is to be set to limit flange lateral bending effects in the top 

flanges before the deck hardens, which may be determined from an appropriate approximation 

[Error! Reference source not found.]. The internal cross-frame or diaphragm spacing must not e

xceed 40 feet. Transverse bending and longitudinal warping stresses due to cross-section distortion 

may be neglected. Cross-frames or diaphragms and their connections are to be designed in 

accordance with the applicable provisions of Articles 6.7.4.3 and 6.13. At a minimum, cross-frame 

or diaphragms are to meet all applicable slenderness requirements specified in Articles 6.8.4 or 

6.9.3, as applicable. Lateral bracing members are to be designed in accordance with Articles 6.7.5 

and 6.13 for forces computed by rational means. 

 

6.1 Three-Dimensional Finite Element Analysis 

 

A three-dimensional finite element analysis was used to analyze the superstructure in this design 

example. The girder webs and bottom flanges were modeled using plate elements. The top flanges 

of each tub girder were modeled with beam elements. The girder elements were connected to nodes 

that were placed in two horizontal planes; one plane at the top flange level and one plane at the 

bottom flange level. The horizontal curvature of the girders was represented by a series of straight 

elements connected at the nodes, rather than by curved elements. Nodes were placed on all flanges 

along the girder at each internal cross-frame and top flange lateral bracing location, and typically 

at the middle of each top flange lateral bracing bay.  

 

The composite deck was modeled using a series of eight-node solid elements attached to the girder 

top flanges with rigid beam elements, which represented the shear studs.   

 

Bearings were modeled with dimensionless elements called “foundation elements.” These 

dimensionless elements can provide six different stiffnesses, with three for translation and three 

for rotation.  If a guided bearing is to be modeled and is to be orientated along the tangential axis 

of a girder, a translational stiffness of zero is assigned to the stiffness in the tangential direction.  

The translational stiffness of the bearing, and supporting structure if not explicitly modeled, is 

assigned to the direction orthogonal to the tangential axis. 

 

Internal cross-frame members were modeled with individual truss elements connected to the nodes 

at the top and bottom flange of the girders. Internal solid-plate diaphragms at the supports were 

modeled with a single plate element. External solid-plate diaphragms at the supports were modeled 

using three full-depth plate elements along the length of the diaphragm, and three beam elements 

placed at the top and bottom of the web representing the top and bottom flanges of the diaphragm. 

Since the plate and beam elements are isoparametric, three sets of elements were used to model 

the web and flanges of the external diaphragm to allow for the possibility of reverse curvature. 

 

Top flange lateral bracing members were modeled with individual truss elements connected to 

nodes at the top flanges of the tub girders. 

 

Article 4.6.3.3.4 specifies that the influence of end-connection eccentricities is to be considered in 

the calculation of the equivalent axial stiffness of single-angle and flange-connected tee-section 

cross-frame members in the analysis. In lieu of a more accurate analysis, Article C4.6.3.3.4 
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recommends that a stiffness reduction factor of 0.65 be applied to the axial stiffness, AE, of the 

cross-frame members in a 3D analysis, or when computing the equivalent beam stiffness of the 

cross-frame members in a 2D analysis, to account for the influence of the end-connection 

eccentricities. Although this reduction factor was not applied in the analysis for this design 

example, the use of this stiffness reduction factor is strongly encouraged.   

 

6.1.1 Bearing Orientation and Arrangement 

 

The orientation and horizontal restraint of the bearings affects the behavior of most girder bridges 

for most load conditions, and is particularly true for curved and skewed girder bridges.  

Furthermore, in tub girder bridges, one or two bearings can be used under each tub girder at each 

support. 

 

The use of two bearings to support an individual girder at a support allows the girder torsion to be 

directly removed through the force couple provided by the bearings, and reduces the reaction 

demand in the bearings. Two-bearing systems typically work well with radial supports, but are 

impractical with supports skewed more than a few degrees where the tub girder and/or diaphragm 

stiffnesses work against the achievement of uniform bearing contact during various stages of girder 

erection and deck slab construction [1]. 

 

The use of one bearing to support an individual girder at a support optimizes contact between the 

girder and the bearing. One-bearing systems also tend to be more forgiving of construction 

tolerances, and at skewed supports, one-bearing systems are demonstrably better than two-bearing 

systems [1]. A disadvantage of one-bearing systems is that stiff cross-frames or diaphragms 

between girders are required to resolve the girder torsion into the bearings. 

 

Although one-bearing systems are commonly used in modern tub-girder designs, in this example, 

two bearings are used at each girder support location. The centerline of each bearing is located 

28.5 inches from the girder centerline at the support. Furthermore, the bearings at Pier 1 are 

assumed fixed against translation in both the radial and longitudinal directions (Fixed Bearings). 

The bearings at the abutments and at Pier 2 are assumed fixed against radial movement but free in 

the longitudinal direction (Guided Bearings). The longitudinal direction at each support varies, as 

in this case the longitudinal direction is taken along a straight line chord line between the fixed 

support (Pier 1) and each expansion bearing. Curved girder bridges do not expand and contract 

along the girder line, but more so along the aforementioned chord lines. Orientating the bearings 

in the manner discussed significantly reduces the longitudinal stresses in the girders horizontal 

reactions at the bearings that can occur due to thermal loading. Therefore, due to the bearing 

orientation and from a separate analysis, the girder demands due to thermal loading are determined 

to be quite small, and are neglected throughout these computations. In all designs, the thermal 

demands must be considered and properly addressed. 

 

6.1.2 Live Load Analysis 

 

The use of live load distribution factors is typically not appropriate for curved steel tub girder 

bridges because these structures are ideally analyzed as a system. Therefore, influence surfaces are 

most often utilized to more accurately determine the live load force effects in curved girder bridges. 
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Influence surfaces are an extension of influence lines, in that an influence surface not only 

considers the longitudinal position of the live loads but the transverse position as well. 

 

Influence surfaces provide influence ordinates over the entire deck. The influence ordinates are 

determined by applying a series of unit vertical loads, one at a time, at selected longitudinal and 

transverse positions on the bridge deck surface. The magnitude of the response for the unit vertical 

load is the magnitude of the ordinate of the influence surface for the particular response at the point 

on the deck where the load is applied. The entire influence surface is created by curve fitting 

between calculated ordinates. Specified live loads are then placed on the surface, mathematically, 

at the critical locations, as allowed by the governing specification, to determine the maximum and 

minimum effects. The actual live load effect is determined by multiplying the live load by the 

corresponding ordinate. In the case of an HL-93 truck or tandem load, a different ordinate will 

exist for each wheel load. The total HL-93 truck or tandem live load effect is the summation of all 

the wheel loads times their respective ordinates. For the design lane load, the effect is determined 

by integrating the area of the influence surface under the load and multiplying it by the intensity 

of the load.    

 

The fatigue load, which consists of a single design truck without a lane load, is analyzed in a 

similar manner as the HL-93 truck load. 

 

In curved girder bridges, influence surfaces are generally needed for all live load force results, 

such as major-axis bending moments, flange lateral bending moments, girder shear, reactions, 

torques, deflections, cross-frame forces, diaphragm forces, lateral bracing forces, etc. 

 

Unless noted otherwise, all live load force effects in this example were computed using influence 

surfaces developed using the three-dimensional analysis. The dynamic load allowance (impact) 

was included in the analysis, and was applied to the live-load force effects in accordance with 

Article 3.6.2 for strength, service, and fatigue as required. Multiple presence factors were also 

appropriately applied to the force effects from the analysis. Also, as appropriate, centrifugal force 

effects were considered in the analysis by applying adjustment factors to the wheel loads as 

described in Section 5.3 of this design example. 

 

6.2 Analysis Results 

 

This section shows the results from the three-dimensional analysis of the superstructure.  Analysis 

results are provided for the moments, shears, and torques for girders G1 and G2. All analysis 

results are unfactored. The reported live load results included multiple presence factors, dynamic 

load allowance (impact), and centrifugal force effects. 

 

Specific analysis results for design Section G2-1, which is located approximately 57 feet from the 

centerline of the bearings at Abutment 1, are provided in Table 7. These analysis results are used 

in the design computations associated with Section G2-1, provided later within this design 

example. 

 

NOTE: The analysis results shown herein apply to an example girder designed using earlier 

versions of the AASHTO LRFD (i.e., prior to the 8th Edition). Revisions to some of the plate sizes 
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in this example design were necessary to provide a more reasonable b/t ratio for the bottom 

(tension) flange in regions of positive flexure and to provide a constant top-flange width within 

the interior-pier field section. While it is nearly always desirable to perform a new analysis 

whenever plate sizes are revised, the effect on the analysis results in this case was felt to be 

relatively minor and so new analyses were not performed. The primary intent of this example is to 

illustrate the proper application of the AASHTO LRFD provisions to the design of a continuous 

horizontally curved steel tub-girder bridge. However, this also illustrates that a designer should 

always be aware of specification changes and how they may affect a design and perhaps future 

load ratings.     
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Table 1  Girder G1 Unfactored Shears by Tenth Point 

 
Note:   Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical tub 

girder web. 

 

 

  

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip) (kip) (kip) (kip) (kip) (kip) (kip) (kip)

0 0.00 27 114 25 33 139 -24 52 -4

1 15.74 19 80 12 15 115 -29 41 -6

2 31.49 10 45 8 10 94 -35 34 -9

3 47.23 5 23 5 6 78 -41 28 -12

4 62.97 -6 -25 -3 -4 53 -52 22 -16

5 78.71 -11 -44 -6 -7 40 -63 16 -22

6 94.46 -16 -69 -8 -11 31 -83 13 -27

7 110.20 -23 -98 -13 -17 25 -101 10 -34

8 125.94 -28 -116 -18 -23 21 -116 7 -40

9 141.69 -34 -137 -24 -32 19 -127 7 -43

10 157.43 -44 -171 -40 -54 14 -163 4 -53

10 0.00 45 175 41 55 171 -15 58 -4

11 20.66 31 128 23 31 140 -23 44 -6

12 41.33 25 110 16 21 124 -26 39 -7

13 61.99 17 72 10 13 101 -37 31 -12

14 82.65 11 47 5 6 78 -45 27 -15

15 103.31 0 0 0 0 58 -57 22 -22

16 123.98 -11 -47 -5 -6 43 -78 15 -27

17 144.64 -17 -72 -10 -14 36 -101 12 -31

18 165.30 -25 -110 -16 -21 26 -124 6 -39

19 185.96 -31 -127 -23 -31 23 -140 6 -46

20 206.63 -45 -175 -41 -55 14 -166 4 -55

20 0.00 44 171 40 54 167 -15 56 -4

21 15.74 34 137 24 32 128 -19 43 -7

22 31.49 28 116 18 23 116 -21 40 -7

23 47.23 23 98 13 17 101 -25 34 -10

24 62.97 16 69 8 11 83 -31 27 -13

25 78.71 11 44 6 7 64 -38 22 -16

26 94.46 6 25 3 4 51 -52 16 -22

27 110.20 -5 -23 -5 -6 41 -77 12 -28

28 125.94 -10 -45 -8 -10 32 -92 9 -34

29 141.69 -19 -80 -12 -16 27 -113 6 -41

30 157.43 -27 -114 -25 -34 24 -139 4 -52

Fatigue LL+ISpan

Length
10th

Point

Girder G1 Unfactored Shears

Dead Load LL+I
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Table 2  Girder G2 Unfactored Shears by Tenth Point 

 
Note:   Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical tub 

girder web. 

 

 

  

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip) (kip) (kip) (kip) (kip) (kip) (kip) (kip)

0 0.00 31 110 39 52 128 -26 61 -12

1 16.26 19 74 17 22 110 -29 52 -12

2 32.51 11 44 11 15 93 -35 44 -12

3 48.77 5 21 6 8 75 -44 36 -12

4 65.03 -7 -26 -3 -5 54 -52 25 -18

5 81.29 -11 -45 -6 -8 40 -67 18 -27

6 97.54 -17 -69 -12 -16 36 -85 13 -34

7 113.80 -24 -97 -17 -23 33 -102 12 -43

8 130.06 -29 -117 -22 -29 26 -114 7 -49

9 146.31 -35 -137 -27 -35 16 -127 4 -53

10 162.57 -46 -185 -41 -55 13 -155 4 -61

10 0.00 47 185 44 58 160 -14 65 -4

11 21.34 32 130 28 37 135 -22 55 -4

12 42.68 26 105 22 29 120 -33 49 -9

13 64.01 17 69 15 20 100 -42 41 -13

14 85.35 12 46 7 10 78 -46 33 -16

15 106.69 0 0 0 0 57 -57 24 -24

16 128.03 -12 -46 -7 -10 46 -78 16 -33

17 149.36 -17 -69 -15 -20 41 -99 13 -41

18 170.70 -26 -105 -22 -29 33 -120 9 -50

19 192.04 -32 -130 -28 -37 22 -135 4 -55

20 213.38 -47 -185 -44 -58 14 -159 4 -64

20 0.00 46 185 41 55 158 -14 64 -4

21 16.26 35 137 27 35 128 -15 53 -4

22 32.51 29 117 22 29 115 -26 49 -7

23 48.77 24 97 17 23 102 -33 41 -12

24 65.03 17 69 12 16 85 -36 33 -13

25 81.29 11 45 6 8 67 -40 27 -18

26 97.54 7 26 3 5 52 -54 18 -25

27 113.80 -5 -21 -6 -8 44 -75 12 -36

28 130.06 -11 -44 -11 -15 34 -93 12 -44

29 146.31 -19 -74 -17 -22 28 -111 12 -52

30 162.57 -31 -110 -39 -52 26 -129 12 -61

Girder G2 Unfactored Shears

10th

Point

Span

Length

Dead Load LL+I Fatigue LL+I
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Table 3  Girder G1 Unfactored Major-Axis Bending Moments by Tenth Point 

 
 

 

  

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 0 0 0 0 0 0 0 0

1 15.74 521 2191 340 450 2472 -469 748 -98

2 31.49 882 3666 592 785 4330 -938 1252 -196

3 47.23 1049 4321 724 960 5412 -1408 1477 -293

4 62.97 1047 4320 734 972 5863 -1878 1545 -385

5 78.71 851 3503 620 821 5777 -2338 1502 -471

6 94.46 493 2043 387 514 5189 -2795 1367 -553

7 110.20 -75 -315 36 47 4109 -3915 1108 -667

8 125.94 -837 -3461 -434 -576 2602 -4547 714 -813

9 141.69 -1781 -7206 -1014 -1343 1252 -5559 270 -991

10 157.43 -2969 -11629 -1762 -2335 1061 -7784 231 -1249

10 0.00 -2969 -11629 -1762 -2335 1061 -7784 231 -1249

11 20.66 -1422 -5845 -802 -1062 1310 -4411 363 -810

12 41.33 -326 -1516 -95 -125 2993 -3033 924 -618

13 61.99 493 1881 425 563 4784 -2275 1324 -470

14 82.65 977 3900 733 972 5926 -2008 1556 -367

15 103.31 1118 4442 836 1108 6304 -1749 1616 -279

16 123.98 976 3900 733 972 5928 -2013 1556 -369

17 144.64 492 1880 424 562 4775 -2279 1326 -471

18 165.30 -327 -1519 -95 -127 3000 -3021 923 -616

19 185.96 -1422 -5848 -803 -1064 1315 -4421 381 -810

20 206.63 -2969 -11633 -1762 -2336 1062 -7788 233 -1230

20 0.00 -2969 -11633 -1762 -2336 1062 -7788 233 -1230

21 15.74 -1780 -7203 -1014 -1345 1248 -5556 270 -997

22 31.49 -837 -3459 -436 -577 2591 -4532 714 -810

23 47.23 -74 -312 34 46 4099 -3900 1107 -665

24 62.97 493 2044 386 511 5181 -2783 1367 -551

25 78.71 851 3504 618 819 5769 -2328 1502 -462

26 94.46 1047 4320 732 971 5855 -1868 1544 -378

27 110.20 1048 4321 723 958 5405 -1402 1477 -286

28 125.94 882 3666 591 784 4326 -993 1252 -191

29 141.69 521 2189 339 449 2470 -466 748 -96

30 157.43 0 0 0 0 0 0 0 0

Girder G1 Unfactored Major-Axis Bending Moments

10th

Point

Span

Length

Dead Load LL+I Fatigue LL+I
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Table 4  Girder G2 Unfactored Major-Axis Bending Moments by Tenth Point 

 
 

 

  

DC1STEEL DC1CONC DC2 DW Pos. Neg. Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 0 0 0 0 0 0 0 0

1 16.26 555 2268 351 465 2606 -484 796 -95

2 32.51 938 3868 610 808 4559 -967 1330 -191

3 48.77 1116 4632 742 984 5687 -1446 1564 -289

4 65.03 1115 4633 745 988 6152 -1931 1630 -390

5 81.29 905 3780 622 824 6059 -2416 1579 -498

6 97.54 525 2207 373 494 5434 -2907 1427 -616

7 113.80 -79 -256 -1 -1 4308 -4097 1148 -757

8 130.06 -892 -3579 -501 -665 2751 -4768 750 -917

9 146.31 -1896 -7599 -1122 -1488 1305 -5836 287 -1110

10 162.57 -3154 -12272 -1923 -2550 1114 -8127 256 -1384

10 0.00 -3154 -12272 -1923 -2550 1114 -8127 256 -1384

11 21.34 -1513 -6169 -906 -1201 1401 -4629 388 -902

12 42.68 -348 -1473 -160 -211 3176 -3197 933 -692

13 64.01 525 2077 384 509 5018 -2366 1345 -527

14 85.35 1040 4196 704 934 6205 -2070 1587 -393

15 106.69 1190 4826 813 1077 6598 -1786 1655 -277

16 128.03 1039 4195 704 934 6204 -2065 1585 -391

17 149.36 525 2075 384 509 5001 -2355 1344 -524

18 170.70 -348 -1476 -159 -211 3166 -3165 932 -690

19 192.04 -1514 -6173 -906 -1200 1393 -4627 399 -901

20 213.38 -3155 -12275 -1922 -2547 1114 -8128 255 -1378

20 0.00 -3155 -12275 -1922 -2547 1114 -8128 255 -1378

21 16.26 -1895 -7595 -1121 -1485 1312 -5843 289 -1113

22 32.51 -891 -3577 -500 -662 2762 -4778 751 -923

23 48.77 -79 -253 1 2 4320 -4106 1151 -760

24 65.03 525 2208 375 496 5445 -2917 1430 -621

25 81.29 906 3781 624 827 6068 -2424 1581 -495

26 97.54 1115 4634 747 990 6160 -1936 1631 -387

27 113.80 1116 4632 743 986 5689 -1451 1564 -287

28 130.06 938 3867 611 810 4560 -971 1330 -190

29 146.31 555 2266 351 465 2607 -487 797 -95

30 162.57 0 0 0 0 0 0 0 0

Girder G2 Unfactored Major-Axis Bending Moments

10th

Point

Span

Length

Dead Load LL+I Fatigue LL+I
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Table 5  Girder G1 Unfactored Torques by Tenth Point 

 
 

 

  

DC1STEEL DC1CONC DC2 DW Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 42 286 -62 -83 660 -398

1 15.74 82 398 -54 -71 775 -448

2 31.49 34 189 -40 -53 756 -482

3 47.23 30 153 -40 -52 597 -389

4 62.97 -1 9 -23 -31 389 -307

5 78.71 -29 -125 -13 -17 309 -354

6 94.46 -33 -158 0 0 360 -479

7 110.20 -54 -262 21 28 462 -636

8 125.94 -25 -165 46 62 569 -766

9 141.69 -10 -135 83 110 668 -866

10 157.43 -22 -231 126 168 1049 -922

10 0.00 36 294 -144 -191 1049 -922

11 20.66 4 105 -89 -117 995 -702

12 41.33 60 309 -52 -68 919 -598

13 61.99 39 205 -22 -30 716 -464

14 82.65 61 261 -9 -11 555 -383

15 103.31 0 0 0 0 446 -430

16 123.98 -64 -261 9 11 413 -540

17 144.64 -39 -205 22 29 500 -724

18 165.30 -60 -309 52 68 625 -906

19 185.96 -4 -105 89 117 713 -991

20 206.63 -36 -294 144 190 928 -1046

20 0.00 22 231 -127 -169 928 -1046

21 15.74 10 134 -85 -112 874 -657

22 31.49 25 166 -47 -62 770 -549

23 47.23 54 262 -22 -29 640 -434

24 62.97 33 158 0 -1 482 -319

25 78.71 30 125 12 17 375 -281

26 94.46 1 -10 23 30 346 -378

27 110.20 -30 -153 39 51 434 -591

28 125.94 -34 -190 39 52 512 -751

29 141.69 -82 -398 57 75 503 -772

30 157.43 -42 -285 75 99 399 -662

Girder G1 Unfactored Torques

10th

Point

Span

Length

Dead Load LL+I
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Table 6  Girder G2 Unfactored Torques by Tenth Point 

 

 

 

DC1STEEL DC1CONC DC2 DW Pos. Neg.

(ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft) (kip-ft)

0 0.00 43 98 180 238 621 -533

1 16.26 87 276 139 184 774 -503

2 32.51 35 92 104 137 785 -469

3 48.77 32 88 64 84 638 -427

4 65.03 -2 -22 21 28 412 -391

5 81.29 -32 -129 -19 -26 348 -439

6 97.54 -36 -125 -58 -76 333 -535

7 113.80 -59 -203 -87 -114 433 -676

8 130.06 -28 -53 -107 -140 552 -793

9 146.31 -10 63 -118 -155 687 -848

10 162.57 -22 48 -149 -197 980 -863

10 0.00 36 -33 193 254 980 -863

11 21.34 3 -101 160 212 978 -709

12 42.68 64 183 144 189 925 -569

13 64.01 40 118 105 138 754 -433

14 85.35 68 237 54 72 580 -425

15 106.69 0 0 0 0 477 -491

16 128.03 -68 -237 -55 -72 391 -596

17 149.36 -40 -118 -105 -138 456 -746

18 170.70 -64 -183 -144 -191 603 -915

19 192.04 -3 102 -161 -212 725 -974

20 213.38 -36 33 -193 -255 878 -976

20 0.00 22 -48 149 197 878 -976

21 21.34 10 -63 118 155 853 -674

22 42.68 28 53 107 140 799 -536

23 64.01 59 203 87 114 685 -430

24 85.35 36 125 58 76 542 -321

25 106.69 32 129 19 26 415 -360

26 128.03 1 22 -21 -28 385 -440

27 149.36 -32 -88 -64 -84 433 -626

28 170.70 -35 -92 -104 -137 502 -782

29 192.04 -87 -276 -139 -184 533 -783

30 213.38 -43 -98 -180 -237 533 -621

10th 

Point

Span 

Length

Dead Load LL+I

Girder G2 Unfactored Torques
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Table 7  Section G2-1 Unfactored Major-Axis Bending Moments and Torques  

 
 

  

DC1STEEL DC1CONC DC1CAST1 DC2 DW Pos. Neg. Pos. Neg.

Moment (kip-ft) 1144 4747 2979 765 1006 5920 -1689 -290 1525

Torque (kip-ft) 59 205 464 41 54 525 -409 -113 232

Demand
Dead Load LL+I Fatigue LL+I

Unfactored Demands at Section G2-1 (10th Point = 3.5)
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7.0 DESIGN 

 

Sample design calculations at selected critical locations of Girder G2 are provided within this 

section. The calculations are intended to illustrate the application of some of the more significant 

provisions of the AASHTO LRFD BDS. As such, complete calculations for each girder section and 

all bridge components are not shown. Two critical girder section checks are provided: Section G2-

1 represents a girder section checked for positive moment, and Section G2-2 represents a girder 

section at an interior pier and the maximum negative moment location. The sample girder design 

calculations illustrate provisions that need to be checked at the strength, service, fatigue, and 

constructability limit states. Also, sample calculations for determining tub girder distortional 

stresses based on the beam-on-elastic-foundation (BEF) analogy are provided. 

 

Sample design calculations are also provided for the longitudinal bottom flange stiffener design, 

internal full-depth diaphragm design, bearing stiffener design, top flange lateral bracing member 

design, and a bolted field splice design. The sample design calculations make use of the moments, 

shears, and torques provided in the tables shown in Section 6.2 of this design example, and the 

section properties that are computed in the sections that follow. In the calculation of major-axis 

bending stresses throughout the sample calculations, compressive stresses are always shown as 

negative values and tensile stresses are always shown as positive values.   

 

7.1 Girder Section Proportioning 

 

Figure 9 illustrates the Girder G2 elevation, showing the flange and web sizes employed in this 

design example. The same flange and web sizes of Girder G2 are used on Girder G1, but with plate 

lengths radially proportional to the plate lengths for Girder G2.  
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Figure 9  Girder G2 elevation 
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7.1.1 Girder Web Depth 

 

Proper proportioning of tub girders involves a study of various girder depths versus girder weight 

to arrive at the least weight solution that meets all performance and handling requirements. The 

overall weight of the tub girder can vary dramatically based on web depth.  Establishing a sound 

optimum depth for tub girders is particularly important because the sizes of the bottom flange 

plates can typically be varied less over the bridge length,  Also, boxes that are overly shallow may 

potentially be subject to larger torsional shears. Therefore, selection of the proper depth is an 

extremely important consideration affecting the economy of the design. From a practical 

standpoint, tub girder web depths should not be less than about 5 feet to facilitate fabrication and 

inspection. 

 

The NSBA Publication, Practical Steel Tub Girder Design [1] points out that a traditional rule of 

thumb for steel tub girder bridge depths is L/25, however designers should not be reluctant to 

exceed this ratio. Tangent steel tub girders have approached L/35 while meeting all code 

requirements for strength and deflection. Furthermore, tub girders are generally stiffer than I-

girders because an individual tub nearly acts as two I-girders for major-axis bending. For torsion, 

an individual tub girder is significantly stiffer than two-I-girders. 

 

Article 2.5.2.6.3 provides suggested minimum span-to-depth ratios for I-girders, but does not 

specifically address tub girder sections. The suggested minimum total depth of a composite I-

girder in a continuous span is given as 0.032L, where L is the span length in feet. This criterion, 

which is based on the traditional span-to-depth ratio of L/25 for simple-span I-girders multiplied 

by a factor of 0.8 to account for double-end continuity in a continuous span, is applied herein to 

determine a starting depth of the tub girder for the depth studies. The length of the center span of 

the outside girder, Girder G2, is 213.38 feet (measured along the centerline of the tub section), 

which is the longest effective span in this design example. Therefore, the suggested minimum 

depth of the composite section is: 

 

 0.032(213.38) = 6.828 ft = 81.9 in. 

 

Considering that 81.9 inches is the suggested minimum depth of the composite section including 

the depth of the concrete deck, a vertical web depth of 78.0 inches is chosen in this design example.  

 

Note:  The optimum depth for a box section will typically be slightly less than the optimum depth of an 

I-section for the same span because of the inherent torsional stiffness of a box section. It should be 

noted that given the relatively low performance ratios determined in the calculations that follow, 

a somewhat shallower vertical web depth could probably have been utilized in this example to 

provide a more efficient design. However, since the primary intent of this example is simply to 

illustrate the proper application of the AASHTO LRFD provisions to the design of a continuous 

horizontally curved steel tub-girder bridge, the calculations that follow are based on the originally 

selected vertical web depth of 78.0 inches. 

 

Tub girders typically employ inclined webs, as they are advantageous in reducing the width of the 

bottom flange. Article 6.11.2.1 specifies that the web inclination should not exceed 1:4 

(horizontal:vertical). Because progressively deeper webs may result in a narrower and potentially 
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thicker bottom flange plate (at location of maximum flexure), it is generally necessary for the 

Engineer to explore a wide range of web depths and web spacing options in conjunction with 

bottom flange requirements to determine the optimal solution. 

 

The maximum recommended web inclination of 1:4 is used for this design example so as to 

minimize the bottom flange width. Based on the previously mentioned web depth study, a vertical 

web depth of 78.0 inches is selected, resulting in a distance of 81 inches between the centerline of 

the webs at the bottom flange. The actual bottom flange width is 83 inches in order to provide a 

minimum 1.0-inch flange extension on the outside of each web, which provides access for welding 

of the webs to the bottom flange. However, it should be noted, according to the AASHTO/NSBA 

Steel Bridge Collaboration Document G1.4: Guidelines for Design Details [10], most fabricators 

prefer a bottom flange extension of 1.5 inches, and 1.0 inch is the minimum. The 1.5-inch flange 

extensions shown in Figure 10 and Figure 12 are measured from the centerline of the web. 

 

7.1.2 Cross-section Proportions 

 

Proportion limits for webs of tub girders are specified in Article 6.11.2.1. Provisions for webs with 

and without longitudinal stiffeners are presented. For this example a longitudinally stiffened web 

is not anticipated. Therefore, the web plate must be proportioned such that the web plate thickness 

(tw) meets the requirement: 

 

 
w

D
150

t
         Eq. (6.11.2.1.2-1) 

 

where D is the distance along the web. For inclined webs, Article 6.11.2.1.1 states that the distance 

along the web is to be used for all design checks. The web thickness used along the entire length 

of both girders in this design example is 0.5625 inches. Determine the web depth along the incline: 

 

4.123
D 78 80.40 in.

4.0

 
= = 

 
 

 

Checking Eq. (6.11.2.1.2-1): 

 

 
w

D 80.40
142.9 150

t 0.5625
= =   OK 

 

Cross-section proportion limits for top flanges of tub girders are specified in Article 6.11.2.2.  The 

smallest top flange employed in this design example is 1.0 in. x 16.0 in. The minimum width of 

flanges is specified as: 

 

 f

D 80.40
b 13.4 in.

6 6
 = =            Eq. (6.11.2.2-2) 

 

Therefore, the minimum top flange width of 16.0 in. satisfies the requirements of Eq. (6.11.2.2-2). 

The minimum thickness of the top flange must satisfy the following two provisions: 
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 f

f

b
12.0

2t
            Eq. (6.11.2.2-1) 

 

 f

f

b 16.0
8.0 12.0

2t 2(1.0)
= =   OK 

 

and, 

 

 
f wt 1.1 t            Eq. (6.11.2.2-3) 

 

 f wt 1.0 in. 1.1 t 1.1(0.5625) 0.62 in.=  = =  OK 

 

It should be noted that the AASHTO/NSBA Steel Bridge Collaboration document G12.1: 

Guidelines to Design for Constructability and Fabrication [12] recommends a minimum flange 

thickness of 0.75 inches to enhance girder stability during handling and erection.   

 

The AASHTO LRFD BDS currently imposes no limitation on the b/t ratio of bottom flanges of 

composite tub girders in tension. Past and current industry guidance has suggested “rules of 

thumb” for the maximum b/t ratio ranging from as slender as 120 to as stocky as 80. White et al. 

(2019) [18] developed guidance (described below) which has been adopted in the AASHTO LRFD 

BDS for noncomposite steel box girder members, and which White et al. suggested should also be 

considered for composite steel tub girder bottom flanges. These limits are intended to address 

several fabrication concerns, including waviness and warping effects during welding of the bottom 

flange to the webs. Furthermore, the Engineer should be aware that it is possible that the bottom 

flange in tension in the final condition may be in compression during lifting of the tub girder during 

erection, possibly causing buckling of the slender bottom flange.  

 

Article 6.12.2.2.2b suggests a limit on the b/t ratio, based on the inside width of the flanges, of 90 

for longitudinally unstiffened compression and tension flanges in noncomposite box-section 

members to address similar concerns. Compression flanges exceeding this value must include 

longitudinal stiffeners. Tension flanges in these members with a b/t ratio exceeding 130 must 

include longitudinal stiffeners to prevent noticeable out-of-plane deflections of the flange under 

self-weight or under self-weight with a small concentrated transverse load. Unless otherwise 

specified by the Owner, a minimum thickness of 0.5 inches is also specified for compression and 

tension flanges in these members to limit potential local deformation or distortion of box section 

flanges during fabrication, transportation, erection, and service conditions. Additional information 

on these limits may be found in White et al. (2019) [18]. Additional discussion concerning this 

issue can also be found in the NSBA publication Practical Steel Tub Girder Design [1]. 

 

If it is desired to exceed the suggested b/t limit of 90 for tension flanges, the Engineer should 

consult with fabricators to verify that a tub girder with the selected bottom flange thickness in 

regions of positive flexure can be fabricated without causing any significant handling and/or 

distortion concerns without providing any flange longitudinal stiffeners. For this example, tension 

flanges in regions of positive flexure with thicknesses exceeding 0.5 inches and with a maximum 
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b/t ratio (based on the inside width of the flanges) of approximately 120 or less are utilized 

(maximum b/t = 79.4375/0.6875 = 115.5). This represents a reduction in the b/t ratios from the 

original design for this example, which was completed before the preceding guidance was 

available. In an actual design, consideration should probably be given to using a somewhat lower 

b/t for these flanges.  

 

The AASHTO/NSBA Steel Bridge Collaboration document G1.4, Guidelines for Design Details 

[10] (Page 116) suggests preferred bottom flange extensions of 1-1/2 inches for welding access. 

Therefore, bottom flange extensions of 1-1/2 inches (measured from the centerline of the webs) 

were assumed in this design example.  

 

7.2 Section Properties 

 

The calculation of the section properties for Sections G2-1 and G2-2 is illustrated below. In 

computing the composite section properties, the structural slab thickness, or total thickness minus 

the thickness of the integral wearing surface, should be used. However, in the case of this design 

example, there is no integral wearing surface assumed, therefore the total structural thickness of 

the deck slab is 9.5 in. 

 

For all section property calculations, the deck haunch depth of 4.00 in. is considered in computing 

the section properties, but the area of the deck haunch is not included. Since the actual depth of 

the haunch concrete may vary from its theoretical value to account for construction tolerances, 

some designers ignore the haunch concrete depth in all calculations. For composite section 

properties including only longitudinal reinforcement, the deck haunch depth is considered when 

determining the vertical position of the reinforcement relative to the steel girder. For the purposes 

of the section property calculations in this example, the longitudinal reinforcement steel area is 

assumed to be equal to 20.0 in.2 per girder, and is assumed to be placed at the mid-depth of the 

effective structural deck thickness (see Section 7.2.3). 

 

The section properties calculated herein also include the longitudinal component of the top flange 

lateral bracing area, the longitudinal bottom flange stiffener (where present), and the 1.5 in. 

bottom-flange extensions. A single top flange lateral bracing member of 8.0 in.2 placed at an angle 

of 30 degrees from the girder tangent is assumed in this design example in the computation of the 

section properties. The inclusion of the longitudinal component of the top flange lateral bracing 

area is not required and may conservatively be neglected if desired. 

 

The composite section consists of the steel section and the transformed area of the effective width 

of the concrete deck. Therefore, compute the modular ratio, n (Article 6.10.1.1.1b):       

  

 
c

E
n

E
=       Eq. (6.10.1.1.1b-1) 

 

where Ec is the modulus of elasticity of the concrete determined as specified in Article 5.4.2.4.  A 

unit weight of 0.150 kcf is used for the concrete in the calculation of the modular ratio, which is 

more conservative than the value given in Table 3.5.1-1 since it includes an additional 0.005 kcf 

to account for the weight of the reinforcement. The correction factor for source of aggregate, K1, 
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is taken as 1.0. The traditional equation for Ec for normal-weight concrete given in Article C5.4.2.4 

is used in this example. 

 

 
1.5

c 1 c cE 33,000 K  w f'=          Eq. (C5.4.2.4-2) 

  

 
1.5

cE 33,000 (1.0) (0.150) 4.0 3,834 ksi= =  

 

 
29,000

n 7.56
3,834

= =  

 

n = 7.56 will be used in all subsequent computations in this design example. 

 

7.2.1 Section G2-1: Span 1 Positive Moment Section Properties 

 

Section G2-1 is located in Span 1, approximately 57 feet from the centerline of the bearing at 

Abutment 1. The cross-section for Section G2-1 is shown in Figure 10. For this section, the 

longitudinal reinforcement is conservatively neglected in computing the composite section 

properties as is typically assumed in design. 
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Figure 10  Tub-Girder Cross–Section at Section G2-1 

 

7.2.1.1 Effective Width of Concrete Deck 

 

As specified in Article 6.10.1.1.1e, the effective flange width is to be determined as specified in 

Article 4.6.2.6. According to Article 4.6.2.6, the deck slab effective width may be taken as the 

tributary width perpendicular to the axis of the member for determining the cross-section 

stiffnesses for analysis and for determining flexural resistances. In a typical two tub girder cross-

section, the tributary width of the deck slab over each girder is taken as the distance between the 

two webs of the girder, plus half the distance from one web to the adjacent web of the adjacent 

girder plus the full overhang width. Therefore, the deck slab effective width, beff, for Girder G2 is: 

 

 eff

12.50
b 4.00 10.00  20.25 ft 243 in.

2
= + + = =  
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7.2.1.2 Elastic Section Properties: Section G2-1 

 

For tub sections with inclined webs, the area of the inclined webs should be used in computing all 

section properties. As shown in Figure 11, the moment of inertia of a single inclined web, Iow, with 

respect to a horizontal axis at mid-depth of the web is computed as: 

 

 
2

ow w2

S
I  I

S 1
=

+
 

 

where: S = web slope with respect to the horizontal (equal to 4.00 in this example) 

 Iw = moment of inertia of each inclined web with respect to an axis normal to the web 

 

( )( )
2

3 4

2

4.0 1
I  0.5625 80.4 22,929 in.
ow 4.0 1 12

 
= = 

+ 
 

 

 
Figure 11  Moment of Inertia of an Inclined Web 

 

In the calculations of the section properties that follow in Table 8 to Table 10, d is measured 

vertically from a horizontal axis through the mid-depth of the web to the centroid of each element 

of the tub girder.    

Table 8  Section G2-1: Steel Only Section Properties 

Component A d Ad Ad2 Io I 

2 Top Flanges 1" x 16" 32.00 39.50 1,264 49,928 2.67 49,931 

2 Webs 9/16" x 80.40" 90.45    45,858 45,858 

Bottom Flange 11/16" x 83" 57.06 -39.34 -2,245 88,308 2.25 88,310 

Top Flange Lat. Bracing 

8.0 in.2 @ 30○ 

6.93 39.50 273.7 10,813  10,813 

Σ 186.44  -707.3   194,912 

                                                                                                                 -3.79(707.3) = -2,681 

                                                                                                                               INA = 192,231 in.4  

s

707.3
d 3.79 in.

186.44

−
= = −  
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Top of Steeld 40.00 3.79 43.79 in.= + =                               Bot of Steeld 39.69 3.79 35.90 in.= − =  

 

3

Top of Steel

192,231
S 4,390 in.

43.79
= =                               

3

Bot of Steel

192,231
S 5,355 in.

35.90
= =  

 

Table 9  Section G2-1: 3n=22.68 Composite Section Properties 

Component A d Ad Ad2 Io I 

Steel Section 186.44  -707.3   194,912 

Concrete Slab 9½ʺ x 243ʺ/22.68 101.8 47.75 4,861 232,110 765.5 232,876 

Σ 288.24  4,154   427,788 

              -14.41(4,154) =  -59,859 

                      INA = 367,929 in.4  

3n

4,154
d 14.41 in.

288.24
= =  

 

Top of Steeld 40.00 14.41 25.59 in.= − =                      Bot of Steeld 39.69 14.41 54.10 in.= + =  

 

3

Top of Steel

367,929
S 14,378 in.

22.59
= =                      

3

Bot of Steel

367,929
S 6,801 in.

54.10
= =  

 

Table 10  Section G2-1: n=7.56 Composite Section Properties 

Component A d Ad Ad2 Io I 

Steel Section 186.44  -707.3   194,912 

Concrete Slab 9½ʺ x 243ʺ/7.56 305.4 47.75 14,583 696,331 2,297 698,628 

Σ 491.84  13,876   893,540 

               -28.21(13,876) =  -391,442 

                      INA = 502,098 in.4  

n

13,876
d 28.21 in.

491.84
= =  

 

Top of Steeld 40.00 28.21 11.79 in.= − =                      Bot of Steeld 39.69 28.21 67.90 in.= + =  

 

3

Top of Steel

502,098
S 42,587 in.

11.79
= =                      

3

Bot of Steel

502,098
S 7,395 in.

67.90
= =  

 

 

7.2.1.3 Plastic Moment Neutral Axis: Section G2-1 

 

As specified in Article 6.11.6.2.2 for sections in positive flexure, the ductility requirement of 

Article 6.10.7.3 must be satisfied for compact and noncompact sections to protect the concrete 

deck from premature crushing. This requires the computation of the plastic neutral axis in 
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accordance with Article D6.1. The longitudinal deck reinforcement is conservatively neglected.  

The location of the plastic neutral axis for the entire tub girder is computed as follows: 

 

 Pt = Fytbttt  = (50)(83.00)(0.6875)  = 2,853 kips 

 Pw = 2FywDtw  = (2)(50)(80.40)(0.5625) = 4,523 kips 

 Pc = 2Fycbctc  = (2)(50)(16.00)(1.00)  = 1,600 kips 

 Ps = 0.85f’cbeffts = (0.85)(4.0)(243)(9.5) = 7,849 kips 

 Prb = Prt = 0 kips 

 

 Pt + Pw + Pc > Ps + Prb + Prt 

 2,853 + 4,523 + 1,600 = 8,976 kips  >  7,849 kips  

 

Therefore, the plastic neutral axis (PNA) is in the top flange according to Case II of Table D6.1-

1.  Compute the PNA in accordance with Case II: 

 

 c w t s rt rb

c

t P P P P P 1.00 4,523 2,853 7,849 - 0 - 0
Y 1 1

2 P 2 1,600

 + − − − + − 
= + = +   

  
 

 

Y 0.35 in. downward from the top of the top flange (PNA location)=  

 

7.2.2 Section G2-2: Support 2 Negative Moment Section Properties 

 

Section G2-2 is located at Support 2, and is as shown in Figure 12.  The effective width of concrete 

deck is the same for Section G2-2 as calculated for Section G2-1, beff = 243.0 in. 
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Figure 12  Tub-Girder Cross–Section at Section G2-2 

 

7.2.2.1 Elastic Section Properties: Section G2-2 

 

For members with shear connectors provided throughout their entire length that also satisfy the 

provisions of Article 6.10.1.7, Articles 6.6.1.2.1 and 6.10.4.2.1 permit the concrete deck to also be 

considered effective for negative flexure when computing stress ranges and flexural stresses acting 

on the composite section at all sections in the member at the fatigue and service limit states, 

respectively. Therefore, section properties for the short-term and long-term composite section, 

including the concrete deck but neglecting the longitudinal reinforcement, are also determined for 

later use in the calculations of Section G2-2 at these limit states. 

 

Although not required by the AASHTO LRFD BDS, for stress calculations involving the 

application of long-term loads to the composite section in regions of negative flexure in this 

example, the area of the longitudinal reinforcement is conservatively adjusted for the effects of 

concrete creep by dividing the area by 3 (i.e. 20.00 in.2/3 = 6.67 in.2). The concrete is assumed to 

transfer the force from the longitudinal deck reinforcement to the rest of the cross-section and 

concrete creep acts to reduce that force over time. 

 

As shown in Figure 12, a single WT 8x28.5 is utilized as a bottom flange longitudinal stiffener 

with the stem welded to the bottom flange and is placed at the centerline of the bottom flange.  The 

WT 8x28.5 is considered in the section property computations. 

 

In the calculation of the section properties that follow in Table 11 to Table 15, d is measured 

vertically from a horizontal axis through the mid-depth of the web to the centroid of each element 

of the tub girder.  

  

Table 11  Section G2-2: Steel Only Section Properties 
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Table 12  Section G2-2: 3n=22.68 Composite Section Properties with Transformed Deck 

 

Table 13  Section G2-2: n=7.56 Composite Section Properties with Transformed Deck 
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Table 14  Section G2-2: 3n Composite Section Properties with Longitudinal Steel 

Reinforcement 

 

Table 15  Section G2-2: n Composite Section Properties with Longitudinal Steel 

Reinforcement 
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7.2.3 Check of Minimum Negative Flexure Concrete Deck Reinforcement (Article 6.10.1.7) 

 

To control concrete deck cracking in regions of negative flexure, Article 6.10.1.7 specifies that the 

total cross-sectional area of the longitudinal reinforcement must not be less than 1 percent of the 

total cross-sectional area of the deck. The minimum longitudinal reinforcement must be provided 

wherever the longitudinal tensile stress in the concrete deck due to either the factored construction 

loads or Load Combination Service II exceeds fr.  is to be taken as 0.9 and fr is to be taken as 

the modulus of rupture of the concrete determined as follows: 

 

• For normal weight concrete: 
'

r cf 0.24 f=  

• For lightweight concrete: fr is calculated as specified in Article 5.4.2.6. 

 

It is further specified that the reinforcement is to have a specified minimum yield strength not less 

than 60 ksi and a size that should not exceed No. 6 bars. The reinforcement should be placed in 

two layers uniformly distributed across the deck width, and two-thirds should be placed in the top 

layer. The individual bars should be spaced at intervals not exceeding 12 inches.   

 

Article 6.10.1.1.1c states that for calculating stresses in composite sections subjected to negative 

flexure at the strength limit state, the composite section for both short-term and long-term moments 

is to consist of the steel section and the longitudinal reinforcement within the effective width of 

the concrete deck. Referring to the cross-section shown in Figure 2: 

 

deckA (entire width of 9.5"-thick deck)  (triangular portion of overhang)= +  

 

( ) 2 2

deck

9.5 1 4.0 16.0 2
A 40.5 2 4.0 33.17 ft 4,777 in.

12 2 12 12

   
= + − = =   

   
    

 

 
20.01(4,777) 47.77 in.=  

 

 
2 247.77

1.18 in. ft 0.098 in. in.
40.5

= =  

 

    
20.098(243.0) 23.81in.  per tub girder=  

 

Therefore, the assumption of 20.00 in.2 for the longitudinal deck reinforcement used in the 

calculation of the section properties for Section G2-1 (Table 14 and Table 15), which was assumed 

in the original design example, is conservative as the longitudinal deck reinforcement to be used 

is more than that assumed in the section property calculations. In the actual deck, the longitudinal 

reinforcement should have a minimum cross-sectional area of 23.81 in.2 per tub girder. If the 

reinforcement is detailed, #6 bars at 6 inches are placed in the top layer, and #4 bars at 6 inches 

are placed in the bottom layer. Therefore, the total area of deck reinforcement steel in the given 

effective width of concrete deck is: 
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( ) 2 2

S

243.0
A 0.44 0.44 0.20  0.20 25.92 in. 23.81 in.

12

 
= + + + =  

 
 

Also, approximately two-thirds of the reinforcement is in the top layer: 
0.44 0.44 2

0.69
1.28 3

+
=   

 

7.3 Girder Check: Section G2-1, Constructability (Article 6.11.3) 

 
Article 6.11.3 directs the engineer to Article 6.10.3 for discussion regarding the constructability 
checks of tub girders. For critical stages of construction, the provisions of Articles 6.10.3.2.1 
through 6.10.3.2.3 are to be applied to the top flanges of the tub girder. The noncomposite bottom 
tub flange in compression or tension is to satisfy the requirements specified in Article 6.11.3.2. 
Web shear is to be checked in accordance with Article 6.10.3.3, with the shear to be taken along 
the slope of the web in accordance with the provisions of Article 6.11.6. 

As specified in Article 6.10.3.4.1, sections in positive flexure that are composite in the final 

condition, but noncomposite during construction, are to be investigated during the various stages 

of deck placement. The effects of forces from deck overhang brackets acting on the fascia girders 

are also to be considered. Wind load effects on the noncomposite structure prior to and during 

casting are also an important consideration during construction. The presence of construction 

equipment may also need to be considered. Lastly, the potential for uplift at bearings should be 

investigated at each critical construction stage. For this design example, the effects of wind load 

on the structure and the presence of construction equipment are not considered. 

 

Calculate the maximum flexural stresses in the flanges of the steel section due to the factored loads 

resulting from the application of steel self-weight and Cast #1 of the deck placement sequence.  

Cast #1 yields the maximum positive moment in the noncomposite Section G2-1. As specified in 

Article 6.10.1.6, for design checks where the flexural resistance is based on lateral torsional 

buckling, fbu is to be determined as the largest value of the compressive stress throughout the 

unbraced length in the flange under consideration, calculated without consideration of flange 

lateral bending. For design checks where the flexural resistance is based on yielding, flange local 

buckling or web bend-buckling, fbu may be determined as the stress at the section under 

consideration. From Figure 1, brace points adjacent to Section G2-1 are located at intervals of 

approximately 16.3 feet, and the largest stress occurs within this unbraced length.   

 

In accordance with Article 3.4.2.1, when investigating Strength I during construction, load factors 

for the weight of the structure and appurtenances, DC and DW, are not to be taken to be less than 

1.25. Also, as discussed previously, the  factor is taken equal to 1.0 in this example. As shown in 

Table 7 the unfactored moments due to steel self-weight and Cast #1 are 1,144 k-ft and 2,979 k-ft, 

respectively. Therefore, 

 

For Construction Strength I: 

 

 General: DC
bu

nc

  M
f

S

 
=  
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 Top Flanges:  bu

1.0(1.25)(1,144  2,979)(12)
f 14.09 ksi

4,390

+
= = −  

 

 Bot. Flange: bu

1.0(1.25)(1,144  2,979)(12)
f 11.55 ksi

5,355

+
= =  

 

Although not included in this example in the interest of brevity, the special load combination 

specified in Article 3.4.2.1 must also be considered in the design checks for the DC loads and 

construction loads, C, applied to the fully erected steelwork during the deck placement sequence 

(see Section 5.4). 

 

7.3.1 Deck Overhang Bracket Load 

 

During construction, the weight of the deck overhang wet concrete is resisted by the deck overhang 

brackets. Other loads supported by the overhang brackets during construction include the 

formwork, screed rail, railing, worker walkway, and possibly the deck finishing machine.   

 

The deck overhang construction loads are typically applied to the noncomposite section and are 

removed once the concrete deck has become composite with the steel girders. The deck overhang 

bracket imparts a lateral force on the top and bottom flanges resulting in lateral bending of the 

flanges. The lateral bending of the top flange must be considered as part of the constructability 

check, however in a tub girder bridge, the flange lateral bending of the bottom flange is typically 

ignored due to the large section modulus of the bottom flange in the lateral direction. Also, it 

should be noted that if the bottom of the bracket does not bear on the web near the junction of the 

web and bottom flange, additional support and/or stiffening of the web may be warranted. 

 

Since G2 is a fascia girder, one-half of the deck overhang weight is assumed to be carried by the 

girder and one-half is assumed placed on the overhang brackets, as shown in Figure 13. 

 

 
Figure 13  Deck Overhang Bracket Loading 
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The deck overhang bracket loads are assumed to be applied uniformly to the top flange, even 

though the brackets are actually spaced at approximately 3 feet along the length of the girder. 

 

The unbraced length of the top flange is approximately 16.3 ft in Span 1. The deck thickness in 

the overhang area is assumed to be 10 inches, and the weight of the deck finishing machine is not 

considered in these calculations. Therefore, the vertical load on the deck overhang brackets is 

computed as: 

 

 Deck Overhang: ( ) ( )
1 10

4.0 150
2 12

   
   
   

 = 250 lbs/ft 

 

 Deck Forms + Screed Rail  = 224 lbs/ft  (assumed) 

 

 Total Uniform Load on Brackets = 474 lbs/ft 

 

According to Article 3.4.2.1, the load factor for construction loads is to be taken as 1.50 for the 

Strength I load combination. The factored Strength I lateral force on the top flange is therefore 

computed as: 

 

 1 78.0
tan 49.1

67.5

−  
 = =  

 
 

 

1.25(250) 1.50(224)
F 562 lb/ft 0.562 kip/ft

tan(49.1 )

+
= = =


 

 

The flange lateral bending moment on the exterior web top flange due to the deck overhang bracket 

is computed. The flange lateral moment at the brace points due to the overhang forces is negative 

in the top flange of Girder G2 on the outside of the curve in regions of positive flexure because 

the stress due to the lateral moment is compressive on the convex side of the flange at the brace 

points. The opposite would be true on the convex side of the Girder G1 top flange on the inside of 

the curve in regions of positive flexure at the brace points. In the absence of a more refined 

analysis, the equations given in Article C6.10.3.4.1 may be used to estimate the maximum flange 

lateral bending moments in the discretely braced compression flange due to the lateral bracket 

forces. Assuming the flange is continuous with the adjacent unbraced lengths and that the adjacent 

unbraced lengths are approximately equal, the factored Strength I lateral bending moment due to 

a statically equivalent uniformly distributed lateral bracket force may be estimated as: 

 

( )
22

b
0.562 16.3F  L

M 12.4 kip-ft
12 12

 
= = − = − 

  

      Eq. (C6.10.3.4.1-1) 

 

7.3.2 Flange Lateral Bending Due to Horizontal Component of Web Shear 
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In addition to the lateral bending moment due to the overhang brackets, the inclined webs of the 

tub girder cause a lateral force on the top flanges. However, in this example this force and 

subsequent lateral bending effects are relatively small and are ignored in these computations.  

Refer to NSBA’s Steel Bridge Design Handbook: Example 4: Three-Span Continuous Straight 

Composite Steel Tub-Girder Bridge [8] for a sample calculation of these lateral bending effects.   

 

7.3.3 Flange Lateral Bending Due to Curvature 

 

Another source of lateral bending is due to curvature, which can either be taken from the analysis 

results (if the curvature of the tub girder top flanges between the top flange lateral bracing struts 

is captured with sufficient discretization, i.e., if the top flanges are not modeled using a single 

beam element chorded between the top flange lateral bracing strut nodes), or estimated by the 

approximate V-load equation given in Article C4.6.1.2.4b. The V-load equation assumes the 

presence of a cross-frame at the point under investigation and a constant major-axis moment over 

the distance between the brace points. Although the V-load equation is intended for application to 

I-girders and is not theoretically pure for tub girders or at locations in-between brace points, it may 

conservatively be used to estimate the flange lateral bending moments at the cross-frames in the 

top flanges of a tub. 

 

The top flange size is constant between brace points in this region under investigation. In positive 

moment regions, the largest value of the major-axis bending stress (fbu) may not necessarily be at 

either brace point. Generally, in positive moment regions, fbu will not be significantly larger than 

the value at adjacent brace points, which is the case in this example. Therefore, the computed value 

of fbu at Section G2-1 and the lateral bending moment at the brace points are conservatively 

combined for this constructability check.   

 

For this example, and illustration purposes, the V-load equation is used to compute the flange 

lateral bending moment due to curvature. For a single tub girder flange, consider only one-half of 

the girder major-axis moment due to steel self-weight and Cast #1 of the deck placement sequence.  

 

( )1,144 2,979
M 2,062 kip-ft

2

+
= =   

 

( )( )

( )( )( )

22

LAT

2,062 16.3M
M 9.8 kip-ft

NRD 12 716.25 6.5

 
= = − = − 

  

      Eq. (C4.6.1.2.4b-1) 

 

where: 

 

 MLAT  = flange lateral bending moment (kip-ft) 

 M = major-axis bending moment (kip-ft) 

 ℓ = unbraced length (ft) 

 N = a constant taken as 10 or 12 in past practice; 12 is recommended for use herein 

 R = girder radius (ft) 

 D = web depth (ft) 
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The flange lateral moment at the brace points due to curvature is negative when the top flanges are 

subjected to compression because the stress due to the lateral moment is in compression on the 

convex side of the flange at the brace points. The opposite is true whenever the top flanges are 

subjected to tension. Thus, the flange lateral moments due to the overhang loads in the top flange 

of Girder G2 on the outside of the curve in regions of positive flexure are additive to those due to 

curvature (see below); the opposite is true in the top flange of Girder G1 on the inside of the curve 

in regions of positive flexure. The total factored Strength I lateral moment and stress in the top 

flange of Girder G2, including the factored lateral moment from the overhang bracket is: 

 

 ( )TOT_LATM 1.25 ( 9.8) ( 12.4) 24.7 kip-ft= − + − = −  

 

 
TOT _ LAT

2

M -24.7(12)
f -6.95 ksi

S (1.00)(16) 6
= = =  

 

It should be noted that another significant source of flange lateral bending results from forces that 

develop in single-diagonal top flange bracing members resulting from major-axis bending of the 

tub girder. This effect is recognized in flange lateral moments that are taken directly from a finite 

element analysis. In the absence of a refined analysis, equations have been developed to evaluate 

bracing member forces and the forces imparted on the top flange in tub girders due to major-axis 

bending [13 and 17]. The flange lateral bending due to the forces in the top lateral bracing is not 

considered in these computations. 

 

7.3.4 Top Flange Lateral Bending Amplification 

 

According to Article 6.10.1.6, lateral bending stresses determined from a first-order analysis may 

be used in discretely braced compression flanges for which: 

 

 b b
b p

bu yc

C R
L 1.2L

f F
                   Eq. (6.10.1.6-2) 

 

Lp is the limiting unbraced length specified in Article 6.10.8.2.3 determined as: 

 

 
p t

yc

E
L 1.0r

F
=                Eq. (6.10.8.2.3-4) 

 

where rt is the effective radius of gyration for lateral torsional buckling specified in Article 

6.10.8.2.3 determined as: 

 

 fc
t

c w

fc fc

b
r

D t1
12 1

3 b t

=
 

+ 
 

               Eq. (6.10.8.2.3-9) 
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For the steel section, the depth of the web in compression in the elastic range, Dc, at Section G2-1 

is computed along the web (not vertical) as follows: 

 

 Note that for the steel section only: dTOP OF STEEL = 43.79 in.  

 

 
2

c TOP OF STEEL f 2

S 1
D (d t ) 

S

+
= −  

 

 
2

c 2

4 1
D (43.79 1.00) 44.11 in.

4

+
= − =  

 

It should be noted that values of Dc and D are taken as distances along the web in accordance with 

Article 6.11.2.1.1. Therefore, 

 

 t

16
r 3.75 in.

1 44.11(0.5625)
12 1

3 16(1.00)

= =
 

+ 
 

 

 

 p

1.0(3.75) 29,000
L 7.53 ft

12 50
= =  

 

Cb is the moment gradient modifier specified in Article 6.10.8.2.3 and may conservatively be taken 

equal to 1.0 in regions of positive flexure. According to Article 6.10.1.10.2, the web load-shedding 

factor, Rb, is to be taken equal to 1.0 when checking constructability. Finally, fbu is the largest 

value of the compressive stress due to the factored loads throughout the unbraced length in the 

flange under consideration, calculated without consideration of flange lateral bending.  In this case, 

use fbu =  -14.09 ksi, as computed earlier for the Construction Strength I load combination. 

Therefore: 

 

 ( )
( )

b

1.0 1.0
1.2 7.53 17.02 ft L 16.3 ft

-14.09

50

=  =                        Eq. (6.10.1.6-2) 

 

Therefore, Eq. 6.10.1.6-2 is satisfied, and amplification of the first-order elastic compression-

flange lateral bending stresses is not required. The flange lateral bending stress, fℓ, determined 

from the first-order elastic analysis is sufficient; thus fℓ = -6.95 ksi. The factored flange lateral 

bending stress is less than the limit of 0.6Fyf = 0.6(50) = 30.0 ksi specified in Article 6.10.1.6. 

 

7.3.5 Flexure (Article 6.11.3.2) 

 

For critical stages of construction, Article 6.11.3.2 directs the engineer to the provisions of Article 

6.10.3.2 to compute the resistance of top flanges of tub sections. The unbraced length should be 

taken as the distance between interior cross-frames or diaphragms. However as stated in the 
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commentary to Article 6.11.3.2, top lateral bracing attached to the flanges at points where only 

struts exist between the flanges may be considered as brace points at the discretion of the Engineer. 

In the case of this design example, which features a full-length top flange lateral bracing system, 

it is reasonable to consider both the struts with internal cross-frames and the alternating struts 

without internal cross-frames as brace points for the top flanges. 

 

Article 6.10.3.2.1 requires that discretely braced flanges in compression satisfy the following: 

 

  bu f h ycf f R F+                 Eq. (6.10.3.2.1-1) 

 

  bu f nc

1
f f F

3
+                 Eq. (6.10.3.2.1-2) 

 

  bu f crwf F                 Eq. (6.10.3.2.1-3) 

 

Article 6.11.3.2 requires that the noncomposite box flange (bottom flange) in tension satisfy: 

 

 bu f h yff R F  Δ                  Eq. (6.11.3.2-3) 

 

where:  f  =  resistance factor for flexure from Article 6.5.4.2 (f = 1.0) 

 Rh = hybrid factor specified in Article 6.10.1.10.1 (1.0 at homogeneous Section G2-1)  

 Fcrw =  nominal elastic bend-buckling resistance for webs determined as specified in 

Article 6.10.1.9  

 Fnc  =  nominal flexural resistance of the compression flange determined as specified in 

Article 6.10.8.2 (i.e. local or lateral torsional buckling resistance, as applicable).  

The provisions of Article A6.3.3 are not to be used to determine the lateral 

torsional buckling resistance of top flanges of tub girders with compact or 

noncompact webs, as specified in Article 6.11.3.2. 

 Δ  =  a factor dependent on the St. Venant torsional shear stress in the bottom flange.  

St. Venant torsional shear stress will be addressed later in this example. 

 

7.3.5.1 Top Flange 

 

7.3.5.1.1 Top Flange: Yielding  

 

First, determine if the noncomposite Section G2-1 is a compact or noncompact web section 

according to Eq. (6.10.6.2.3-1), or alternatively, see Table C6.10.1.10.2-2: 

 

      
c

rw

w

2D

t
 

                                                                                             Eq. (6.10.6.2.3-1) 

 

where: 
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      rw

yc wc yc yc

E 5.0 E E
4.6 3.1 5.7

F a F F

 
  = +  

 
 Eq. (6.10.6.2.3-3) 

 

       
c w

wc

fc fc

2D t
a

b t
=

                                                                                            Eq. (6.10.6.2.3-4) 

 

       
c

w

2D 2(44.11)
156.8

t 0.5625
= =

 

 

      
yc

E 29,000
4.6 4.6 111

F 50
= =

 

 

      
yc

E 29,000
5.7 5.7 137

F 50
= =

 

 

      wc

2(44.11)(0.5625)
a 3.10

16(1.0)
= =

 

 

      rw

5.0 29,000
111 3.1 113.5 137

3.10 50

 
  = + =  

      

 

      
c

rw

w

2D
113.5 156.8

t
 =  =

 

 

Therefore, the noncomposite Section G2-1 is a slender-web section. As a result, for the top flanges, 

Eq. (6.10.3.2.1-1) must be checked since f is not zero. Check that the top flanges satisfy Eq. 

6.10.3.2.1-1 as follows: 

 

 bu f h ycf f R F+                 Eq. (6.10.3.2.1-1) 

 

buf f 14.09 6.95 21.04 ksi+ = − + − =  

 

 ( )( )f h ycR F 1.0 1.0 50 50.0 ksi  21.04 ksi = =    OK (Ratio = 0.421) 

 

7.3.5.1.2 Top Flange: Local Buckling Resistance (Article 6.10.8.2.2) 

 

Determine the slenderness ratio of the top flange: 

 

fc
f

fc

b

2t
 =                 Eq. (6.10.8.2.2-3) 
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( )

f

16
λ 8.00

2 1.00
= =  

 

Determine the limiting slenderness ratio for a compact flange (alternatively see Table C6.10.8.2.2-

1): 

 

pf

yc

E
0.38

F
 =                Eq. (6.10.8.2.2-3) 

 

 pf

29,000
0.38 9.15

50
 = =  

 

Since f  <  pf, 

 nc b h ycF R R F=                Eq. (6.10.8.2.2-1) 

 

Since Rb is taken as 1.0 for constructability,  

 

 ( )( )( )ncF 1.0 1.0 50 50 ksi= =  

 

Check Eq. 6.10.3.2.1-2 as follows: 

 

 ( )( )
1

14.09 6.95 16.41 ksi 1.0 50.0 50.0 ksi  
3

− + − =  =  OK (Ratio = 0.328) 

 

7.3.5.1.3 Top Flange: Lateral Torsional Buckling Resistance (Article 6.10.8.2.3) 

 

The limiting unbraced length, Lp, was computed earlier to be 7.53 feet. The effective radius of 

gyration for lateral torsional buckling, rt, for the noncomposite Section G2-1 was also computed 

earlier to be 3.75 inches. The computations for Lp and rt are shown in Section 7.3.4. 

 

Determine the limiting unbraced length, Lr: 

 

 
r t

yr

E
L π r

F
=                Eq. (6.10.8.2.3-5) 

 

where Fyr is the compression flange stress at the onset on nominal yielding, including residual 

stress effects, and is to be taken as the smaller of 0.7Fyc and Fyw, but not less than 0.5Fyc. Since Fyc 

and Fyw are both equal to 50 ksi, 

 

 Fyr = 0.7(50) = 35 ksi 
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r

π (3.75) 29,000
L 28.26 ft

12 35
= =  

 

Since Lp = 7.53 feet < Lb = 16.30 feet < Lr = 28.26 feet, Eq. (6.10.8.2.3-2) is used to compute the 

lateral torsional buckling resistance. 

 

 
yr b p

nc b b h yc b h yc

h yc r p

F L L
F C 1 1 R R F R R F

R F L L

   −
= − −      −    

         Eq. (6.10.8.2.3-2) 

 

Compute the moment-gradient modifier, Cb, to be used in Eq. (6.10.8.2.3-2), where 

 

 Cb = 1.0 for members where fmid/f2 > 1 or f2 =0          Eq. (6.10.8.2.3-6) 

 

 Otherwise: 

2

1 1
b

2 2

f f
C 1.75 1.05 0.3 2.3

f f

   
= − +    

   
          Eq. (6.10.8.2.3-7) 

 

where: 

 

fmid =  flange stress without the consideration of lateral bending at the middle of the 

unbraced length of the flange under consideration. fmid shall be due to factored loads 

and shall be taken as positive in compression and negative in tension. 

 

f2 =  largest compressive flange stress without consideration of lateral bending at either 

end of the unbraced length of the flange under consideration. f2 shall be due to 

factored loads and shall be taken as positive. If the flange stress is zero or tensile in 

the flange under consideration at both ends of the unbraced length, f2 shall be taken 

as zero. 

 

f1 =  in the case of Section G2-1, the moment diagram along the entire length between 

brace points is concave in shape, and therefore, f1 = f0, and is the stress without 

consideration of lateral bending at the brace point opposite to the one corresponding 

to f2.  

 

Refer to the sample cases shown in Article C6.4.10 for further interpretation of the preceding stress 

definitions for different types of moment-gradient conditions. 

  

The largest compressive stress at the end of the unbraced length under consideration is at the brace 

point 65.04 ft into Span 1. From calculations not shown herein, the unfactored moments at 65.04 

ft due to steel self-weight and Cast #1 are 1,115 k-ft and 3,361 k-ft, respectively. Therefore, f2 is 

calculated as: 

 

 2

1.0(1.25)(1,115  3,361)(12)
f 15.29 ksi

4,390

+
= =  
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fmid is the compressive stress at the location under investigation, previously computed as 1409 ksi 

in compression.  Check the fmid/f2 ratio: 

 

 mid

2

f 14.09
0.92 < 1.0

f 15.29
= =  

 

Therefore, Cb can be calculated using Eq. (6.10.8.2.3-7). First, it is necessary to compute f1, which 

is the flange stress at the opposite brace point from f2. From calculations not shown herein, the 

unfactored moments at 48.77 ft due to steel self-weight and Cast #1 are 1,116 k-ft and 2,588 k-ft, 

respectively. Therefore, f1 is calculated as: 

 

 1

1.0(1.25)(1,116  2,588)(12)
f 12.66 ksi

4,390

+
= =  

 

Cb is computed as: 

 

 

2

b

12.66 12.66
C 1.75 1.05 0.3 1.09 2.3

15.29 15.29

   
= − + =    

   
 

 

Therefore, the lateral torsional buckling resistance is: 

 

( )
( )

( )( )
( )( )( ) ( )( )( )nc

0.7 50 16.30 7.53
F 1.09 1 1 1.0 1.0 50 47.6 ksi  1.0 1.0 50 50 ksi

1.0 50 28.26 7.53

   − 
= − − =  =     −    

 

 

Check Eq. 6.10.3.2.1-2 as follows: 

 

 ( )( )
1

14.09 6.95 16.41 ksi  1.0 47.6 47.6 ksi  
3

− + − =  =  OK (Ratio = 0.345) 

 

Although not necessary in this case, if a larger lateral torsional buckling resistance had been 

required, then the equations of Article D6.4.1 could have alternatively been used to potentially 

obtain a larger resistance since Cb is greater than 1.0.   

 

7.3.5.1.4 Top Flange: Web Bend-Buckling Resistance (Article 6.10.1.9) 

 

Determine the nominal elastic web bend-buckling resistance at Section G2-1 according to the 

provisions of Article 6.10.1.9.1 as follows: 

 

 
yw

crw h yc2

w

F0.9Ek
F min R F , 

0.7D

t

 
=   

   
 
 

            Eq. (6.10.1.9.1-1) 
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where: 

 

 
( )

2

c

9
k

D D
=                Eq. (6.10.1.9.1-2) 

 

In earlier calculations, Dc was computed as 44.11 in. along the inclined web.   

 

 
2

9
k 29.9

44.11

80.40

= =
 
 
 

 

 

Therefore, 

 

 
crw h yc2

0.9(29,000)(29.9)
F 38.20 ksi R F 50 ksi

80.40

0.5625

= =  =
 
 
 

 

 

Check Eq. (6.10.3.2.1-3), 

 

 ( )( )14.09 14.09 ksi  1.0 38.20 38.20 ksi− =  =  OK (Ratio = 0.369) 

 

It should be noted that the web bend-buckling resistance is generally checked against the maximum 

compression flange stress due factored loads, without consideration of flange lateral bending, as 

shown in the previous calculation.  Since web-bend buckling is a check of the web, the maximum 

flexural compression stress in the web could be calculated and used for comparison against the 

bend-buckling resistance. However, the precision associated with making the distinction between 

the stress in the compression flange and the maximum compressive stress in the web is typically 

not warranted. 

 

7.3.5.2 Bottom Flange 

 

Noncomposite tub flanges in tension, in this particular case the bottom flange, must satisfy the 

following requirement: 

 

 bu f h yff R F  Δ                   Eq. (6.11.3.2-3) 

 

where: 

 

 

2

v

yf

f
Δ 1 3

F

 
= −   

 

                 Eq. (6.11.3.2-4) 
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The term fv is the factored St. Venant torsional shear stress in the flange at the section under 

consideration, and is taken as: 

 

 v

o f

T
f

2 A  t
=                   Eq. (6.11.3.2-5) 

 

where: 

 

 T  = internal torque due to factored loads (kip-in.) 

 Ao  =  enclosed area within the box section (in.2) 

 tf  =  bottom flange thickness (in.) 

 

Compute the enclosed area of the noncomposite box section, Ao. 

 

 
( )( )

2

o

120 83 2 1.5 1.00 0.6875
A 78 7,884 in.

2 2 2

 + −   = + + = 
 

 

 

As shown in Table 7, the unfactored torques due to steel self-weight and Cast #1 are 59 kip-ft and 

464 kip-ft, respectively.  Therefore, 

 

 
( )( )( )

( )( )v

1.25 59 464 12
f 0.72 ksi

2 7,884 0.6875

+
= =  

 

 

2
2

v

yf

f 0.72
Δ 1 3 1 3 1.0

F 50

   
= − = − =       

 

 

The factored bottom flange major-axis bending stress, calculated previously, is 11.55 ksi.  Check 

Eq. 6.11.3.2-3 as follows: 

 

 ( )( )( )( )bu f h yff 11.55 ksi R F Δ  1.0 1.0 50 1.0 50.0 ksi  =   = = OK (Ratio = 0.231) 

 

Although the check here of the bottom flange is illustrated for completeness, the bottom flange 

will typically not govern the constructability check in regions of positive flexure. 

 

7.3.6 Shear (Article 6.10.3.3) 

 

Article 6.10.3.3 requires that interior panels of stiffened webs satisfy the following requirement: 

 

  u v crV V                    Eq. (6.10.3.3-1) 

 

where: 
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  v = resistance factor for shear = 1.0 (Article 6.5.4.2) 

  Vu = shear in the web at the section under consideration due to the factored permanent 

loads and factored construction loads applied to the noncomposite section 

  Vcr = shear-yield or shear-buckling resistance determined from Eq. (6.10.9.3.3-1)  

 

Only the interior panels of stiffened webs are checked because the shear resistance of the end panel 

of stiffened webs and the shear resistance of unstiffened webs are already limited to the shear-

yield or shear-buckling resistance at the strength limit state. 

 

For this example, the web is unstiffened in the positive moment regions. Therefore, the 

constructability check for shear is not required at this section.   

 

7.3.7 Concrete Deck (Article 6.10.3.2.4) 

 
Generally, the entire deck is not placed in a single pour. Typically, for continuous span bridges, 
the positive flexure regions are placed first. Thus, positive flexure regions may become composite 
prior to placing the other sections of the deck. As the deck placement operation progresses, tensile 
stresses can develop in previously placed regions that will exceed the allowable modulus of rupture 

(fr) of the hardened deck. When cracking is predicted, longitudinal deck reinforcing as specified 
in Article 6.10.1.7 is required to control cracking.  Otherwise, alternative deck casting sequences 
must be employed to minimize the anticipated stresses to acceptable levels. This check is 
illustrated in NSBA’s Steel Bridge Design Handbook: Example 1: Three-Span Continuous 
Straight Composite Steel I-Girder Bridge [3]. 

7.4 Girder Check: Section G2-1, Service Limit State (Article 6.11.4)  

 

Article 6.11.4 directs the Engineer to Article 6.10.4, which contains provisions related to the 

control of elastic and permanent deformations at the service limit state. 

 

7.4.1 Permanent Deformations (Article 6.10.4.2) 

 

Article 6.10.4.2 contains criteria intended to control permanent deformations that would impair 

rideability. As specified in Article 6.10.4.2.1, these checks are to be made under the Service II load 

combination.   

 

Article 6.10.4.2.2 requires that flanges of composite sections satisfy the following: 

 

 Top flange of composite sections:     f h yff 0.95R F             Eq. (6.10.4.2.2-1) 

 

 Bottom flange of composite sections: f h yf

f
f 0.95R F

2
+                     Eq. (6.10.4.2.2-2) 

 

The term ff is the flange stress at the section under consideration due to the Service II loads 

calculated without consideration of flange lateral bending. The fℓ term, the flange lateral bending 

stress, in Eq. 6.10.4.2.2-2 is to be taken equal to zero in accordance with Article 6.11.4, for tub 
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girder bottom flanges. A resistance factor is not included in these equations because Article 1.3.2.1 

specifies that the resistance factor be taken equal to 1.0 at the service limit state. 

 

It should be noted that in accordance with Article 6.11.4 redistribution of negative moment due to 

the Service II loads at the interior-pier sections in continuous-span flexural members using the 

procedures specified in Appendix B6 is not to be applied to tub girder sections. The applicability 

of the Appendix B6 provisions to tub-girder sections has not been demonstrated; hence, the 

procedures are not permitted for the design of tub-girder sections. 

 

Furthermore, according to Article C6.11.4, under the load combinations specified in Table 3.4.1-

1, Eqs. 6.10.4.2.2-1 and 6.10.4.2.2-2 need only be checked for compact sections in positive flexure. 

For sections in negative flexure and noncompact sections in positive flexure, these two equations 

do not control and need not be checked. Composite sections in all horizontally curved girder 

systems are to be treated as noncompact sections at the strength limit state in accordance with 

Article 6.11.6.2.2. Therefore, for Section G2-1, Eqs. 6.10.4.2.2-1 and 6.10.4.2.2-2 do not need to 

be checked, and are not checked in this example. 

 

7.4.2 Web Bend-Buckling 

 

With the exception of composite sections in positive flexure in which the web satisfies the 

requirement of Articles 6.11.2.1.2 and 6.10.2.1.1 (i.e., D/tw ≤ 150), web bend-buckling of all 

sections under the Service II load combination is to be checked as follows: 

 

 c crwf F                Eq. (6.10.4.2.2-4) 

 

The term fc is the compression-flange stress at the section under consideration due to the Service 

II loads calculated without consideration of flange lateral bending, and Fcrw is the nominal elastic 

bend-buckling resistance for webs determined as specified in Article 6.10.1.9. Because Section 

G2-1 is a composite section subject to positive flexure satisfying Article 6.11.2.1.2, Eq. 

(6.10.4.2.2-4) need not be checked as D/tw = 142.9, which is less than 150. An explanation as to 

why these particular sections are exempt from the above web bend-buckling check is given in 

Article C6.10.1.9.1.  

 

7.5 Girder Check: Section G2-1, Fatigue and Fracture Limit State (Article 6.11.5)  

 

Article 6.11.5 directs the designer to Article 6.10.5, where details in tub girder section flexural 

members must be investigated for fatigue as specified in Article 6.6.1. As appropriate, the Fatigue 

I and Fatigue II load combinations specified in Table 3.4.1-1 and the fatigue live load specified in 

Article 3.6.1.4 are to be employed for checking load-induced fatigue in tub girder sections. The 

Fatigue I load combination is to be used in combination with design checks for infinite fatigue life. 

The Fatigue II load combination is to be used in combination with design checks for finite fatigue 

life. 

 

As specified in Article 6.11.5, one additional requirement specified for tub-girder sections deals 

with the consideration of longitudinal warping and transverse bending stresses due to cross-section 

distortion. When tub girders are subjected to torsion, their cross-section becomes distorted 
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resulting in secondary bending stresses. Therefore, longitudinal warping stresses and transverse 

bending stresses due to cross-section distortion are to be considered in the fatigue checks for: 

 

• Single tub girders in straight or horizontally curved bridges; 

• Multiple tub girders in straight bridges that do not satisfy requirements of Article 6.11.2.3; 

• Multiple tub girders in horizontally curved bridges; or 

• Any single or multiple tub girder with a bottom flange that is not fully effective according 

to the provisions of Article 6.11.1.1. 

 

Therefore, in this design example at Section G2-1, the stress range due to longitudinal warping 

resulting from cross-section distortion in the girders is considered in checking the fatigue 

resistance of the base metal. For simplicity in this design example, in lieu of determining the 

distortional warping stresses resulting from cross-section distortion at Section G2-1 based on the 

beam-on-elastic foundation analogy (BEF) discussed in the next paragraph, it is assumed that the 

longitudinal warping stresses are approximately (and conservatively) equal to 10 percent of the 

longitudinal stresses caused by the major-axis bending moment. Thus, for the calculations 

contained herein at Section G2-1, the fatigue live load major-axis bending moments are 

conservatively increased by 10 percent in computing the stress range for checking load-induced 

fatigue. If the nominal fatigue resistance had been exceeded, more detailed calculations utilizing 

the BEF analogy could be performed to provide more accurate values of the stress range due to 

longitudinal warping.  

 

The transverse bending stress range is considered separately from the longitudinal warping stress 

range for evaluating the fatigue resistance of the base metal adjacent to flange-to-web fillet welds 

and adjacent to the termination of fillet welds connecting transverse elements to webs and box 

flanges. The transverse bending stress range is not computed in this design example for Section 

G2-1. More exact calculations to determine the stress range from longitudinal warping and 

transverse bending due to cross-section distortion can be carried out using the beam-on-elastic-

foundation analogy (BEF) presented by Wright and Abdel-Samad [9]. Sample calculations for 

determining these distortional stresses based on the BEF analogy are presented in the 2003 

AASHTO Guide Specification for Horizontally Curved Steel Girder Highway Bridges [19], which 

is superseded by the current AASHTO specifications. Calculations demonstrating the use of the 

BEF analogy to compute the longitudinal warping stress and transverse bending stress ranges are 

included as part of the fatigue check for Section G2-2 in Section 7.9.1. 

 

At Section G2-1, it is necessary to check the bottom flange for the fatigue limit state. The base 

metal at the transverse stiffener weld terminations and internal cross-frame connection-plate welds 

at locations subject to a net tensile stress must be checked as a Category C′ fatigue detail (refer to 

Table 6.6.1.2.3-1). Only the bottom flange is checked herein, as a net tensile stress is not induced 

in the top flange by the fatigue loading at this location (refer to Article 6.6.1.2.1). 

 

According to Table 3.6.2.1-1, the dynamic load allowance for the fatigue live load is 15%.  

Centrifugal force effects are considered and included in the fatigue live load moments. As 

discussed previously, the projected 75-year single lane ADTT in one direction is assumed to be 

1,000 trucks per day. 
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According to Eq. (6.6.1.2.2-1), (Δf) must not exceed the nominal fatigue resistance, (ΔF)n. In 

accordance with Article C6.6.1.2.2, the resistance factor, , and the load modifier, , are taken as 

1.0 for the fatigue limit state. 

 

 ( ) ( )
n

f F                    Eq. (6.6.1.2.2-1) 

 

From Table 6.6.1.2.3-2, the 75-year (ADTT)SL Equivalent to Infinite Life for a Category C′ fatigue 

detail is 975 trucks per day. Therefore, since the assumed (ADTT)SL for this design example is 

1,000 trucks per day, the detail must be checked for infinite fatigue life using the Fatigue I load 

combination. In accordance with Article 6.6.1.2.5, the nominal fatigue resistance for infinite 

fatigue life is equal to the constant-amplitude fatigue threshold: 

 

 ( ) ( )
n TH

F F =                  Eq. (6.6.1.2.5-1) 

 

where (ΔF)TH is the constant-amplitude fatigue threshold taken from Table 6.6.1.2.5-3. For a 

Category C′ fatigue detail, (ΔF)TH = 12.0 ksi, and therefore: 

 

  ( )
n

ΔF 12.0 ksi=  

 

As shown in Table 7 the unfactored negative and positive moments due to the fatigue live load, 

including centrifugal force effects and the 15 percent dynamic load allowance, at Section G2-1 are 

-290 kip-ft and 1,525 kip-ft, respectively.  The short-term composite section properties (n = 7.56) 

used to compute the stress at the bottom of the web (top of the bottom flange) are: 

 

 INA(n) = 502,098 in.4 

 

 dBOT OF WEB = dBOT OF STEEL – tf_BOT FLANGE = 67.90 in. – 0.6875 in. = 67.21 in. 

 

As specified in Table 3.4.1-1, the load factor, , for the Fatigue I load combination is 1.75. The 

total factored stress range at the bottom of the web, including the 10 percent increase estimated for 

the longitudinal warping stress, is computed as follows: 

 

 ( ) ( )
( )( )( )( )1.10 290 1,525 12 67.21

γ Δf 1.75 5.61 ksi
502,098

 − +
= = 

 
 

 

 

Check Eq. (6.6.1.2.2-1) as follows:  

 

 ( ) ( )
n

γ Δf 5.61 ksi ΔF 12.00 ksi     OK      (Ratio  0.468)=  = =  

 

7.5.1 Special Fatigue Requirements for Webs 

 

In accordance with Article 6.10.5.3, interior panels of stiffened webs must satisfy: 
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 u crV V                   Eq. (6.10.5.3-1) 

 

where:  

 

 Vu = shear in the web at the section under consideration, due to unfactored permanent 

loads plus the factored fatigue load (Fatigue I) 

 Vcr = shear-yield or shear-buckling resistance determined from Eq. (6.10.9.3.3-1). 

 

Satisfaction of Eq. (6.10.5.3-1) is intended to control elastic flexing of the web, such that the 

member is assumed to be able to sustain an infinite number of smaller loadings without fatigue 

cracking due to this effect. The live load shear in the special requirement is intended to represent 

the heaviest truck expected to cross the bridge in 75 years. 

 

Only interior panels of stiffened webs are investigated because the shear resistance of end panels 

of stiffened webs and the shear resistance of unstiffened webs are limited to the shear-yield or 

shear-buckling resistance at the strength limit state. 

 

The detailed check of this special fatigue requirement for webs is not illustrated in this example; 

however, similar checks are illustrated in NSBA’s Steel Bridge Design Handbook: Example 1: 

Three-Span Continuous Straight Composite Steel I-Girder Bridge [3]. 

 

7.5.2 Fracture (Article 6.6.2) 

 
As specified in Article 6.10.5.2, fracture toughness requirements in the contract drawings must be 
in conformance with the provisions of Article 6.6.2.1. Material for main load-carrying components 
subject to tensile stress under the Strength I load combination is assumed for this example to be 
ordered to meet the appropriate Charpy V-notch fracture toughness requirements (Table C6.6.2.1-
1) specified for Temperature Zone 2 (Table 6.6.2.1-2). 

Article 6.6.2.2 provides provisions for Fracture-Critical Members (FCMs). A FCM is defined as a 

steel primary member or portion thereof subject to tension whose failure would probably cause a 

portion of or the entire bridge to collapse. Article 6.6.2.2 specifies that the Engineer is to have the 

responsibility for identifying and designating on the contract plans which primary members or 

portions thereof are fracture-critical members (FCMs). The tension components of tub girders in 

single- and twin-tub girder systems have typically been designated as FCMs.  

 

The designation of a particular member, or member component, as a FCM entails additional and 

more stringent fabrication requirements given in Clause 12 of the AASHTO/AWS D1.5M/D1.5 

Bridge Welding Code (D1.5) [20], and hands-on inspections every two years. The additional 

fabrication requirements are an initial cost premium in the design of new bridges that has been 

proven to be effective in preventing fracture. However, the hands-on inspection requirements give 

rise to considerably larger expenses that take place throughout the service life of the bridge, which 

involve risks to the safety of the inspectors and bridge users.   

 

Article 6.6.2.2 further indicates that a primary member or portion thereof subject to tension, for 

which the redundancy is not known by engineering judgment, but which is demonstrated to have 

redundancy in the presence of a simulated fracture in that member through the use of a refined 
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analysis, is to be designated as a System Redundant Member (SRM) in the contract documents. 

SRMs are to be fabricated in accordance with Clause 12 of D1.5 and are to have routine inspections 

performed but need not be subject to the hands-on in-service inspection requirements.  

 

One acceptable detailed finite element analysis and evaluation procedure for classification of 

SRMs [21] is provided in the AASHTO Guide Specifications for Analysis and Identification of 

Fracture Critical Members and System Redundant Members [22]. The Guide Specification is 

intended to provide Engineers and Owners with an analytical framework to evaluate the 

redundancy of typical steel bridges and designate primary steel members as FCMs or SRMs. This 

framework is composed of the finite element analysis procedure, techniques, and inputs needed to 

create a reliable model of the steel bridge; as well as the minimum required primary steel member 

failure scenarios, load combinations, and performance criteria used to evaluate the redundancy of 

a steel bridge. Connor et al. (2020) [23] also provides a suggested alternative simplified approach 

for classifying SRMs in continuous composite twin tub-girder bridges. 

 

7.6 Girder Check: Section G2-1, Strength Limit State (Article 6.11.6)   

 

7.6.1 Flexure (Article 6.11.6.2) 

 

According to Article 6.11.6.2.2, sections in horizontally curved steel tub girder bridges are to be 

considered noncompact sections and are to satisfy the requirements of Article 6.11.7.2.  

Furthermore, compact and noncompact sections in positive flexure must satisfy the ductility 

requirement specified in Article 6.10.7.3. The ductility requirement is intended to protect the 

concrete deck from premature crushing. The section must satisfy: 

 

 p tD 0.42 D                   Eq. (6.10.7.3-1) 

 

where Dp is the distance from the top of the concrete deck to the neutral axis of the composite 

section at the plastic moment, and Dt is the total depth of the composite section. Refer the section 

property computations for the location of the neutral axis of the composite section at the plastic 

moment (Section 7.2.1.3).  At Section G2-1: 

 

 pD 9.5 4.0 1.0 0.35 12.85 in.= + − + =  

 

 tD 0.6875 78.0 4.0 9.5 92.19 in.= + + + =  

 

 t0.42D 0.42(92.19) 38.72 in. 12.85 in.= =    OK (Ratio = 0.332) 

 

For a horizontally curved steel tub girder at the strength limit state, noncompact sections in positive 

flexure must satisfy the provisions of Article 6.11.7.2. At the strength limit state, the compression 

flanges of tub sections must satisfy: 

 

 bu f ncf F                 Eq. (6.11.7.2.1-1) 

 

where: 
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 fbu  = longitudinal flange stress at the section under consideration calculated without 

consideration of flange lateral bending or longitudinal warping 

 f  =  resistance factor for flexure as specified in Article 6.5.4.2 (f = 1.0) 

 Fnc  =  nominal flexural resistance of the compression flange determined as specified in 

Article 6.11.7.2.2 

 

Flange lateral bending is not considered for the compression flanges in positive bending at the 

strength limit state because the flanges are continuously supported by the concrete deck. In 

accordance with Article 6.11.1.1, longitudinal warping stresses may be ignored at the strength limit 

state. However, St. Venant torsion and cross-section distortion stresses in the bottom flange must 

be considered for noncompact sections. 

 

At the strength limit state, the tension flange must satisfy: 

 

 bu f ntf F                 Eq. (6.11.7.2.1-2) 

 

where: 

 

 Fnt  =  nominal flexural resistance of the tension flange determined as specified in Article 

6.11.7.2.2 

 

Lateral bending does not need to be considered for the tension flange, in this case the bottom 

flange, as lateral bending is typically negligible in bottom flanges of tub girders. 

 

Furthermore, the maximum longitudinal compressive stress in the concrete deck at the strength 

limit state is not to exceed 0.6f′c. The longitudinal compressive stress in the deck is to be 

determined in accordance with Article 6.10.1.1d, which allows the permanent and transient load 

stresses in the concrete deck to be computed using the short-term section properties (i.e., with the 

modular ratio taken as n). 

 

The unfactored bending moments at Section G2-1 are taken directly from the analysis and are 

shown below (see Table 7). The live load moment includes the centrifugal force and dynamic load 

allowance effects. 

 

 Noncomposite Dead Load:  MDC1  = 5,891 kip-ft 

 Composite Dead Load:  MDC2  = 765 kip-ft 

 Future Wearing Surface Dead Load: MDW = 1,006 kip-ft 

 Live Load (incl. IM and CF): MLL+IM = 5,920 kip-ft 

 

Compute the factored flange flexural stresses at Section G2-1 for the Strength I load combination, 

without consideration of flange lateral bending. As discussed previously, the  factor is taken equal 

to 1.0 in this example.  Therefore: 

 

For Strength I: 
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 Top Flange: 

 

 bu

1.25(5,891) 1.25(765) 1.5(1,006) 1.75(5,920)
f 1.0 12 25.11 ksi

4,390 14,378 14,378 42,587

 
= − + + + = − 

 
 

 

Bottom Flange: 

 

 bu

1.25(5,891) 1.25(765) 1.5(1,006) 1.75(5,920)
f 1.0 12 37.66 ksi

5,355 6,801 6,801 7,395

 
= + + + = 

 
 

 

In accordance with Article 6.11.1.1, the effects of both flexural and St. Venant torsional shear are 

to be considered in horizontally curved tub girder bridges. Therefore, compute the factored St. 

Venant torsional shear stress, fv, in the bottom flange for the Strength I load combination. fv is 

determined by dividing the St. Venant torsional shear flow [f = T/(2Ao)] by the thickness of the 

bottom flange: 

 

 v

o f

T
f

2A t
=                   Eq. (6.11.3.2-5) 

 

where: 

 

 T  = internal torque due to factored loads (kip-in.) 

 Ao  =  enclosed area within the box section (in.2) 

 tf  =  bottom flange thickness (in.) 

 

The unfactored torques at Section G2-1 obtained directly from the analysis are shown below (see 

Table 7). The live load torque includes the centrifugal force and dynamic load allowance effects. 

 

 Noncomposite Dead Load:  TDC1  = 264 kip-ft 

 Composite Dead Load:  TDC2  = 41 kip-ft 

 Future Wearing Surface Dead Load: TDW = 54 kip-ft 

 Live Load (incl. IM and CF): TLL+IM = 525 kip-ft 

 

Article C6.11.1.1 indicates that for torques applied to the noncomposite section, Ao is to be 

computed for the noncomposite section. Since the top lateral bracing in this example is attached 

to the top flange, the vertical depth can be calculated as the distance between the mid-thicknesses 

of the top and bottom flanges. Furthermore, for torques applied to the composite section, Ao is to 

be computed for the composite section, using the depth from the mid-thickness of the bottom 

flange to the mid-thickness of the concrete deck. In this example, the height of the deck haunch is 

considered.   

 

Compute the enclosed area of the noncomposite tub section, Ao_NC. 
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( )( )

2

o_NC

120 83 2 1.5 1.00 0.6875
A 78 7,884 in.

2 2 2

 + −   = + + = 
 

 

 

Compute the enclosed area of the composite tub section, Ao_C. 

 

 
( )( )

2

o_C

120 83 2 1.5 0.6875 9.50
A 78 4.00 8,709 in.

2 2 2

 + −   = + + + = 
 

 

 

Compute the factored Strength I St. Venant torsional shear stress on the noncomposite section: 

 

 ( )
( )( )( )

( )( )v_NC

1.25 264 12
f 1.0 0.37 ksi

2 7,884 0.6875
= =  

 

Compute the factored Strength I St. Venant torsional shear stress on the composite section: 

 

 ( )
( )( ) ( )( ) ( )( ) ( )

( )( )v_C

1.25 41 1.50 54 1.75 525 12
f 1.0 1.05 ksi

2 8,709 0.6875

+ +  = =  

 

Therefore the total factored Strength I St. Venant torsional shear stress is computed as: 

 

 vf 0.37 1.05 1.42 ksi= + =  

 

According to Article 6.11.1.1, the factored St. Venant torsional shear stress in box flanges at the 

strength limit state is not to exceed the factored torsional shear resistance of flange, Fvr, taken as: 

 

 
yf

vr v

F
F 0.75

3
=                   Eq. (6.11.1.1-1) 

 

where: 

 

 v  = resistance factor for shear specified in Article 6.5.4.2 

 

Therefore: 

  

( )vr v

50
F 0.75 1.0 21.65 ksi f 1.42 ksi 

3
= =  =  OK 

 

7.6.1.1 Top Flange Flexural Resistance in Compression 

 

In accordance with Article 6.11.7.2.2, the nominal flexural resistance of the compression flanges 

of noncompact composite tub sections is to be taken as: 
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 nc b h ycF R R F=               Eq. (6.11.7.2.2-1) 

 

where: 

 

 Rb  =  web load-shedding factor determined as specified in Article 6.10.1.10.2 

 Rh =  hybrid factor determined as specified in Article 6.10.1.10.1. 

 

For a homogenous girder, the hybrid factor, Rh, is equal to 1.0. In accordance with Article 

6.10.1.10.2, the web load-shedding factor, Rb, is equal to 1.0 for composite sections in which the 

web satisfies the requirement of Article 6.11.2.1.2 such that D/tw ≤ 150. 

 

 
w

D 80.40
142.9 150

t 0.5625
= =   

 

Therefore: 

 

 ( )( )( )ncF 1.0 1.0 50.0 50.00 ksi= =  

 

For Strength I: 

 

 bu f ncf F                 Eq. (6.11.7.2.1-1) 

 

 ( )( )bu f ncf 25.11  ksi F 1.0 50.00 50.00 ksi  = −   = =
 

OK (Ratio = 0.502) 
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7.6.1.2 Bottom Flange Flexural Resistance in Tension 

 

Article 6.11.7.2.2 states that the nominal flexural resistance of the tension flange of a noncompact 

tub section is to be taken as: 

 

 nt h ytF R F=                 Eq. (6.11.7.2.2-5) 

 

in which: 

 

 

2

v

yt

f
Δ 1 3

F

 
= −   

 

              Eq. (6.11.7.2.2-6) 

 

 

2
1.42

Δ 1 3 0.999
50.0

 
= − = 

 
 

 

Therefore: 

 

 ( )( )( )ntF 1.0 50.0 0.999 49.93 ksi= =  

 

For Strength I: 

 

 bu f ntf F                 Eq. (6.11.7.2.1-2) 

 

 ( )( )bu f ntf 37.66 ksi F 1.0 49.93 49.93 ksi  =   = =
 

OK (Ratio = 0.754) 

 

Note that longitudinal warping stresses due to cross-section distortion do not need to be considered 

at the strength limit state. However, transverse bending stresses due to cross-section distortion do 

need to be considered at the strength limit state and are not to exceed 20.0 ksi as specified in Article 

6.11.1.1. However, in this design example for Section G2-1, it is assumed that the transverse 

bending stresses at the strength limit state do not exceed 20.0 ksi. For more detailed calculations 

of the transverse bending stress due to cross-section distortion at the strength limit state, see the 

computations for Section G2-2 in this design example. 

 

7.6.1.3 Concrete Deck Stresses 

 

According to Article 6.11.7.2.1, the maximum longitudinal compressive stress in the concrete deck 

at the strength limit state is not to exceed 0.6f′c. This limit is to verify linear behavior of the 

concrete, which is assumed in the calculation of steel flange stresses. The longitudinal compressive 

stress in the deck is to be determined in accordance with Article 6.10.1.1.1d, which allows the 

permanent and transient load stresses in the concrete deck to be computed using the short-term 
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composite section properties (n = 7.56).  Referring to Table 10 of the section property calculations, 

the section modulus to the top of the concrete deck is: 

 

 
3

deck

502,098
S 20,671 in.

92.19 67.90
= =

−  

 

Calculate the Strength I factored longitudinal compressive stress in the deck at this section, noting 

that the concrete deck is not subjected to noncomposite dead loads. The stress in the concrete deck 

is obtained by dividing the stress acting on the transformed section by the modular ration, n. 

 

 
( ) ( )

( )( )deck

1.25(765) 1.5 1,006 1.75 5,920
f 1.0 12 0.99 ksi

20,671 7.56

 + +
= = − 

   

 

 ( )deck cf 0.99 ksi 0.6f' 0.6 4.0 2.40 ksi= −  = =  OK (Ratio = 0.413) 

 

7.7 Girder Check: Section G2-2, Constructability (Article 6.11.3)  

 

7.7.1 Flexure (Article 6.11.3.2) 

 

The bottom flange in regions of negative flexure is to satisfy the requirements of Eqs. (6.11.3.2-1) 

and (6.11.3.2-2) for critical stages of construction. Generally, these provisions will not control 

because the size of the bottom flange in negative flexure regions is normally governed by the 

strength limit state. With regard to construction loads, the maximum negative moment reached 

during the deck placement analysis, plus the moment due to the self-weight, typically does not 

significantly exceed the calculated noncomposite negative moments assuming a single stage deck 

pour. Nonetheless, the constructability check is performed herein for completeness and to illustrate 

the constructability checks for a negative moment region. For this constructability check, it is 

assumed that the concrete deck has not yet hardened at Section G2-2. 

 

 bu f ncf F                    Eq. (6.11.3.2-1) 

 

 bu f crwf F                    Eq. (6.11.3.2-2) 

 

Additionally, the top flanges, which are considered discretely braced for constructability (i.e., the 

deck is not hardened), must satisfy the requirement specified in Article 6.10.3.2.2. Because the top 

flange is discretely braced, flange lateral bending must be considered, as shown in Eq. 6.10.3.2.2-

1. 

 

 bu f h ytf f R F+                 Eq. (6.10.3.2.2-1) 

 

To illustrate this constructability check, from separate analysis results not shown, the unfactored 

major-axis bending moment due to the deck pour sequence is -12,272 kip-ft. As shown in Table 

4, the unfactored major-axis moment due to steel self-weight is -3,154 kip-ft.  
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Calculate the factored major-axis flexural stresses in the flanges of the steel section resulting from 

the steel self-weight and the assumed deck pour sequence. 

 

For Construction Strength I: 

 

 Top Flange:  bu

1.0(1.25)[(-3,154)  (-12,272)](12)
f 23.01 ksi

10,057

+
= − =  

 

 Bot. Flange: bu

1.0(1.25)[(-3,154)  (-12,272)](12)
f 20.45 ksi

11,316

+
= = −  

 

For this example, and illustration purposes, the V-load equation is used to compute the top flange 

lateral bending moment due to curvature. For a single flange, consider only one-half of the girder 

major-axis moment due to steel self-weight and the deck placement sequence.  

 

( ) ( )3,154 12,272
M -7,713 kip-ft

2

− + −  = =   

 

( )( )

( )( )( )

22

LAT

7,713 16.3M
M 36.7 kip-ft

NRD 12 716.25 6.5

−
= = =                   Eq. (C4.6.1.2.4b-1) 

 

Combine the flange lateral bending moment computed using the V-load equation with the factored 

lateral moment due to the overhang brackets, which was computed previously in the Section G2-

1 calculations. Noting that the factored flange lateral bending moment due to the deck overhang 

bracket loads is 12.4 kip-ft, the factored flange lateral bending moment and flange lateral bending 

stress are computed as: 

 

 ( )( )TOT_LATM 1.25 36.7 12.4 58.3 kip-ft= + =  

 

 
TOT _ LAT

2

M (58.3)(12)
f 4.32 ksi

S (3.00)(18) 6
= = =  

 

Because the top flanges are subject to tension at Section G2-2, amplification of the first-order 

flange lateral bending stress is not required. The factored flange lateral bending stress is less than 

the limit of 0.6Fyf = 0.6(50) = 30.0 ksi specified in Article 6.10.1.6. 

 

It should be noted that another significant source of flange lateral bending results from forces that 

develop in the single-diagonal top flange bracing members resulting from the major-axis bending 

of the tub girder. This effect is recognized in flange lateral moments taken directly from a finite 

element analysis. In the absence of a refined analysis, Fan and Helwig [24] have developed 

equations to evaluate bracing member forces and the forces imparted on the top flanges of tub 

girders resulting from major-axis bending of the girder. The flange lateral bending due to the top 

lateral bracing is not considered in these computations. However, in an actual bridge design the 
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top-flange lateral bending moments due to the forces in the top lateral bracing members resulting 

from major-axis bending should be considered, and can be computed using the procedures 

suggested by Fan and Helwig [24]. 

 

Compute the factored St. Venant torsional shear stress, fv, in the bottom flange for the Strength I 

load combination.   

 

 v

o f

T
f

2A t
=                   Eq. (6.11.3.2-5) 

 

Compute the enclosed area of the noncomposite tub section, Ao. 

 

 
( )( )

2

o

120 83 2 1.5 3.00 1.50
A 78 8,025 in.

2 2 2

 + −   = + + = 
 

 

 

The unfactored torques due to steel self-weight and Cast #1 are -22 kip-ft and -33 kip-ft, 

respectively (note that results for Cast #1 at this location are not provided in the analysis results 

table). Therefore, 

 

 ( )
( )( )( )

( )( )v

1.25 22 33 12
f 1.0  0.034 ksi

2 8,025 1.50

+
= =  

 

7.7.1.1 Top Flange 

 

Check that the top flange tension stress is in compliance with Article 6.10.3.2.2: 

 

 bu f h ytf f R F+                 Eq. (6.10.3.2.2-1) 

 

For Construction Strength I: 

 

 buf f 23.01 ksi 4.32 ksi 27.33 ksi+ = + =  

 

( )( )( )f h ytR F 1.0 1.0 50.0 50.0 ksi = =  

  

 bu f h ytf f 27.33 ksi  R F 50.0 ksi + =   =  OK (Ratio = 0.547) 

 

7.7.1.2 Bottom Flange 

 

7.7.1.2.1 Bottom Flange: Flexural Resistance in Compression – Stiffened Flange 

 

Calculate the nominal flexural resistance of the bottom flange in compression, Fnc, in accordance 

with Article 6.11.8.2. Per Article 6.11.3.2, in computing Fnc for constructability, the web load-

shedding factor, Rb, is to be taken as 1.0. The bottom flange is longitudinally stiffened at this 
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location with a single WT 8x28.5 stiffener placed at the center of the bottom flange. Therefore, 

Article 6.11.8.2.3 applies. 

 

Determine the slenderness ratio of the bottom flange: 

 

 fc
f

fc

b

t
 =                Eq. (6.11.8.2.2-8) 

 

where, in this case: 

 

 bfc  = w  = larger of the width of the flange between the longitudinal flange stiffeners or 

the distance from a web to the nearest longitudinal flange stiffener. 

 

Since the longitudinal stiffener is at the center of the bottom flange, w is the distance from the 

longitudinal stiffener to the inside face of the web. 

 

 
f

79.4375

2
λ 26.48

1.50

 
 
 = =  

 

Calculate the limiting slenderness ratio, λp: 

 

 
p

yc

Ek
λ 0.57

F
=


              Eq. (6.11.8.2.2-9) 

 

where k is computed in accordance with Article 6.11.8.2.3 for longitudinally stiffened flanges, and 

 is computed as specified in Article 6.11.8.2.2. 

 

As specified in Article 6.11.8.2.3, since a single bottom flange stiffener is used, n = 1 and the plate-

buckling coefficient for uniform normal stress, k, is to be taken as: 

 

 

1

3
S

3

fc

8I
k

wt

 
=  

 
               Eq. (6.11.8.2.3-1) 

 

and: 

 

2

v

yc

f
Δ 1 3

F

 
= −   

 

            Eq. (6.11.8.2.2-11) 

 

where: 

 

 fv  =  factored St. Venant torsional shear stress in the flange (ksi) 
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 n =  number of equally spaced longitudinal flange stiffeners 

 k  =  plate-buckling coefficient for uniform normal stress, 1.0 ≤ k ≤ 4.0 

 IS  =  moment of inertia of a single longitudinal flange stiffener about an axis parallel to 

the flange and taken at the base of the stiffener (in.4) 

 

Structural tees are efficient shapes for longitudinal stiffeners because they provide a high ratio of 

stiffness to cross-sectional area.  For the WT 8x28.5 stiffener, Ix = 48.7 in.4, A = 8.39 in.2, and the 

elastic neutral axis (N.A.) is 6.28 in. from the tip of the stem. Therefore, Is is computed as: 

 

 ( )( )
2 4

SI 48.7 8.39 6.28 379.6 in.= + =  

        

Compute the plate-buckling coefficient k: 

 

( )

( )

1

3

3

8 379.6
k 2.83 4.0

79.4375
1.50

2

 
 
 = = 

  
  
  

 

 

Compute the Δ term: 

 

 

2
0.034

Δ 1 3 1.0
50.0

 
= − = 

 
 

 

Compute p: 

 

 
( )( )

( )( )p

29,000 2.83
λ 0.57 23.09

50.0 1.0
= =  

 

Since f is greater than 23.09 (f = 26.48), it is necessary to compute the limiting slenderness ratio, 

λr: 

 

r

yr

Ek
λ 0.95

F
=             Eq. (6.11.8.2.2-10) 

 

where: 

 

 ( )yr yc ywF Δ 0.3 F F= −             Eq. (6.11.8.2.2-13) 

 

 ( )( )yr ywF 1.0 0.3 50 35.0 ksi F 50 ksi= − =  =  
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Compute r: 

 

 
( )

r

29,000 (2.83)
λ 0.95 46.00

35.0
= =  

 

Since p  <  f  = 26.48  <  r, then the nominal axial compression buckling resistance of the 

flange under compression alone, Fcb, is calculated as follows: 

   

 
f p

cb b h yc

h r p

λ λΔ 0.3
F R R F Δ Δ

R λ λ

  − −
= − −    −    

           Eq. (6.11.8.2.2-3) 

 

 ( )( )( )cb

1.0 0.3 26.48 23.09
F 1.0 1.0 50 1.0 1.0

1.0 46.00 - 23.09

  − − 
= − −   

   
 

 

 cbF 47.78 ksi=  

 

Compute the nominal flexural resistance of the compression flange: 

 

 

2

v
nc cb

v cv

f
F F 1-

F

 
=  

 
              Eq. (6.11.8.2.2-1) 

 

where: 

 

 Fcv = nominal shear buckling resistance of the flange under shear alone (ksi) 

 

In order to compute Fcv, first calculate ks, the plate-buckling coefficient for shear stress as specified 

in Article 6.11.8.2.3: 

 

( )

1

3
S

3

fc

S 2

I
5.34 2.84

wt
k 5.34

n 1

 
+  

 = 
+

            Eq. (6.11.8.2.3-3) 

 

 
( )( )

( )

1

3

3

S 2

379.6
5.34 2.84

79.4375 2 1.50
k 2.34 5.34

1 1

 
 +
 
 = = 

+
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As specified in Article 6.11.8.2.2, if s
f

yc

Ek
λ 1.12

F
 , then: 

 

 Fcv = 0.58Fyc                          Eq. (6.11.8.2.2-5) 

  

 
( )( )

f

29,000 2.34
λ 26.48 1.12 41.26

50
=  =  

 

Therefore: 

 

 ( )cvF 0.58 50 29.0 ksi= =  

  

Compute Fnc: 

 

 
( )( )

2

nc

0.034
F 47.78 1- 47.78 ksi

1.0 29.0

 
= =  

 

 

 

Checking compliance with Eq. 6.11.3.2-1: 

 

 bu f ncf F                    Eq. (6.11.3.2-1) 

 

For Construction Strength I: 

 

 ( )( )bu f ncf -20.45 ksi   F 1.00 47.78   47.78 ksi=   = =  OK (Ratio = 0.428) 

 

7.7.1.2.2 Bottom Flange: Flexural Resistance in Compression – Web Bend-Buckling 

 

According to Article 6.11.3.2, for sections with compact or noncompact (i.e., nonslender) webs, 

the web bend-buckling check of Eq. 6.11.3.2-2 is not necessary. Therefore, check if the web 

satisfies the noncompact slenderness limit given in Article 6.10.6.2.3. 

 

       
c

rw

w

2D

t
 

                                                          Eq. (6.10.6.2.3-1) 

 

where: 

 

      rw

yc wc yc yc

E 5.0 E E
4.6 3.1 5.7

F a F F

 
  = +  

 
 Eq. (6.10.6.2.3-3) 
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c w

wc

fc fc

2D t
a

b t
=

                                                                                            Eq. (6.10.6.2.3-4) 

 

For a tub girder with inclined webs, the depth of the web in compression, Dc, must be taken along 

the inclined web. Therefore: 

 

        cD (38.82 1.5) / cos 14.04 38.47 in.= − =  

 

       
( )c

w

2 38.472D
136.8

t 0.5625
= =  

 

      
yc

E 29,000
4.6 4.6 111

F 50
= =

 

 

      
yc

E 29,000
5.7 5.7 137

F 50
= =

 

 

      wc

2(38.47)(0.5625)
a 0.73

(79.4375 2) (1.5)
= =

 

 

      rw

5.0 29,000
111 3.1 240 137

0.73 50

 
  = + =  

      

 

      
c

rw

w

2D
137 136.8

t
 =  =

 

  

Since Eq. 6.10.6.2.3-1 is satisfied, the web is nonslender and the web bend-buckling check of Eq. 

6.11.3.2.-2 does not need to be investigated for constructability. 

 

7.7.1.3 Shear (Article 6.11.3.3) 

 

For constructability, Article 6.10.3.3 requires that interior panels of stiffened webs satisfy the 

following requirement: 

 

 u v crV V                    Eq. (6.10.3.3-1) 

 

where: 

 

 v  =  resistance factor for shear specified in Article 6.5.4.2 (v = 1.0) 

 Vu = shear in the web at the section under consideration due to the factored permanent 

loads and factored construction loads applied to the noncomposite section. 
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 Vcr = shear-yield or shear-buckling resistance determined from Eq. (6.10.9.3.3-1). 

 

The panel on the Span 2 side of Section G2-2 will be investigated herein. The transverse stiffener 

spacing at this location is 62 inches. The total factored shear will include the contribution of the 

noncomposite dead load, and should not only include the vertical shear due to flexure but also 

shear in the web due to torsion.  The shears used in the computations below are for flexure plus 

the torsional shear in the critical web. The critical web shear due to steel self-weight is 47 kips (see 

Table 2), and the critical web shear for Cast #1 is taken as 185 kips (analysis results are not 

explicitly provided for Cast #1). 

 

For Construction Strength I: 

 ( )( )uV 1.0 1.25 47 185 265 kips= + =  

 

However, it is required that the shear be taken along the inclined web, in accordance with Article 

6.11.9: 

 

 u
ui

WEB

V
V

cos(θ )
=                     Eq. (6.11.9-1) 

 

 ui

265
V 273 kips

cos(14.04 )
= =


 

 

The shear-buckling resistance of the 62 inch panel is determined as: 

 

 n cr pV V CV= =               Eq. (6.10.9.3.3-1) 

 

C is the ratio of the shear-buckling resistance to the shear yield strength determined as specified 

in Article 6.10.9.3.2. First, compute the shear-buckling coefficient, k: 

 

 
2 2

o

5 5
k 5 5 13.41

d 62

80.4D

= + = + =
   

  
  

            Eq. (6.10.9.3.2-7) 

 

Since: 

 

 
w yw

D 80.4 Ek 29,000(13.41)
142.9 1.40 1.40 123.5

t 0.5625 F 50
= =  = =   

 

 
2

yw

w

1.57 Ek
C

FD

t

 
=   

   
 
 

              Eq. (6.10.9.3.2-6) 
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( )

2

1.57 29,000(13.41)
C 0.598

50142.9

 
= = 

 
 

Vp is the plastic shear force and is calculated as follows: 

 

 p yw wV 0.58F Dt=               Eq. (6.10.9.3.3-2) 

 

 ( )( )( )pV 0.58 50.0 80.40 0.5625 1,311 kips= =  

 

Therefore, 

 

 ( )( )n cr pV V CV 0.598 1,311 784 kips= = = =  

 

 v crV 1.0(784) 784 kips = =  

 

 ui v crV 273 kips V 784 kips=   =   OK  (Ratio = 0.348)  

 

7.8 Girder Check: Section G2-2, Service Limit State (Article 6.11.4)   

 

Article 6.11.4 directs the Engineer to Article 6.10.4, which contains provisions related to the 

control of elastic and permanent deformations at the service limit state.   

 

7.8.1 Permanent Deformations (Article 6.10.4.2) 

 

Article 6.10.4.2 contains criteria intended to control permanent deformations that would impair 

rideability. As specified in Article 6.10.4.2.1, these checks are to be made under the Service II load 

combination.   

 

As stated previously for the service limit state check of Section G2-1, Article 6.10.4.2.2 requires 

that flanges of composite sections satisfy the following: 

 

 Top flange of composite sections:     f h yff 0.95R F             Eq. (6.10.4.2.2-1) 

 

 Bottom flange of composite sections: f h yf

f
f 0.95R F

2
+                    Eq. (6.10.4.2.2-2) 

 

However, according to Article C6.11.4, under the load combinations specified in Table 3.4.1-1, 

Eqs. 6.10.4.2.2-1 and 6.10.4.2.2-2 need only be checked for compact sections in positive flexure.  

For sections in negative flexure and noncompact sections in positive flexure, these two equations 

do not control and need not be checked. Therefore, for Section G2-2, Eqs. 6.10.4.2.2-1 and 

6.10.4.2.2-2 do not need to be checked, and are not checked in this example. 
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7.8.2 Web Bend-Buckling 

 

With the exception of composite sections in positive flexure in which the web satisfies the 

requirement of Articles 6.11.2.1.2 and 6.10.2.1.1 (i.e., D/tw ≤ 150), web bend-buckling of all 

sections under the Service II load combination is to be checked as follows: 

 

 
c crwf F                Eq. (6.10.4.2.2-4) 

 

The term fc is the compression-flange stress at the section under consideration due to the Service 

II loads calculated without consideration of flange lateral bending, and Fcrw is the nominal elastic 

bend-buckling resistance for webs determined as specified in Article 6.10.1.9. Because Section 

G2-2 is a section in negative flexure, Eq. 6.10.4.2.2-4 must be checked. 

 

Determine the nominal web bend-buckling resistance, Fcrw, for Section G2-2 in accordance with 

Article 6.10.1.9.1, as follows:  

 

 crw 2

w

0.9Ek
F

D

t

=
 
 
 

               Eq. (6.10.1.9.1-1) 

 

However, Fcrw is not to exceed the smaller of RhFyc and Fyw/0.7. The bend-buckling coefficient, k, 

is computed as: 

 

 
( )

2

c

9
k

D / D
=                Eq. (6.10.1.9.1-2) 

 

where: 

 

 Dc = depth of the web in compression in the elastic range (in.). For composite sections, 

Dc is to be determined as specified in Article D6.3.1. 

 

In accordance with Article 6.10.4.2.1, for members with shear connectors provided throughout the 

entire length of the girder that also satisfy Article 6.10.1.7, the concrete deck may be assumed to 

be effective for both positive and negative flexure for loads applied to the composite section, 

provided that the corresponding longitudinal stresses in the concrete deck at the section under 

consideration under the Service II loads are smaller than 2fr, where fr is the modulus of rupture of 

concrete specified in Article 6.10.1.7. The requirements of Article 6.10.1.7 related to the minimum 

one percent longitudinal reinforcement required in the concrete deck are satisfied for Section G2-

2 in this design example. 

 

 r cf 0.24 f '=                   Article 6.10.1.7 
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Therefore,  

 

 ( )r2f 2 0.24 4 0.960 ksi= =  

 

In accordance with Article 6.10.1.1.1d, the longitudinal flexural stresses in the concrete deck due 

to all permanent and transient loads are to be computed using the short-term modular ratio, n.  The 

calculated stress on the transformed section is divided by n to obtain the longitudinal stress in the 

concrete deck. Since the deck is not subjected to noncomposite dead loads, the longitudinal stress 

in the deck at Section G2-2 is due to DC2, DW, and LL+I moments only. The unfactored major-

axis bending moments at Section G2-2 are (see Table 4): 

 

 Noncomposite Dead Load:  MDC1  = -15,426 kip-ft 

 Composite Dead Load:  MDC2  = -1,923 kip-ft 

 Future Wearing Surface Dead Load: MDW = -2,550 kip-ft 

 Live Load (incl. IM and CF): MLL+IM = -8,127 kip-ft 

 

The longitudinal compressive stress in the deck is to be determined in accordance with Article 

6.10.1.1.1d, which allows the permanent and transient load stresses to be computed using the short-

term composite section properties (n = 7.56). Referring to Table 13 of the section property 

calculations, the section modulus to the top of the concrete deck is: 

 

 
3

deck

833,768
S 27,132 in.

93.00 62.27
= =

−
 

 

Calculate the Service II factored longitudinal compressive stress in the deck at this section, noting 

that the concrete deck is not subjected to noncomposite dead loads. The stress in the concrete deck 

is obtained by dividing the stress acting on the transformed section by the modular ratio, n. 

 

 
( ) ( )

( )( )deck

1.00(-1,923) 1.00 -2,550 1.30 8,127
f 1.0 12 0.880 ksi

27,132 7.56

 + + −
= − = 

 
 

 

 deck rf 0.880 ksi  2f 0.960 ksi=  =  

 

Since fdeck is less than 2fr, for this Service limit state check, the flexural stresses in the composite 

section caused by the Service II loads acting on the composite section may be computed assuming 

that the concrete deck is effective in tension.  Refer to Table 12 and Table 13 for the section 

properties assuming that the concrete deck is effective. The major-axis bending stresses in the top 

and bottom flanges for the Service II load combination are computed as follows (ft = tension flange, 

fc = compression flange): 

 

For Service II: 

 

 Top Flange: 
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 t

1.00(-15,426) 1.00(-1,923) 1.00(-2,550) 1.30(-8,127)
f 1.0 12 24.22 ksi

10,057 19,574 19,574 41,234

 
= − + + + = 

 
 

 

Bottom Flange: 

 

 c

1.00(-15,426) 1.00(-1,923) 1.00(-2,550) 1.30(-8,127)
f 1.0 12 30.10 ksi

11,316 12,562 12,562 13,390

 
= + + + = − 

 
 

 

In order to compute Fcrw, it is first necessary to determine Dc, the depth of the web in compression, 

in accordance with Eq. D6.3.1-1, as required in Article D6.3.1 for composite sections in negative 

flexure whenever the deck is considered effective in tension at the service limit state: 

 

 c
c fc

c t

f
D d t 0

f f

 −
= −   + 

                  Eq. (D6.3.1-1) 

 

where: 

 

 fc = sum of the compression flange stresses caused by DC1, DC2, DW, and LL+I; acting 

on their respective sections (ksi).  Flange lateral bending is disregarded. 

 ft = sum of the tension flange stresses caused by DC1, DC2, DW, and LL+I; acting on 

their respective sections (ksi).  Flange lateral bending is disregarded. 

 d = depth of steel section (in.) 

 tfc = thickness of compression flange (in.) 

 

Therefore: 

 

 ( )c

( 30.10)
D 82.50 1.50 44.22 in.  0

30.10 24.22

 − −
= − =   − + 

  

 

However, the depth of the web in compression, Dc, should be taken along the inclined web for 

computing the web bend-buckling resistance. Therefore: 

 

 
( )

ci

44.22
D 45.58 in. 

cos 14.04
= =


  

 

Compute the bend-buckling coefficient, k: 

 

 
( ) ( )

2 2

c

9 9
k 28.00

D / D 45.58 / 80.40
= = =         
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Therefore, the nominal web bend-buckling resistance, Fcrw, is computed as: 

 

 
( ) ( )

( )crw h yc yw2 2

w

0.9 29,000  28.000.9Ek
F 35.77 ksi  min R F ,F /0.7 50.0 ksi

80.40D

0.5625t

= = =  =
   

  
  

 

 

Verify Eq. (6.10.4.2.2-4): 

 

 c crwf 30.10  ksi F 35.77 ksi= −  =   OK (Ratio = 0.841) 

 

7.8.3 Concrete Deck (Article 6.10.1.7) 

 

Article 6.10.1.7 requires the minimum one-percent longitudinal reinforcement in the concrete deck 

wherever the longitudinal tensile stress in the deck due to the factored construction loads or due to 

the Service II load combination exceeds fr. This check is illustrated for the negative moment 

region in NSBA’s Steel Bridge Design Handbook: Example 4: Three-Span Continuous Straight 

Composite Steel Tub-Girder Bridge [8]. 

 

7.9 Girder Check: Section G2-2, Fatigue Limit State (Article 6.11.5)  

 

Article 6.11.5 directs the designer to Article 6.10.5, where details in tub girder flexural members 

must be investigated for fatigue as specified in Article 6.6.1. The Fatigue I load combination 

specified in Table 3.4.1-1 and the fatigue live load specified in Article 3.6.1.4 are employed for 

checking load-induced fatigue at Section G2-2.   

 

At Section G2-2, it is necessary to check the top flange for the fatigue limit state for major-axis 

bending. The base metal at the transverse stiffener weld terminations and internal cross-frame 

connection-plate welds at locations subject to a net tensile stress must be checked as a Category 

C′ fatigue detail (refer to Table 6.6.1.2.3-1). Additional consideration must be given to cross-

section distortion stresses, as discussed in more detail later in this section. 

 

According to Table 3.6.2.1-1, the dynamic load allowance for the fatigue live load is 15%.  

Centrifugal force effects are considered and included in the fatigue live load moments. As 

discussed previously, the projected 75-year single lane ADTT in one direction is assumed to be 

1,000 trucks per day. 

 

According to Eq. (6.6.1.2.2-1), (Δf) must not exceed the nominal fatigue resistance, (ΔF)n. In 

accordance with Article C6.6.1.2.2, the resistance factor, , and the load modifier, , are taken as 

1.0 for the fatigue limit state. 

 

 ( ) ( )
n

f F                    Eq. (6.6.1.2.2-1) 

 

From Table 6.6.1.2.3-2, the 75-year (ADTT)SL Equivalent to Infinite Life for a Category C′ fatigue 

detail is 975 trucks per day. Therefore, since the assumed (ADTT)SL for this design example is 
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1,000 trucks per day, the detail must be checked for infinite fatigue life using the Fatigue I load 

combination. Per Article 6.6.1.2.5, the nominal fatigue resistance for infinite fatigue life is equal 

to the constant-amplitude fatigue threshold: 

 

 ( ) ( )
n TH

F F =                  Eq. (6.6.1.2.5-1) 

 

where (ΔF)TH is the constant-amplitude fatigue threshold taken from Table 6.6.1.2.5-3. For a 

Category C′ fatigue detail, (ΔF)TH = 12.0 ksi, and therefore: 

 

  ( )
n

ΔF 12.0 ksi=  

 

As shown in Table 4 the unfactored negative and positive moments due to fatigue, including the 

15 percent dynamic load allowance, at Section G2-2 are -1,384 kip-ft and 256 kip-ft, respectively.   

 

In accordance with Article 6.6.1.2.1, for flexural members that utilize shear connectors throughout 

the entire length that also have concrete deck reinforcement satisfying the provisions of Article 

6.10.1.7, it is permissible to compute the flexural stresses and stress ranges assuming the concrete 

deck to be effective for both positive and negative flexure at the fatigue limit state.   

 

As required by Articles 6.10.10.1 and 6.11.10, shear connectors are necessary along the entire 

length of horizontally curved tub girder bridges. Also, earlier calculations in this design example 

show that the deck reinforcement is in compliance with Article 6.10.1.7. Therefore, the concrete 

deck is assumed effective in computing the major-axis bending stresses for the fatigue limit state 

at Section G2-2. The short-term composite section properties (n = 7.56) used to compute the stress 

at the top of the web (bottom of the top flange) are: 

 

 INA(n) = 833,768 in.4 

 

 dTOP OF WEB = dTOP OF STEEL – tf_TOP FLANGE = 20.23 in. – 3.00 in. = 17.23 in. 

 

As specified in Table 3.4.1-1, the load factor, , for the Fatigue I load combination is 1.75. The 

factored stress range at the top of the web, without consideration of the flange lateral bending stress 

and distortional longitudinal warping stress since the top flange is continuously braced by the 

concrete deck, is computed as follows: 

 

 ( ) ( )
( )( )( )

( )
TH 

1,384 256 12 17.23
γ Δf 1.75 0.71 ksi F 12.0 ksi  ok

833,768

 − +
= =   = 

 
 

   

(Ratio = 0.059) 

 

7.9.1 Cross-section Distortion Stresses 

 

As stated previously for the fatigue limit state check of Section G2-1, additional requirements are 

placed on computing stresses due to fatigue loads for tub sections. In particular, Article 6.11.5 

requires the consideration of longitudinal warping stresses and transverse bending stresses due to 
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cross-section distortion in tub sections. When a tub section is subjected to torsion, the cross-section 

becomes distorted, resulting in these secondary stresses. 

 

In accordance with Article 6.11.5, the stress range due to longitudinal warping resulting from 

cross-section distortion should be considered when investigating the load-induced fatigue 

resistance of the base metal at all details in a horizontally curved tub section. For simplicity, the 

longitudinal warping stresses are added to the longitudinal major-axis bending stresses. 

 

Also, as specified in Article 6.11.5, the stress range due to the transverse bending stresses is to be 

considered in the base metal adjacent to the termination of fillet welds connecting transverse 

elements to webs and box flanges. The transverse bending stresses are considered separately from 

the longitudinal warping stresses. Article C6.11.5 states that as a result of the transverse bending, 

a stress concentration occurs at the termination of the fillet welds connecting transverse elements 

to webs and box flanges. According to Article C6.11.5, the fatigue resistance of this detail, when 

subject to transverse bending, is not currently quantified but is anticipated to be as low as a 

Category E detail.   

 

Calculations to determine the stress range from longitudinal warping and transverse bending can 

be carried out using the beam-on-elastic-foundation (BEF) analogy presented by Wright and 

Abdel-Samad [9]. The Designers Guide to Box Girder Bridges by Bethlehem Steel Corporation 

[25] also presents the method developed by Wright and Abdel-Samad to estimate the transverse 

bending stresses using the BEF analogy. In this method, the moment in the BEF is analogous to 

the longitudinal warping stress and the deflection of the BEF is analogous to the transverse bending 

stress.   

 

The BEF analogy for computing the distortional stresses is demonstrated for Section G2-2 in the 

calculations that follow.  Equation and figure references relate to those shown in the Designers 

Guide to Box Girder Bridges (DGBGB) [25]. The calculations that follow are intended to simply 

illustrate the procedure for computing these stresses using the BEF analogy. These stresses are 

typically of greater concern in boxes subject to much larger torques; e.g., single box sections, 

sharply curved boxes and boxes resting on skewed supports. Also, at Section G2-2, the bottom 

flange is not subject to a net tensile stress by inspection, and the top flanges are continuously 

braced by the concrete deck. Thus, the effect of the distortional stresses may be ignored at Section 

G2-2 for fatigue. However, in an actual design of a horizontally curved tub girder, these stresses 

should at least be considered in the base metal adjacent to welded details at or near the bottom 

flange at locations where the flange is subject to a net tensile stress. 

 

From a separate analysis (all results not shown) the unfactored negative and positive torques due 

to fatigue loading, including the 15 percent dynamic load allowance, at Section G2-2 are -309 kip-

ft and 339 kip-ft, respectively. Where force effects in the cross-frames or diaphragms are computed 

from a refined analysis, stress ranges for checking load-induced fatigue and torque ranges for 

checking fatigue due to cross-section distortion in cross-frame and diaphragm members should be 

based on the single fatigue truck  positioned as specified in Article 3.6.1.4.3a, but with the truck 

confined to a single transverse position during each passage of the truck along the bridge (per 

Article C6.6.1.2.1).  
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For continuous spans, the number of stress cycles per truck passage, n, is equal to 1.5 at sections 

near the interior pier and 1.0 elsewhere (Table 6.6.1.2.5-2). Sections ‘near the interior pier’ are 

defined as sections within a distance of one-tenth of the span on each side of the interior support. 

As indicated in Article C6.6.1.2.3, for values of n other than 1.0, the values of the 75-year (ADTT)SL 

Equivalent to Infinite Life given in Table 6.6.1.2.3-2 are to be modified by dividing by the 

appropriate value of n taken from Table 6.6.1.2.5-2. 

   

The projected 75-year single lane Average Daily Truck Traffic (ADTT)SL is assumed to be 1,000 

trucks per day for this example. From Table 6.6.1.2.3-2, the 75-year (ADTT)SL Equivalent to 

Infinite Life for a Category E detail is 4,615/1.5 = 3,077 trucks per day, adjusted for n = 1.5, which 

is greater than 1,000 trucks per day. Therefore, the detail must be checked for finite fatigue life 

using the Fatigue II load combination. Applying the load factor for the Fatigue II load combination 

( = 0.80), the factored fatigue torque range, TFAT, is: 

 

 ( )FATT 0.80 309 339 518 kip-ft=  − +  =   

 

Other required constants that will be used in the calculations that follow are: 

 

 INA(n)  = 833,768 in.4. 

 tc = web thickness = 0.5625 in. 

 tb = bottom flange thickness = 1.50 in. 

 ta = slab thickness = 9.5 in. 

 Ec = 3,834 ksi 

 Es = 29,000 ksi 

 c = Possion’s ratio for concrete = 0.20 (Article 5.4.2.5) 

 s = Possion’s ratio for steel = 0.30 

 ℓ = cross-frame spacing = 16.30 ft = 196 in. 

 Transverse stiffener spacing at Section G2-2 = 62 in. 

 Transverse stiffener is 0.5 in. x 5.5 in. 

 

Calculate the transverse flexural rigidities, Da and Db, of the concrete deck and the bottom box 

flange, respectively. 

 

 
( )

( )( )

( )

33 2

c a
a 2 2

c

3,834 9.5E t k in.
D 285,345 

in.12 1 μ 12 1 0.20

−
= = =

− −
        DGBGB Eq. (A3a) 

 

 
( )

( )( )

( )

33 2

s b
b 2 2

s

29,000 1.50E t k in.
D 8,963 

in.12 1 μ 12 1 0.30

−
= = =

− −
        DGBGB Eq. (A3b) 

 

Article 6.11.1.1 permits transverse stiffeners to be considered effective in resisting transverse 

bending. Therefore, the transverse flexural rigidity of the web, Dc, is computed considering the 

stiffness of the transverse stiffener. Calculate the effective width of the web plate, do, that acts with 

the transverse stiffener (see Figure 14): 
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( )
o

2

s

d
d tanh 5.6

h
d

d
5.6 1

h

 
 
 =

− 

              DGBGB Eq. (A4) 

 

where: 

 

 d  =  spacing of transverse stiffeners = 62 in. 

 h =  web plate depth along the inclined web = 80.40 in. 

 
Figure 14  Effective Width of Web Plate, do, Acting with the Transverse Stiffener 

 

Therefore,  

 

 

( )

( )
o

2

62
62  tanh 5.6 

80.40
d 15.8 in.

62
5.6 1 0.30

80.40

  
  
  = =

 
− 

 

  

 

The transverse flexural rigidity of the web, Dc, considering the stiffness of the transverse stiffener 

is computed as: 

 

 s s
c

E I
D

d
=              DGBGB Eq. (A3d) 

 

where: 

 

 Is  =  moment of inertia of the effective stiffened web plate for transverse bending, 

including the transverse stiffener. 

 

To compute Is, first compute the location of the neutral axis of the effective section from the outer 

web face: 

 

 Area of stiffener  =  (5.5)(0.5)   =  2.75 in.2 
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 Area of effective web =  (15.8)(0.5625) =  8.89 in.2 

 Total Area     =  11.64 in.2 

 

 

5.5 0.5625
2.75 0.5625 8.89

2 2
N.A. 1.0 in.

11.64

   
+ +   

   = =   

 

Calculate the moment of inertia, Is: 

 

 ( )( ) ( )( )
2

3 3

s

1 5.5 1
I 0.5 5.5 2.75 0.5625 1.0 15.8 0.5625

12 2 12

     
= + + − +     

     
 

  

2
0.5625

8.89 1.0
2

 
+ − 

 
 

 
4

sI 26.5 in.=  

 

Therefore, 

 

 
( )( ) 2

c

29,000 26.5 kip-in.
D 12,395 

62 in.
= =    

 

The stiffness of the transverse stiffener is assumed to be distributed evenly along the web. 

 

Compute the compatibility shear, v, at the center of the bottom (box) flange for unit loads applied 

at the top corners of a box section of a unit length: 

 

 

( )

( )
( )

3

c a

2 23 3

a c b

1 1
2a b abc ba

D D
v

2c a ab ba b
a b

D D D

+ +  
=

 + +
 + + +
 
 

           DGBGB Eq. (A2) 

 

where a, b, and c are dimensional parameters of the tub section: 

 

 a  =  distance between centerline of webs at top of tub section = 120 in. 

 b =  distance between centerline of webs at bottom of tub section = 80 in. 

 c = height of web, along the incline = 80.40 in. 
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( )( )( )( )( ) ( )( )

( )
( ) ( )( )( )

3

2 23 3

1 1
2 120 80 120 80 80.40 80 120

12,395 285,345
v 0.22

2 80.40 120 120 80 80120 80
120 80

285,345 12,395 8,963

 + + 
= =

 + +
 + + +
 
 

   

 

Compute the box distortion per kip of load, 1, assuming no cross-bracing or diaphragms are 

present: 

 

 
( )

( )
2

1

c a

ab c 2ab a b
v 2a b v

24 a b D a b D a b

    
 = − + + −    

+ + +    
         DGBGB Eq. (A1) 

 

( )( )

( )

( )( )
( ) ( )( )

2

1

120 80 2 120 8080.40 120 80
0.22 2 120 80 0.22

24 120 80 12,395 120 80 285,345 120 80

    
 = − + + −    

+ + +    
  

 
2

1

in.
δ 0.35 

kip
=    

 

The BEF stiffness parameter, , is a measure of the torsional stiffness of the beam, and is analogous 

to the beam-foundation parameter in the BEF derivation. The BEF stiffness parameter, , is 

calculated as: 

 

 

1

4

c 1

1
β

E I  δ

 
=  

 
              DGBGB Eq. (A5) 

 

( )( )( )

1

4
11

β 0.00330 in.
29,000 833,768 0.35

−
 

= =  
 

   

 

Multiplying the BEF stiffness parameter by the length between internal cross-frames yields: 

 

( )( )β 0.00330 196.0 0.65= =    

 

The transverse bending stress range at the top or bottom corners of the tub section may be 

determined as: 

 

 t t d range

1
σ C  F  β  T

2a
=               DGBGB Eq. (A8) 
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where: 

 

 Ct  =  BEF factor for determining the transverse distortional bending stress from DGBGB 

Figure A6 (see Figure 15) 

 Trange =  range of concentrated torque = TFAT (computed previously) 

 a = distance between webs at the top of tub section 

 Fd  = 
bv

2S
  for the bottom corner of tub section [DGBGB Eq. (A9a)] 

  = 
a b

v
2S a b

  
−  

+  
 for top corner of tub section [DGBGB Eq. (A9b)] 

 S = section modulus of the transverse member (per inch)  

 

Calculate the section modulus, S, per unit length of the stiffened portion of the web. S is taken at 

the top of the transverse member. In the following equation, the section modulus is divided by the 

stiffener spacing, d; and the distance from neutral axis of the stiffened web to the tip of the stiffener 

is cS. 

 

 
3

STIFFENED

S

I 1 26.5 1 in.
S 0.084 

c d 5.5 0.5625 1.0 62 in.

     
= = =     

+ −     
   

 

Calculate the section modulus, S, per unit length of the unstiffened portion of the web taken at the 

mid-thickness of the web.  In the equation that follows, bUS is taken as a unit 1.0 inch, so that the 

section modulus is computed per unit length. 

 

 
( )( )

22 3

US
UNSTIFFENED

1.0 0.5625b h in.
S 0.0527 

6 6 in.

  
= = =       

   

 

Compute the term Fd at the bottom corner of the tub section for the stiffened and unstiffened 

portions of the web: 

 

Stiffened Web: 
( )( )

( )
-1

d

80 0.22bv
F 105  in.

2S 2 0.084
= = =  

 

Unstiffened Web: 
( )( )

( )
-1

d

80 0.22bv
F 167  in.

2S 2 0.0527
= = =  

 

Compute the term Fd at the top corner of the tub section for the stiffened and unstiffened portions 

of the web: 

 

Stiffened Web: 
( )

-1

d

a b 120 80
F v 0.22 129  in.

2S a b 2 0.084 120 80

     
= − = − =      + +     
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Unstiffened Web: 
( )

-1

d

a b 120 80
F v 0.22 205  in.

2S a b 2 0.0527 120 80

     
= − = − =      + +     

 

 

It is conservatively assumed that the transverse stiffeners are not attached to the top or bottom 

flanges. Therefore, Fd is equal to 205 in.-1, as the larger value governs so as to produce a larger 

transverse bending stress. 

 

In order to read Ct from Figure 15 (DGBGB Figure A6), the dimensionless ratio, q, must be 

calculated.  The quantity q represents the ratio of cross-frame / diaphragm brace stiffness to the 

tub section stiffness per unit length and is computed as: 

 

 2b b
b

b 1

E  A
q  δ

L   δ

 
=  

 
              DGBGB Eq. (A6) 

 

where: 

 

 Eb  =  Young’s modulus of the internal cross-frame / diaphragm material 

 Ab =  cross-sectional area of one cross-frame / diaphragm bracing member 

 ℓ  =  internal cross-frame / diaphragm spacing 

 Lb =  length of cross-frame / diaphragm bracing member 

 b = deformation of the bracing member due to the applied torque and is calculated in 

accordance with DGBGB Eq. (A7) 

  = ( )1
2

a
2 1

b

a b
1

2h

 
+ 

  
+ 

+  
 

             DGBGB Eq. (A7) 

 h = vertical web depth of the tub section. 

 

First, compute b: 

 

 

( )

( )
2

b
2

120
2 1

in.80
δ 0.35 1.08 

kip
120 80

1
2 78

 
+ 

 = =

 +
+  

 

  

 

Calculate the cross-frame stiffness ratio, q. The area of one diagonal, Ab, in the internal cross-

frame is assumed to be equal to 5.0 in.2, and the length of the diagonal, Lb, is equal to 87.9 in. 

 

 
( )( )

( )( )( )
( )

229,000 5.0
q  1.08 28.0

87.9 196 0.35

 
= = 

 
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From Figure 15, for q = 28.0 and ℓ = 0.65, Ct is approximately equal to 0.12. Therefore, the 

transverse bending stress range at the top or bottom corners of the tub section is: 

 

 ( )( )( )
( )

( )( )t

1
σ 0.12 205 0.00330  518 12 2.10 ksi

2 120
= =    

 

 
Figure 15  Concentrated Torque at Mid-panel on Continuous Beam - Distortional Bending 

Stress at Load (DGBGB Figure A6 [25]) 

 

As discussed previously, the base metal adjacent to the termination of fillet welds connecting 

transverse elements to webs and box flanges is assumed to be a Category E detail for transverse 

bending. Thus, the transverse bending stress range would be compared to the appropriate nominal 

fatigue resistance for a Category E detail computed according to the provisions of Article 6.6.1.2.5. 

The finite life fatigue resistance is determined from Eq. 6.6.1.2.5-2 as follows: 

 

 ( )

1

3

n

A
F

N

 
 =  

 
                                                                                              Eq. (6.6.1.2.5-2) 

in which: 

 SLN (365)(75)n(ADTT)=                                                                             Eq. (6.6.1.2.5-3) 

            
6N (365)(75)(1.5)(1000) 41.06 x10 cycles= =  

 

From Table 6.6.1.2.5-1, the detail category constant, A, for a Category E detail is 11 x 108 ksi3. 

Therefore, 
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           ( )

1
8 3

t6n

11 x 10
F 2.99 ksi 2.10 ksi

41.06 x 10

 
 = =   = 

 
 

 

The fatigue longitudinal warping stress range at the top and bottom corners of the tub section due 

to cross section distortion can be computed as follows: 

   

 w
dw range

C  y
σ  T

I β a
=             DGBGB Eq. (A10) 

 

where: 

 

 Cw  =  BEF factor for determining the distortional longitudinal stress from DGBGB Figure 

A9 (see Figure 16) 

 y = distance along the transverse vertical axis of the tub section from the neutral axis 

to the point under consideration 

 

The distortional longitudinal warping stress range at the bottom of the tub section would be 

considered in checking the load-induced fatigue resistance of the base metal at the connection plate 

welds to the bottom flange at locations where the flange is subject to a net tensile stress. 

 

From Table 6.6.1.2.3-2, the 75-year (ADTT)SL Equivalent to Infinite Life for a Category C' detail 

is 975/1.5 = 650 trucks per day, adjusted for n = 1.5, which is less than 1,000 trucks per day. 

Therefore, the detail must be checked for infinite fatigue life using the Fatigue I load combination. 

Applying the load factor for the Fatigue I load combination ( = 1.75), the factored fatigue torque 

range, TFAT, is: 

 

 ( )FATT 1.75 309 339 1,134 kip-ft=  − +  =   

Obtain Cw from the graph shown in Figure 16, where q = 28.0 and ℓ = 0.65. Cw is approximately 

0.55. Therefore, using the short-term composite section properties with the transformed deck at 

Section G2-2 (see Table 13), the factored distortional longitudinal stresses are: 

 

 
( )( )

( )( )( )
( )( )dw_ TOP

0.55 17.23
σ  1,134 12 0.39 ksi

833,768 0.00330 120
= =  

 

 
( )( )

( )( )( )
( )( )dw_ BOT

0.55 60.77
σ  1,134 12 1.38 ksi

833,768 0.00330 120
= =  
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Figure 16  Concentrated Torque at Mid-panel on Continuous Beam – Normal Distortional 

Warping Stress at Mid-panel (DGBGB Table A9 [25]) 

 

The distortional longitudinal warping stress range would simply be added to the major-axis 

bending stress range at the detail. The distortional longitudinal warping stress at the top of the tub 

section may be ignored since the top flanges are continuously braced by the concrete deck. As 

mentioned previously, the preceding calculations were simply intended to illustrate the procedure 

for computing cross-section distortional stresses using the BEF analogy. These stresses are of 

greater concern in boxes subjected to much larger torques. Also, at Section G2-2, the bottom flange 

is not subject to a net tensile stress by inspection, and the top flanges are continuously braced by 

the concrete deck. However, these stresses should at least be considered in the base metal adjacent 

to welded details at or near the bottom flange in horizontally curved tub girder bridges at locations 

where the flange is subject to a net tensile stress. 

 

7.10 Girder Check: Section G2-2, Strength Limit State (Article 6.11.6)  

 

7.10.1 Flexure (Article 6.11.6.2) 

 

For composite sections in negative flexure at the strength limit state, Article 6.11.6.2.3 directs the 

Engineer to Article 6.11.8. Furthermore, Article 6.11.6.2.3 states that the provisions of Appendix 

A6 do not apply to tub girders, nor is redistribution of negative moment in accordance with 

Appendix B6 permitted. 

 

At the strength limit state, the top flanges in tension are continuously braced by the concrete deck, 

and are to satisfy: 
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 bu f ntf F                 Eq. (6.11.8.1.2-1) 

 

where Fnt is the nominal flexural resistance of the tension flanges determined as specified in Article 

6.11.8.3. 

 

At the strength limit state, tub flanges (bottom flanges) in compression are to satisfy: 

 

 bu f ncf F                 Eq. (6.11.8.1.1-1) 

 

where Fnc is the nominal flexural resistance of the bottom flange determined as specified in Article 

6.11.8.2. 

 

The unfactored bending moments at Section G2-2 from the analysis are shown below (see Table 

4). The live load moment includes the centrifugal force and dynamic load allowance effects. 

 

 Noncomposite Dead Load:  MDC1  = -15,426 kip-ft 

 Composite Dead Load:  MDC2  = -1,923 kip-ft 

 Future Wearing Surface Dead Load: MDW = -2,550 kip-ft 

 Live Load (incl. IM and CF): MLL+IM = -8,127 kip-ft 

 

Compute the factored flange flexural stresses at Section G2-2 for the Strength I load combination, 

without consideration of flange lateral bending. For loads applied to the composite section, cracked 

section properties are used to compute the major-axis bending stresses at the strength limit state in 

accordance with Article 4.5.2.2. Shear lag need not be considered since the box flange (bottom 

flange) does not exceed one-fifth of the span of the bridge (Article C6.11.1.1). Therefore, the 

major-axis bending stress is assumed to be uniform across the flange because shear lag need not 

be considered. Also, the longitudinal warping stress due to cross- section distortion does not need 

to be considered at the strength limit state, in accordance with Article 6.11.1.1. As discussed 

previously, the  factor is taken equal to 1.0 in this example.  Therefore: 

 

For Strength I: 

 

 Top Flange: 

 

 

bu

1.25( 15,426) 1.25( 1,9232) 1.5( 2,550) 1.75( 8,127)
f 1.0 12 44.41 ksi

10,057 10,654 10,654 11,862

− − − − 
= − + + + = 

 
 

 

 Bottom Flange: 

 

 bu

1.25( 15,426) 1.25( 1,923) 1.5( 2,550) 1.75( 8,127)
f 1.0 12 41.60 ksi

11,316 11,447 11,447 11,674

− − − − 
= + + + = − 

 
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In accordance with Article 6.11.1.1, the effects of both flexural and St. Venant torsional shear are 

to be considered for horizontally curved bridges. Therefore, compute the factored St. Venant 

torsional shear stress, fv, in the bottom flange for the Strength I load combination. fv is determined 

by dividing the St. Venant torsional shear flow [ f = T/(2Ao) ] by the thickness of the bottom flange: 

 

 v

o f

T
f

2A t
=                   Eq. (6.11.3.2-5) 

 

where: 

 

 T  = internal torque due to factored loads (kip-in.) 

 Ao  =  enclosed area within the box section (in.2) 

 tf  =  bottom flange thickness (in.) 

 

The unfactored torques at Section G2-2 obtained from the analysis are shown below (see Table 6). 

The live load torque includes the centrifugal force and dynamic load allowance effects. The 

positive torques are used in the calculations that follow as the total of the positive torques governs 

over the absolute value of the total of the negative torques. 

 

 Noncomposite Dead Load:  TDC1  = 36 kip-ft + (-33 kip-ft) = 3 kip-ft 

 Composite Dead Load:  TDC2  = 192 kip-ft 

 Future Wearing Surface Dead Load: TDW = 255 kip-ft 

 Live Load (incl. IM and CF): TLL+IM = 980 kip-ft 

 

Article C6.11.1.1 indicates that for torques applied to the noncomposite section, Ao is to be 

computed for the noncomposite section. Since the top lateral bracing in this example is attached 

to the top flange, the vertical depth can be calculated as the distance between the mid-thicknesses 

of the top and bottom flanges. Furthermore, for torques applied to the composite section, Ao is to 

be computed for the composite section using the depth from the mid-thickness of the bottom flange 

to the mid-thickness of the concrete deck. In this example, the height of the deck haunch is 

considered.   

 

Compute the enclosed area of the noncomposite tub section, Ao_NC. 

 

 
( )( )

2

o_NC

120 83 2 1.5 3.00 1.50
A 78 8,025 in.

2 2 2

 + −   = + + = 
 

 

 

Compute the enclosed area of the composite tub section, Ao_C. 

 

 ( )
( )( ) ( )( ) ( )( ) ( )

( )( )v_C

1.25 192 1.50 255 1.75 980 12
f 1.0 1.069 ksi

2 8,750 1.50

+ +  = =

( )( )
2

o_C

120 83 2 1.5 1.50 9.50
A 78 4.00 8,750 in.

2 2 2

 + −   = + + + = 
 
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Compute the factored Strength I St. Venant torsional shear stress in the bottom flange of the 

noncomposite section: 

 

 ( )
( )( )( )

( )( )v_NC

1.25 3 12
f 1.0 0.002 ksi

2 8,025 1.50
= =  

 

Compute the factored Strength I St. Venant torsional shear stress in the bottom flange of the 

composite section: 

 

  

 

Therefore the total factored Strength I St. Venant torsional shear stress is computed as: 

 

 vf 0.002 1.069 1.071 ksi= + =  

 

According to Article 6.11.1.1, the factored St. Venant torsional shear stress in box flanges (bottom 

flange in this tub girder) at the strength limit state is not to exceed the factored torsional shear 

resistance of the flange, Fvr, taken as: 

 

 
yf

vr v

F
F 0.75

3
=                   Eq. (6.11.1.1-1) 

 

where: 

 

 v  = resistance factor for shear specified in Article 6.5.4.2 

 

Therefore: 

  

( )vr v

50
F 0.75 1.0 21.65 ksi f 1.071 ksi 

3
= =  =  OK 

 

7.10.2 Top Flange  

 

Calculate the nominal flexural resistance of the top flanges in tension, Fnt, in accordance with 

Article 6.11.8.3. 

 

 nt h ytF R F=                   Eq. (6.11.8.3-1) 

 

For a homogenous girder, Rh, is equal to 1.0 (Article 6.10.1.10.1). Therefore: 

 

 ( )( )ntF 1.0 50.0 50.0 ksi= =   
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For Strength I: 

 

 bu f ntf F                 Eq. (6.11.8.1.2-1) 

 

 ( )( )bu f ntf 44.41 ksi F 1.0 50.00 50.00 ksi  =   = =
 

OK (Ratio = 0.888) 

 

7.10.3 Bottom Flange  

 

Calculate the nominal flexural resistance of the bottom flange in compression, Fnc, in accordance 

with Article 6.11.8.2. The bottom flange is longitudinally stiffened at this location, with a single 

WT 8x28.5 stiffener placed at the center of the bottom flange. 

 

 fc
f

fc

b

t
 =                Eq. (6.11.8.2.2-8) 

 

where, in this case: 

 

 bfc  = w  = larger of the width of the flange between the longitudinal flange stiffeners or 

the distance from a web to the nearest longitudinal flange stiffener. 

 

Since the longitudinal stiffener is at the center of the bottom flange, w is the distance from the 

longitudinal stiffener to the inside face of the web. 

 

 
f

79.4375

2
λ 26.48

1.50

 
 
 = =  

 

Calculate the first limiting slenderness ratio: 

 

 
p

yc

Ek
λ 0.57

F
=


              Eq. (6.11.8.2.2-9) 

 

where k is computed as specified in Article 6.11.8.2.3 for longitudinally stiffened flanges, and  

is computed in accordance with Article 6.11.8.2.2. 

 

As specified in Article 6.11.8.2.3, since a single bottom flange stiffener is used, n = 1 and the plate-

buckling coefficient for uniform normal stress, k, is to be taken as: 

 

 

1

3
S

3

fc

8I
k

wt

 
=  

 
               Eq. (6.11.8.2.3-1) 
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and: 

 

2

v

yc

f
Δ 1 3

F

 
= −   

 

            Eq. (6.11.8.2.2-11) 

 

where: 

 

 fv  =  factored St. Venant torsional shear stress in the flange (ksi) 

 n =  number of equally spaced longitudinal flange stiffeners 

 k  =  plate-buckling coefficient for uniform normal stress, 1.0 ≤ k ≤ 4.0 

 IS  =  moment of inertia of a single longitudinal flange stiffener about an axis parallel to 

the flange and taken at the base of the stiffener (in.4) 

 

Structural tees are efficient shapes for longitudinal stiffeners because they provide a high ratio of 

stiffness to cross-sectional area. For the WT 8x28.5 stiffener, Ix = 48.7 in.4, A = 8.39 in.2, and the 

elastic neutral axis (N.A.) is 6.28 in. from the tip of the stem. Therefore, Is is computed as: 

 

 ( )( )
2 4

SI 48.7 8.39 6.28 379.6 in.= + =  

        

Compute the plate-buckling coefficient k: 

 

( )

( )

1

3

3

8 379.6
k 2.83 4.0

79.4375
1.50

2

 
 
 = = 

  
  
  

 

 

Compute the Δ term: 

 

 

2
1.071

Δ 1 3 0.999
50.0

 
= − = 

 
 

 

Compute p: 

 

 
( )( )

( )( )p

29,000 2.83
λ 0.57 23.10

50.0 0.999
= =  

 

Since f is greater than 23.10 (f = 26.48), it is necessary to compute the second limiting 

slenderness ratio: 
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r

yr

Ek
λ 0.95

F
=             Eq. (6.11.8.2.2-10) 

 

where: 

 

 ( )yr yc ywF Δ 0.3 F F= −             Eq. (6.11.8.2.2-13) 

 

 ( )( )yr ywF 0.999 0.3 50 35.0 ksi F 50 ksi= − =  =  

 

Compute r: 

 

 
( )

r

29,000 (2.83)
λ 0.95 46.00

35.0
= =  

 

Since p  <  f  = 26.48  <  r, then the nominal axial compression buckling resistance of the 

flange under compression alone, Fcb, is calculated as follows: 

   

 
f p

cb b h yc

h r p

λ λΔ 0.3
F R R F Δ Δ

R λ λ

  − −
= − −    −    

                      Eq. (6.11.8.2.2-3) 

 

The hybrid factor, Rh, is equal to 1.0, as specified in Article 6.10.1.10.1.   

 

Determine the web load-shedding factor, Rb. First, compute the depth of the web in compression, 

Dc, in accordance with the provisions of Article D6.3.1. These provisions state that for composite 

sections in negative flexure at the strength limit state, Dc is to be computed for the section 

consisting of the steel girder plus the longitudinal deck reinforcement. For this example, Dc is 

calculated using the short-term (n) section property computations for the steel section plus the 

longitudinal reinforcement shown in Table 15. As indicated in Article C6.11.8.2.2, in calculating 

Rb for a tub section, use one-half of the effective box (bottom) flange width in conjunction with 

one top flange and a single web. 

 

Therefore, compute Dc along the inclined web: 

 

 ( )
2

c 2

4 1
D 41.58 1.50 41.31in.

4

+
= − =   

 

 
( )c

w

2 41.312D
146.9

t 0.5625
= =             
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According to the provisions of Article 6.10.1.10.2: 

       
c

rw b

w

2D
If , then R 1.0

t
  =

  Eq. (6.10.1.10.2-1) 

 

where: 

 

       rw

yc wc yc yc

E 5.0 E E
4.6 3.1 5.7

F a F F

 
  = +  

 
 Eq. (6.10.1.10.2-5) 

 

        
c w

wc

fc fc

2D t
a

b t
=

                                                        Eq. (6.10.1.10.2-8) 

 

       
yc

E 29,000
4.6 4.6 111

F 50
= =

 

 

       
yc

E 29,000
5.7 5.7 137

F 50
= =

 

 

       wc

2(41.31)(0.5625)
a 0.78

(79.4375 2)(1.5)
= =

 

 

       rw

5.0 29,000
111 3.1 229.0 137

0.78 50

 
  = + =  

      

 

       
c

rw

w

2D
137 146.9

t
 =  =

 

 

Since c
rw

w

2D

t
  , calculate Rb as follows: 

 

 wc c
b rw

wc w

a 2D
R 1 λ 1.0

1200 300a t

  
= − −   

+  
         Eq. (6.10.1.10.2-3) 

 

 

 
( )

( )
b

2 41.310.78
R 1 137 0.995 1.0

1200 300 0.78 0.5625

  
= − − =    +   
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Compute the nominal axial compression buckling resistance: 

 

 ( )( )( )cb

0.999 0.3 26.48 23.10
F 0.995 1.0 50 0.999 0.999

1.0 46.00 - 23.10

 − −   
= − −   

   
 

 

 
cbF 47.50 ksi=  

 

Compute the nominal flexural resistance of the compression flange: 

 

 

2

v
nc cb

v cv

f
F F 1-

F

 
=  

 
              Eq. (6.11.8.2.2-1) 

 

where: 

 

 Fcv = nominal shear buckling resistance of the flange under shear alone (ksi) 

 

In order to compute Fcv, first calculate ks, the plate-buckling coefficient for shear stress in 

accordance with Article 6.11.8.2.3: 

 

( )

1

3
S

3

fc

S 2

I
5.34 2.84

w t
k 5.34

n 1

 
+  

 = 
+

            Eq. (6.11.8.2.3-3) 

 

 
( )( )

( )

1

3

3

S 2

379.6
5.34 2.84

79.4375 2 1.50
k 2.34 5.34

1 1

 
 +
 
 = = 

+
 

 

As specified in Article 6.11.8.2.2, if s
f

yc

Ek
λ 1.12

F
 , then: 

 

 Fcv = 0.58 Fyc               Eq. (6.11.8.2.2-5) 

  

 
( )( )

f

29,000 2.34
λ 26.48 1.12 41.26

50
=  =  

 

Therefore: 

 

 ( )cvF 0.58 50 29.0 ksi= =  
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Compute Fnc: 

 

 
( )( )

2

nc

1.071
F 47.50 1- 47.47 ksi

1.0 29.0

 
= =  

 

 

 

Checking compliance with Eq. 6.11.8.1.1-1: 

 

 
bu f ncf F                 Eq. (6.11.8.1.1-1) 

 

For Strength I: 

 

 ( )( )bu f ncf -41.60 ksi   F 1.00 47.47   47.47 ksi=   = =  OK (Ratio = 0.876) 

 

Article C6.11.8.1.1 states that in general, bottom box flanges at interior pier sections are subjected 

to biaxial stresses due to major-axis bending of the tub section and major-axis bending of the 

internal diaphragm over the bearing sole plate. The bottom flange is also subject to shear stresses 

due to the internal diaphragm vertical shear and, in cases where it needs to be considered, the St. 

Venant torsional shear. For cases where the shear stresses and/or bending of the internal diaphragm 

are deemed significant, Article C6.11.8.1.1 suggests that the following equation be used to check 

the combined stress state in the box flange at the strength limit state: 

 

 ( )
22 2

bu bu by by d v f b h ycf f f f 3 f f R R F− + + +           Eq. (C6.11.8.1.1-1) 

 

where: 

 

 fbu  =  factored longitudinal stress at the section under consideration calculated without 

consideration of longitudinal warping (ksi) 

 fby =  factored stress in the flange caused by major-axis bending of the internal diaphragm 

over the bearing sole plate (ksi) 

 fd = factored shear stress in the flange caused by the internal diaphragm vertical shear 

(ksi) 

 fv =  factored St. Venant torsional shear stress in the flange (ksi) 

 Rb = web load-shedding factor determined as specified in Article 6.10.1.10.2 

 Rh = hybrid factor determined as specified in Article 6.10.1.10.1 

 

In this example, each tub girder is supported on two bearings at each support. Therefore, the bottom 

flange bending stresses due to major-axis bending of the diaphragm over the bearing sole plates 

are relatively small and are neglected in this example (fby = 0.0 ksi). The effect of these forces in 

a tub section supported on a single bearing is likely to be more significant and should be 

considered. As specified in Article C6.11.8.1.1 an effective flange width of 6 times the thickness 

of the tub girder bottom flange may be considered effective with the internal diaphragm for 

computing the stress in the box flange (bottom flange in this tub girder) caused by major-axis 

bending of the internal diaphragm over the bearing sole plate. Furthermore, if an access hole is 
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provided within the internal diaphragm, the hole should be considered in calculating the section 

properties of the effective diaphragm section. 

 

From previous calculations, the total factored St. Venant torsional shear stress in the bottom flange, 

fv, is equal to 1.071 ksi. 

 

To estimate the shear stress in the bottom flange due to the internal diaphragm shear, a 1 in. by 12 

in. top flange for the diaphragm is assumed. The diaphragm web is assumed to be 78 inches deep 

and 1 inch thick, and for simplicity in this example, an access hole is assumed not to be provided 

in the web. As specified in Article C6.11.8.1.1, a box flange width equal to 6 times its thickness 

may be considered effective with the internal diaphragm. Therefore: 

 

 ( )bf_EFFb 6 1.50 9.0 in.= =  

 

Therefore, the effective bottom flange of the internal diaphragm is 9.0 inches wide and has a 

thickness of 1.50 inches. The thickness of the effective bottom flange of the internal diaphragm is 

the same as the thickness of the tub girder bottom flange. 

 

From separate calculations not shown here, the moment of inertia of the effective internal 

diaphragm is 79,565 in.4, and the neutral axis is located 39.89 in. above the bottom of the bottom 

flange. Calculations associated with the design of the internal diaphragm, shown later, indicate 

that the total factored vertical component of the diaphragm shear is 1,406 kips. The shear stress in 

the tub girder bottom flange, fd, caused by the internal diaphragm vertical shear due to factored 

loads is approximated as: 

 

 d

fc

VQ
f

It
=             Eq. (C6.11.8.1.1-2) 

 

where: 

 

 V  =  vertical shear in the internal diaphragm due to flexure plus St. Venant torsion (kip) 

 Q =  first moment of inertia of one-half the effective box-flange area about the neutral 

axis of the effective internal diaphragm (in.3) 

 I = moment of inertia of the effective internal diaphragm section (in.4) 

 

The first moment of inertia of one-half the effective box-flange area about the neutral axis of the 

effective internal diaphragm, Q, is computed as: 

 

 ( )( ) 31 1.50
Q 9.0 1.50 39.89 264.2 in.

2 2

 
= − = 

 
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Therefore, 

 

 
( )( )

( )( )d

fc

1,406 264.2VQ
f 3.11 ksi

It 79,565 1.50
= = =  

 

Only one-half of the effective flange area is used in computing the first moment of inertia, Q,  used 

in this calculation since the shear stress in the flange is a maximum at the diaphragm and assumed 

to be zero at each edge of the effective flange (with a linear distribution assumed in-between). 

 

The factored longitudinal stress in the tub girder bottom flange, fbu, resulting from major-axis 

bending was computed previously as -41.60 ksi. Also, Rh is equal to 1.0, and Rb was computed in 

previous computations and is equal to 0.995. 

 

Checking compliance with Eq. C6.11.8.1.1-1: 

 

 ( ) ( )( ) ( ) ( )
2 2 2

41.60 41.60 0 0 3 3.11 1.07 42.23 ksi− − − + + + =  

 

( )( )( )( )f b h yc42.23 ksi R R F 1.0 0.995 1.0 50 49.75 ksi  = =  OK (Ratio = 0.849) 

 

7.10.3.1 Cross-section Distortion Stresses 

 

In accordance with Article 6.11.1.1, transverse bending stress due to cross-section distortion are 

to be considered at the strength limit state. The factored transverse bending stresses are not to 

exceed 20.0 ksi at the strength limit state. Longitudinal warping stresses due to cross-section 

distortion may be ignored at the strength limit state. 

 

As shown previously in the fatigue computations for Section G2-2, the transverse bending stress 

range at the top or bottom corners of the tub section may be determined as: 

 

 t t d

1
σ C  F  β  T

2a
=               DGBGB Eq. (A8) 

 

The same values computed under the fatigue computations may be used at the strength limit state, 

thus Ct is equal to 0.12, Fd is equal to 205 in.-1,  is equal to 0.00330 in.-1, and a is equal to 120 in. 

T represents the total factored concentrated torque and is computed as follows: 

 

For Strength I: 

 

 ( ) ( ) ( ) ( )T 1.25 3 1.25 192 1.50 255 1.75 980 2,341 kip-ft= + + + =  
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Therefore, the factored transverse bending stress due to cross-section distortion is computed as: 

 

   ( )( )( )
( )

( )( )t

1
σ 0.12 205 0.00330   2,341 12 9.50 ksi 20.0 ksi

2 120
= =   OK  (Ratio = 0.475) 

 

7.10.4 Shear (Article 6.11.6.3) 

 

Article 6.11.6.3 invokes the provision of Article 6.11.9 to determine the shear resistance at the 

strength limit state. Article 6.11.9 further directs the Engineer to the provision of Article 6.10.9 for 

determining the factored shear resistance of a single web. For the case of inclined webs, D, is to 

be taken as the depth of the web measured along the slope. The factored shear load in the inclined 

web is to be taken as: 

 

 
( )
u

ui

V
V

cos θ
=                      Eq. (6.11.9-1) 

  

where Vu is the factored shear on one inclined web, and  is the angle of inclination of the web 

plate. For tub sections, especially those in horizontally curved bridges, St. Venant torsional shear 

must be considered in the design of the webs. The total shear in one web is greater than the shear 

in the other web at the same section since the torsional shear is of opposite sign in the two webs. 

The critical shear should be the maximum combination of factored shear due to major-axis bending 

and the St. Venant torsional shear. For practicality, both webs are designed for the critical shear. 

 

At the strength limit state, webs must satisfy the following: 

 

 u v nV V                    Eq. (6.10.9.1-1) 

 

where: 

 

 v = resistance factor for shear = 1.0 (Article 6.5.4.2) 

 Vn  =  nominal shear resistance determined as specified in Articles 6.10.9.2 and 6.10.9.3 

for unstiffened and stiffened webs, respectively (kip) 

 Vu =  Vui = shear in a single web at the section under consideration due to factored loads 

(kip) 

 

The unfactored shears at Section G2-2 obtained from the analysis are shown below (see Table 2).  

The unfactored shears are vertical shears and are the summation of the shears due to major-axis 

bending and St. Venant torsion in the critical web. The live load moment includes the centrifugal 

force and dynamic load allowance effects. The positive shears are used in the calculations that 

follow as the total of the positive shears governs over the absolute value of the total of the negative 

shears. 

 

 Noncomposite Dead Load:  VDC1  = 232 kip 

 Composite Dead Load:  VDC2  = 44 kip 

 Future Wearing Surface Dead Load: VDW = 58 kip 
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 Live Load (incl. IM and CF): VLL+IM = 160 kip 

 

The  factor is again taken equal to 1.0 in this example at the strength limit state. The total factored 

shear at the interior pier in the inclined web is: 

 

 
 

( )ui

1.0 1.25(232 44) 1.5(58) 1.75(160)
V 734 kips

cos 14.036

+ + +
= =


 

 

7.10.4.1 Interior Panel (Article 6.10.9.3.2) 

 

Article 6.10.9.1 stipulates that the transverse stiffener spacing for interior panels without a 

longitudinal stiffener is not to exceed 3D = 3(80.40) = 241.2 inches. For the first panel on each 

side of the interior support, a transverse stiffener spacing of 62 inches is assumed for this design 

example, satisfying the 3D requirement. 

 

For interior panels of girders with the section along the entire panel proportioned such that: 

 

 
( )

w

fc fc ft ft

2Dt
2.5

b t b t


+
              Eq. (6.10.9.3.2-1) 

 

the nominal shear resistance is to be taken as the sum of the shear-buckling resistance and the post-

buckling resistance due to tension-field action, which is to be computed according to: 

 

 n p
2

o

0.87(1 C)
V V C

d
1

D

 
 

− 
= + 

  +     

             Eq. (6.10.9.3.2-2) 

 

in which: 

 

 
ywp wV 0.58F Dt=               Eq. (6.10.9.3.2-3) 

 

where: 

 

 do = transverse stiffener spacing (in.) 

 Vn  =  nominal shear resistance of the web panel (kip) 

 Vp =  plastic shear force (kip) 

 C  = ratio of the shear-buckling resistance to the shear yield strength. 

 

According to Article 6.11.9, for box flanges, bfc (in this case) is to be taken as one-half the effective 

flange width between webs in checking Eq. 6.10.9.3.2-1, but not to exceed 18 times the thickness 

of the box flange. Therefore, (79.4375/2) = 39.7 in. > 18(1.50) = 27.0 in. Use bfc = 27.0 in. to check 

Eq. 6.10.9.3.2-1. For the interior web panel under consideration, check Eq. 6.10.9.3.2-1 as follows: 
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( )( )

( )( ) ( )( )( )
2 80.40 0.5625

0.96 2.5
27.0 1.50 18 3.00

= 
+

  

 

Therefore, Eq. (6.10.9.3.2-2) is applicable.  First, compute the shear-buckling coefficient, k: 

 

 
2 2

o

5 5
k 5 5 13.41

d 62

80.40D

= + = + =
   

  
  

           Eq. (6.10.9.3.2-7) 

 

Since: 

 

 
w yw

D 80.4 Ek 29,000(13.41)
142.9 1.40 1.40 123.5

t 0.5625 F 50
= =  = =   

 

 
2

yw

w

1.57 Ek
C

FD

t

 
=   

   
 
 

              Eq. (6.10.9.3.2-6) 

 

 
( )

2

1.57 29,000(13.41)
C 0.598

50142.9

 
= = 

 
 

 

Vp is the plastic shear force and is calculated as follows: 

 

 p yw wV 0.58 F D t=               Eq. (6.10.9.3.3-2) 

 

 ( )( )( )pV 0.58 50.0 80.40 0.5625 1,312 kips= =  

 

Therefore, 

 

 ( )n
2

0.87(1 0.598)
V 1,312 0.598 1,148 kips

62.0
1

80.40

 
 

− 
= + = 

  +     

 

 

Checking compliance with Eq. (6.10.9.1-1): 

 

 ( )( )u v nV 734 kips V 1.0 1,148 1,148 kips=   = =  OK  (Ratio = 0.639) 
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7.11 Bottom Flange Longitudinal Stiffener  

 

A single longitudinal flange stiffener is used on the bottom flange of the tub girders in the negative 

moment regions. The longitudinal stiffeners are terminated at the bolted field splices at each end 

of Field Sections 2 and 4. By terminating the longitudinal stiffener at the bolted field splices, it is 

not necessary to consider fatigue at the terminus of the stiffener. Otherwise, the base metal at the 

stiffener termination would need to be checked as a fatigue Category E or E' detail depending on 

the stiffener thickness, unless a transition radius is provided at the termination (refer to Condition 

4.3 in Table 6.6.1.2.3-1). The bottom flange splice plates inside the tub girder must be designed 

and fabricated to permit the longitudinal stiffener to extend to the free edge of the flange, where 

the longitudinal stress is zero (refer to Figure 20). Refer to NSBA’s Steel Bridge Design 

Handbook: Example 4: Three-Span Continuous Straight Composite Steel Tub-Girder Bridge [8] 

for further discussion regarding the fatigue design of bottom flange longitudinal stiffeners.  

 

A single WT 8x28.5 is utilized for the longitudinal stiffener with the stem welded to the bottom 

flange and is placed at the centerline of the bottom flange. As specified in Article 6.11.11.2, 

longitudinal compression flange stiffeners on tub girder bottom flanges are to be equally spaced 

across the width of the flange. Furthermore, the yield strength of the longitudinal stiffeners must 

not be less than the yield strength of the flanges to which they are attached. 

 

The projecting width, bl, of the longitudinal flange stiffener must satisfy Eq. (6.11.11.2-1): 

 

 
s

yc

E
b 0.48 t

F
                Eq. (6.11.11.2-1) 

 

where: 

 

 ts = thickness of the projecting longitudinal stiffener element (in.) 

 

In the case of a structural tee, ts is taken as the flange thickness of the structural tee since each half-

flange would buckle similarly to a single plate connected to the web. Furthermore, the projecting 

width, bl, of structural tees is to be taken as one-half the width of the tee flange. Therefore, 

 

 l

29,000
b 0.48 (0.715) 8.27 in.

50
 =  

 

 l

7.12
b 3.56 in. 8.27 in.

2
= =    WT 8x28.5 flange is OK 

 

The moment of inertia, Iℓ, of each stiffener about an axis parallel to the flange and taken at the 

base of the stiffener must satisfy: 

 

  

 

 
3

fcI ψ w t                            Eq. (6.11.11.2-2) 
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where: 

 

  = 0.125k3 for n = 1 

  = 1.120k3 for n = 2 

 k = plate buckling coefficient for uniform stress, 1.0 ≤ k ≤ 4.0 

 n = number of equally spaced longitudinal flange stiffeners 

 w = larger of the width of the flange between longitudinal flange stiffeners or the 

distance from a web to the nearest longitudinal flange stiffener (in.) 

 tfc = thickness of the tub girder compression flange (in.) 

 

Calculate the moment of inertia of the stiffener, Iℓ, about the base of the stiffener: 

 

 Iℓ = Io + Ad2 = 48.7 + (8.39) (8.22 – 1.94)2 = 379.6 in4 

 

As specified in Article C6.11.11.2, the actual longitudinal flange stiffener moment of inertia, Is, 

used in determining the plate-buckling coefficient for uniform normal stress, k, from either Eq. 

6.11.8.2.3-1 or Eq. 6.11.8.2.3-2, as applicable, automatically satisfies Eq. 6.11.11.2-2.  

Alternatively, for preliminary sizing of the stiffener for example, a value of k can be assumed in 

lieu of using Eq. 6.11.8.2.3-1 or Eq. 6.11.8.2.3-2, as applicable, but a range of 2.0 to 4.0 should 

generally apply. For completeness, check Eq. 6.11.11.2-2, where k was previously calculated as 

2.83: 

 

 4 3 3 479.4375
379.6 in. 0.125(2.83) (1.5) 379.8 in.

2

 
  

 
  OK 

 

The slight difference between the two values is due to rounding. Since Eq. 6.11.11.2-1 and Eq. 

6.11.11.2-2 are satisfied, the WT 8x25 is acceptable for the bottom flange longitudinal stiffener. 

 

7.12 Internal Pier Diaphragm Design  

 

Article 6.11.1 directs the designer to the provision of Article 6.7.4 for general design 

considerations for internal and external cross-frames and diaphragms (specifically Article 6.7.4.3). 

The internal diaphragms are subject to major-axis bending over the bearing sole plates in addition 

to shear. Article C6.11.8.1.1 requires that the principal stresses in the internal support diaphragm 

at the strength limit state not exceed the compressive resistance given by Eq. C6.11.8.1.1-1, which 

is a yield criterion for combined stress. In this example, each tub girder is supported by two 

bearings, therefore, as specified in Article C6.11.8.1.1, the major-axis bending stress in the internal 

diaphragms, fby, is typically small and can be neglected. 

 

Example calculations are demonstrated for the Girder G2 internal diaphragms at the Pier 1 supports 

(Girder Section G2-2). A 1.0 inch thick Grade 50 steel plate is assumed for the internal diaphragm 

web at this location.  Figure 17 shows a sketch of the internal diaphragm.  For simplicity, the access 

hole in the web for inspection purposes is not considered in this example. 
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Figure 17  Internal Pier Diaphragm and Bearing Locations 

 

First, summarize the maximum vertical shears and torsional moments acting on the internal 

diaphragm. The unfactored shears are taken from Table 2, and most of the unfactored torques are 

taken from Table 6.   

 

The maximum unfactored vertical shears acting on the internal diaphragm, using the critical tub 

girder web are shown below. The unfactored vertical shears are due to the combined effects of 

bending and St. Venant torsion in the critical tub girder web. Therefore, it is necessary to separate 

out the shears due to bending and St. Venant torsion in computations that follow later in this 

section.   

 

The maximum unfactored vertical shears in the critical tub girder web due to tub girder flexure 

and St. Venant torsion are: 

 

 Steel Dead Load:  VDC1-STEEL  = 47 + |-46| = 93 kips 

 Concrete Deck Dead Load:  VDC1-CONC  = 185 + |-185| = 370 kips 

 Composite Dead Load:  VDC2  = 44 + |-41| = 85 kips 

 Future Wearing Surface Dead Load: VDW = 58 + |-55| = 113 kips 

 Live Load (incl. IM and CF): VLL+IM = 160 + |-155| = 315 kips 

 

The maximum unfactored torques acting on the internal diaphragm, are: 

 

 Steel Dead Load:  TDC1-STEEL  = |-22| + 36 = 58 kip-ft 

 Concrete Dead Load:  TDC1-CONC  = 48 + |-33| = 81 kip-ft 

 Composite Dead Load:  TDC2  = |-149| + 192 = 341 kip-ft 

 Future Wearing Surface Dead Load: TDW = |-197| + 255 = 452 kip-ft 

 Live Load (incl. IM and CF): TLL+IM = 980 + |-425| = 1405 kip-ft 
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For computing the above live load torque, assumed concurrent torques are used that produce the 

largest torsional reaction at the support, and thus the largest torque acting on the internal 

diaphragm. 

 

Compute the maximum factored shear stress in the diaphragm web. The vertical shear acting on 

the critical tub girder web is equal to the maximum shear in the internal diaphragm. First, it is 

necessary to separate out the shears due to tub girder flexure (bending), Vb, and the shears due to 

St. Venant torsion, VT, as the maximum unfactored vertical shears above include the web shear 

due to torsion.   

 

7.12.1 Web Shear Check 

 

The calculations in this section check the combined principal stresses in the internal diaphragm 

web and the shear in the internal diaphragm web. To perform these checks, it is necessary to 

separately consider the shear in the internal diaphragm for tub girder flexure (bending) and the 

shear due to torsion. 

 

7.12.1.1 Noncomposite Shear Force 

 

The sum of the total noncomposite Strength I factored shears is: 

 

 VDC1 = 1.25(93 +370) = 579 kips 

 

To compute the shear due to torsion, it is necessary to compute the shear flow in the noncomposite 

tub girder section. The enclosed area of the noncomposite tub section, Ao_NC, was computed 

previously as 8,025 in2. The factored shear flow in the noncomposite section is computed as: 

 

 v

o

T
f

2 A
=                Eq. (C6.11.1.1-1) 

 

where: 

 

 T  = internal torque due to factored loads (kip-in.) 

 Ao  =  enclosed area within the box section (in.2) 

 

 v

o

T 1.25(58 81)(12)
f 0.130 kip/in.

2A 2(8,025)

+
= = =        

 

Note that the internal factored noncomposite dead load torque is equal to 173.8 kip-ft.  

 

To obtain the factored noncomposite dead load St. Venant torsional shear, VT, multiply the 

factored shear flow by the depth of the tub girder web along the incline: 

 

 VT = 0.130(80.40) = 10.45 kips 
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The vertical component of VT is computed as: 

 

 
T Vert

78.0
(V ) 10.45 10.14 kips

80.40

 
= = 

 
        

 

The factored vertical shear in the diaphragm web due to tub girder flexure alone and noncomposite 

dead loads is then computed by subtracting the vertical component of the factored noncomposite 

dead load St. Venant torsional shear from the total noncomposite dead load shear: 

 

 Vb = 579 – 10.14 = 569 kips 

 

Figure 18 provides an illustration of the above calculation. 

 

 

 
Figure 18  Computation of the Shear in the Internal Pier Diaphragm due to St. Venant 

Torsion and Tub Girder Flexure 

 

7.12.1.2 Composite Shear Force 

 

The sum of the total composite Strength I factored shears is: 

 

 VDC2+DW+(LL+I) = 1.25(85) + 1.5(113) +1.75(315) = 827 kips 

 

The enclosed area of the composite tub section, Ao_C, was computed previously as 8,750 in2.  The 

factored shear flow in the composite section is computed as: 

 

 v

o

T [1.25(341)  1.5(452)  1.75(1,405)](12)
f 2.44 kip/in.

2A 2(8,750)

+ +
= = =   

 

To obtain the factored composite St. Venant torsional shear, VT, multiply the factored shear flow 

by the depth of the web along the incline: 

 

 VT = 2.44(80.40) = 196.2 kips 

 

The vertical component of VT is computed as: 
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T Vert

78.0
(V ) 196.2 190 kips

80.40

 
= = 

 
        

 

The factored vertical shear in the diaphragm web due to tub girder flexure alone and composite 

loads is then computed by subtracting the vertical component of the factored composite St. Venant 

torsional shear from the total factored composite shear: 

 

 Vb = 827 – 190 = 637 kips 

 

7.12.1.3 Total Factored Shear Force 

 

The total factored shear stress in the diaphragm web due to torsion is calculated by dividing the 

shear flows by the thickness of the web: 

 

 v T

0.130 2.44
(f ) 2.57 ksi

1.0 in. 1.0 in.
= + =   

 

The average Strength I factored shear stress in the diaphragm web due to tub girder flexure 

(bending) is calculated by dividing the total factored shear by the area of the web: 

 

 v b

569 637
(f ) 15.46 ksi

78(1.0)

+
= =   

 

7.12.1.4 Check of Internal Diaphragm Web 

 

As discussed previously, for a tub girder supported on two bearings, the bending stresses in the 

plane of the internal diaphragm due to vertical bending of the diaphragm over the bearing sole 

plates are relatively small and will be neglected in this example. For a tub girder supported on a 

single bearing, the effects of the bending stresses in the plane of the diaphragm are likely to be 

more significant and should be considered. As specified in Article C6.11.8.1.1, a width of the 

bottom (box) flange equal to 6 times the thickness may be considered effective with the diaphragm 

in resisting in-plane bending. 

 

Therefore, for this example, since bending in the plane of the diaphragm is ignored, the maximum 

principal stress is simply equal to the total factored shear stress: 

 

 fv = (fv)T + (fv)b = 2.57 +15.46 = 18.03 ksi 

 

The combined factored principal stresses in the diaphragm are checked using the general form of 

the Huber-von Mises-Hencky yield criterion, which is similar to Eq. C6.11.8.1.1-1. The general 

form of the Huber-von Mises-Hencky yield criterion is: 

 

 
2 2

1 1 2 2 yF −   +           
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where 1 and 2 are the maximum and minimum principal stresses in the diaphragm web, and: 

 

 

2

y z y z 2

1 2 v, f
2 2

 +   −    
  =  +   

   
  

 

There is a major-axis bending moment that must be carried by the internal diaphragm, resulting 

from the fact that the web is cantilevered out from the bearing (see Figure 17).  Assuming that the 

vertical shear force acts at the mid-depth of the web, the internal diaphragm moment at the 

centerline of the bearing is computed as: 

 

 MID = (569 kips + 637 kips) (12.0 in. + 9.75 in.) = 26,231 kip-in. 

 

It was stated earlier in these calculations (Section 7.10.3) that the moment of inertia of the effective 

internal diaphragm is 79,565 in.4, and the neutral axis is located 39.89 in. above the bottom of the 

bottom flange. The bottom flange thickness is equal to the bottom flange thickness of the tub 

girder, which is 1.50 inches. Therefore, the major-axis bending stress, y in the internal diaphragm 

web is computed as: 

 

 
( )( )

ID
y

26,231 39.89 1.50M c
σ 12.66 ksi

I 79,565

−
= = =   

 

z is equal to zero because there are no loads applied that cause stress in vertical direction in the 

internal diaphragm web. 

 

Therefore, the principal stresses are computed as: 

 

 

2

2

1,2

12.66 0 12.66 0
σ 18.02 25.43 ksi

2 2

+ −   
=  + =    

   
  

 

Check the combined principal stress using the Huber-von Mises-Hencky yield criterion: 

 

 
2 2

y25.43 (25.43)( 25.43) ( 25.43) 44.05 ksi F 50.0 ksi− − + − =  =   OK (Ratio= 

0.881)  

 

Next, check the shear resistance of the internal diaphragm and compare the computed resistance 

to the factored diaphragm shear force. Compute the shear resistance according to Article 6.11.9, 

which refers to the provisions of Article 6.10.9 for I-girders. Article 6.7.4.3 specifies that the 

nominal shear resistance of internal diaphragm webs is to be computed from Eq. (6.10.9.3.3-1). 

Calculations not shown here indicate that C = 1.0. 

 

 u v nV V                    Eq. (6.10.9.1-1) 
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 n cr pV V CV= =               Eq. (6.10.9.3.3-1) 

 

 
ywp wV 0.58F Dt 0.58(50.0)(78)(1.0) 2,262 kips= = =              Eq. (6.10.9.2-2) 

 

 
nV (1.0)(2,262) 2,262 kips= =   

 

Check Eq. 6.10.9.1-1: 

  

 
u v nV 569 639 1,208 kips V (1.0)(2,262) 2,262 kips= + =   = =  OK (Ratio 0.534) 

 

Article 6.7.4.3 further specifies that webs of internal diaphragms are to satisfy Eq. (6.10.1.10.2-1) 

to verify that the webs are nonslender and not subject to web bend-buckling. 

 

   cD 39.89 1.5 38.39 in.= − =  

 

              
( )c

w

2 38.392D
76.8

t 1.0
= =  

 

       
c

rw

w

2D

t
 

                                                                                         Eq. (6.10.1.10.2-1) 

 

where: 

 

       rw

yc wc yc yc

E 5.0 E E
4.6 3.1 5.7

F a F F

 
  = +  

 
 Eq. (6.10.1.10.2-5) 

 

        
c w

wc

fc fc

2D t
a

b t
=

                                                        Eq. (6.10.1.10.2-8) 

 

       
yc

E 29,000
4.6 4.6 111

F 50
= =

 

 

       
yc

E 29,000
5.7 5.7 137

F 50
= =

 

 

       wc

2(38.39)(1.0)
a 5.69

(9.0)(1.5)
= =

 

 

       rw

5.0 29,000
111 3.1 95.8 137

5.69 50

 
  = + =  

      
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c

rw

w

2D
111 76.8

t
 =  =      OK

 

 

7.12.2 Bearing Stiffeners 

 

Bearing stiffeners are placed on each side of the web of the internal diaphragm at each bearing 

location. The design of the Girder G2 bearing stiffeners at Pier 1 (Section G2-2) is illustrated in 

this section.  It is assumed that the bearings at Pier 1 are fixed, thus there is no expansion causing 

eccentric loading on the bearing stiffeners that are attached to the internal diaphragm. According 

to Article 6.11.11.1, bearing stiffeners attached to the internal diaphragms are to be designed using 

the provisions of Article 6.10.11.2.4b applied to the diaphragm rather than the girder web. 

 

Bearing stiffeners must extend the full depth of the web and as closely as practical to the outer 

edges of the flanges. Each stiffener is to be either finished-to-bear against the flange through which 

it receives its load and attached with fillet welds (which is required if the stiffener also serves as a 

connection plate which is not the case here) or attached to that flange by a full penetration groove 

weld. Using finish-to-bear plus fillet welds to connect the bearing stiffeners to the appropriate 

flange, allowing the option to use fillet welds even if not required for the connection, is 

recommended [12]. For connection to the top flange, finish-to-bear is not necessary, and fillet 

welding of the stiffener to the top flange is only necessary if the stiffener also serves as a 

connection plate. Full penetration groove welds are costly and often result in welding deformation 

of the flange. 

 

The unfactored reactions are as shown below for the left and right bearings at Pier 1, Girder G2.  

These results are taken directly from the three-dimensional analysis. 

 

Left Bearing: 

 Steel Dead Load:  RDC1-STEEL  = 79 kips 

 Concrete Deck Dead Load:  RDC1-CONC  = 238 kips 

 Composite Dead Load:  RDC2  = 85 kips 

 Future Wearing Surface Dead Load: RDW = 113 kips 

 Live Load (incl. IM and CF): RLL+IM = 294 kips 

 

Right Bearing: 

 Steel Dead Load:  RDC1-STEEL  = 93 kips 

 Concrete Deck Dead Load:  RDC1-CONC  = 370 kips 

 Composite Dead Load:  RDC2  = 11 kips 

 Future Wearing Surface Dead Load: RDW = 15 kips 

 Live Load (incl. IM and CF): RLL+IM = 287 kips 

 

The maximum Strength I factored reactions for each bearing are computed as: 

 

 RLEFT = 1.25(79 + 238 + 85) + 1.5(113) + 1.75(294) = 1,187 kips 

 

 RRIGHT = 1.25(93 + 370 + 11) + 1.5(15) + 1.75(287) = 1,117 kips 
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The factored reaction at the left bearing is larger, and therefore controls. The bearing stiffeners are 

assumed to have a yield stress of 50 ksi, and are 1 in. by 11 in. plates. As shown in Figure 17, there 

is one bearing stiffener on each side of the internal diaphragm web, and therefore two at each 

bearing location.  

 

The thickness, tp, of each projecting stiffener element must satisfy: 

             t
p

ys

b
t

E
0.48

F

                                                                               Eq. (6.10.11.2.2-1) 

 

 
p

11
t 1.0 in. 0.95 in.

29,000
0.48

50

=  =   OK   

 

7.12.2.1 Bearing Resistance 

 

According to Article 6.10.11.2.3, the factored bearing resistance for the fitted ends of bearing 

stiffeners is taken as: 

 

 ( ) ( )sb r b sb n
R R=              Eq. (6.10.11.2.3-1) 

 

where: 

 

 b = resistance factor for bearing specified in Article 6.5.4.2 (b = 1.0) 

 (Rsb)n =  nominal bearing resistance for fitted ends of bearing stiffeners (kip) 

 

and: 

 ( )sb pn ysn
R 1.4A F=             Eq. (6.10.11.2.3-2) 

 

where: 

 

 Apn  = area of the projecting elements of the stiffener outside of the web-to-flange fillet 

welds but not beyond the edge of the flange (in.2) 

 Fys  = specified minimum yield strength of the stiffener (ksi) 

 

Assuming a 1 inch stiffener clip, compute Apn as follows: 

 

 ( )( ) 2

pnA 2 11 1 1.00 20.0 in= − =    
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The nominal bearing resistance of the stiffeners at a single bearing is computed as: 

 

 ( ) ( )( )sb nR 1.4 20.0 50 1,400 kips= =  

 

The factored bearing resistance of the stiffeners at a single bearing is computed as: 

 

 ( ) ( )sb r uR 1.0 1,400 1,400 kips R 1,187 kips= =  =    OK 

 

7.12.2.2 Axial Resistance 

 

Determine the axial resistance of the bearing stiffener according to Article 6.10.11.2.4. This article 

directs the Engineer to Article 6.9.2.1 for calculation of the factored axial resistance, Pr.  The yield 

strength is Fys, the radius of gyration is computed about the midthickness of the web, and the 

effective length is 0.75 times the web depth (Kl = 0.75D). 

 

 r c nP P=           Eq. (6.9.2.1-1) 

 

where: Pn = nominal compressive resistance determined using the provisions of Article 6.9.4 (kip) 

 c = resistance factor for compression as specified in Article 6.5.4.2 (c = 0.95) 

 

As indicated in Article C6.9.4.1.1, only the limit state of flexural buckling is applicable for bearing 

stiffeners. Based on the above width-to-thickness ratio limit, bearing stiffeners are also composed 

only of nonslender elements; therefore, local buckling effects on the overall compressive resistance 

of the stiffeners need not be considered.  

 

To compute Pn, first compute Pe and Po. Pe is the elastic critical buckling resistance determined as 

specified in Article 6.9.4.1.2 for flexural buckling. Po is the nominal yield resistance equal to FyAg: 

 

 
2

e g2

s

E
P A

K

r


=

 
 
 

                Eq. (6.9.4.1.2-1) 

 

In accordance with Article 6.10.11.2.4, the effective length, Kℓ, is to be taken as 0.75D: 

 

 Kℓ = 0.75D = 0.75(80.40) = 60.3 in. 

 

Compute the radius of gyration about the midthickness of the web. 

 

 s
s

s

I
r

A
=  

 

According to the provisions of Article 6.10.11.2.4b, for stiffeners welded to the web, a portion of 

the web is to be included as part of the effective column section. For stiffeners consisting of two 
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plates welded to the web, the effective column section is to consist of the two stiffener elements, 

plus a centrally located strip of web extending 9tw on each side of the outer projecting elements of 

the group. The area of the web that is part of the effective section is computed as follows: 

 

 ( )( )( ) 2

wA 2 9 1.0 1.0 18.0 in.= =  

 

The total area of the effective section is therefore: 

 

 
2

sA 18.0 2(1.00)(11.00) 40.0 in.= + =  

 

Next, compute the moment of inertia of the effective section about the centerline of the diaphragm 

of the web, conservatively using the stiffeners only: 

 

 ( )( )
2

3 41 11.0 1.0
I 2 1.0 11.0 11.0 1,014 in.

12 2 2

  
= + + =  

   

 

 

Compute the radius of gyration: 

 

 s

1,014
r 5.03 in.

40.0
= =  

 

The elastic critical buckling resistance is computed as follows: 

 

 
( )

( )
2

e 2

29,000
P 40.0 79,663 kips

60.3

5.03


= =

 
 
 

 

 

The nominal yield resistance is computed as follows, with As used for Ag: 

 

 ( )( )o y gP F A 50 40.0 2,000 kips= = =  

 

Since  

 

o

e

P 2,000
0.025 2.25

P 79,663
= =  , 

 

the nominal compressive resistance is computed as: 

 

 

o

e

P

P

n oP 0.658 P

 
 
 

 
 =
 
 

                Eq. (6.9.4.1.1-1) 
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 ( )
1

39.8

nP 0.658 2,000 1,979 kips

 
 
 

 
= = 

  

 

 

The factored compressive resistance of the bearing stiffeners is computed as follows: 

 

 ( )r c nP P 0.95 1,979 1,880 kips=  = =  

 

 
u rP 1,187 kips P 1,880 kips=  =    OK (Ratio = 0.631) 

 

The 1.0 in. by 11.0 in. bearing stiffeners selected satisfy the requirements for design. 

 

7.13 Top Flange Lateral Bracing Design  

 

Top flanges of tub girders should be braced so that the section acts as a pseudo-box for 

noncomposite loads applied before the concrete deck hardens or is made composite. The 

calculations herein demonstrate the design of the top flange single diagonal bracing member in 

Span 1 of Girder G2 in the first bay adjacent to the abutment for constructability. Top flange 

bracing must also be designed to satisfy the strength limit state for the final condition as well as 

for constructability. Since the bracing is permanent, composite dead load force effects (i.e., due to 

DC2 and DW) and live load force effects are considered at the strength limit state, although these 

effects are relatively small in this case since the bracing is located at the top of the tub section. In 

many cases, the factored forces during construction will govern over the factored forces in the final 

condition. 

 

Article 6.11.1 specifies that the top lateral bracing for tub girders must satisfy the provisions of 

Article 6.7.5. The bracing is designed according to the provision of Articles 6.8 and 6.9 for tension 

and compression, respectively. The effects of lateral loading due to wind and the lateral force 

caused by deck overhang brackets are neglected in this design example. 

 

The unfactored axial forces in the diagonal bracing member in the first bay of Span 1 of Girder G2 

are obtained from the three-dimensional analysis and are as follows:  

 

 Steel Dead Load:  PSTEEL  = -13 kip 

 Deck Cast #1 Dead Load:  PCONC  = -100 kip 

 

In accordance with Article 3.4.2.1, when investigating the Strength I and Strength III load 

combinations for maximum force effects during construction, load factors for the weight of the 

structure and appurtenances, DC and DW, are not to be taken to be less than 1.25. Therefore, the 

factored axial load is computed as: 

 

 Pu = Paxial = 1.25[-13 + (-100)] = -141 kips I 

 

Although not included in this example in the interest of brevity, the special load combination 

specified in Article 3.4.2.1 must also be considered in the design checks for the DC loads and 



 

134 

 

construction loads, C, applied to the fully erected steelwork during the deck placement sequence 

(see Section 5.4). 

 

Compute the unbraced length of the top flange lateral bracing member, Lb: 

  

 Tub width at the top flanges = 120 in. 

 Top flange width = 16 in. 

 Clear distance between top flanges = 120 – 16 = 104 in. 

 Spacing of top flange lateral bracing = 16.3 ft = 196 in. 

 
2 2

bL 104 196 222 in.= + =  

  

A structural tee is used for the top flange lateral bracing, with the stem down and its flange bolted 

to the bottom of the top flanges, which is the preferable method of connection. A WT 9x48.5 is 

selected for the top flange lateral bracing. From the AISC Steel Construction Manual [26], the 

section properties for a WT 9x48.5 are:  

 

 Area = 14.2 in.2; y = 1.91 in.; Sx = 12.7 in.3; rx = 2.56 in.; ry = 2.65 in.; J = 2.92 in.4; d = 9.30 in.; 

bf = 11.1 in.; tf = 0.870 in.; Ix = 93.8 in.4; Iy = 100 in.4; Zx = 22.6 in.3; tw = 0.535 in. 

 

The thickness of the tee stem exceeds the minimum permissible thickness of 5/16 specified for 

structural steel in Article 6.7.3. 

 

Check buckling about the x-axis as this is the governing condition. The eccentricity of the 

connection to the center of gravity of the structural tee causes a moment on the member. The top 

flanges of the tub girder at this location are 1.0-inch thick. The moment due to eccentricity is 

computed as: 

 

 Mux = Paxial (y + 1.0/2) = (141)(1.91 + 1.0/2) = 340 kip-in. 

 

Since the structural tee is subjected to axial compression and flexure, it is necessary to check the 

combined effects of axial compression and flexure in accordance with Article 6.9.2.2. 

 

First, check the limiting slenderness ratio for secondary members in compression (see Table 

6.6.2.1-1), as specified in Article 6.9.3. Article 4.6.2.5 allows the effective length factor, K, to be 

taken as 0.75 for members with bolted or welded connections at both ends. Assume Ky = 0.75.  

However, since only the tub flanges are providing restraint for buckling about the x-axis, Kx will 

conservatively be taken equal to 1.0. The slenderness ratios about each axis in this case are 

therefore: 

 

           
y y

y

K 0.75(222)
62.8 140 ok

r 2.65
= =   

 

          x x

x

K 1.0(222)
86.7 140 ok

r 2.56
= =   
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To determine if the effects of local buckling of the tee stem on the nominal compressive resistance 

of the member need to be considered, check the width-to-thickness ratio provision of Article 

6.9.4.2.1 for the lateral bracing member: 

 

 r

b

t
                                          Eq. (6.9.4.2.1-1) 

 

where: 

   

  λr   =  width-to-thickness ratio limit specified in Table 6.9.4.2.1-1 

  b    =  full depth of the tee section (in.) 

  t     =  element thickness (in.) 

 

 

 r

b 9.30 29,000
17.4 0.75 18.1

t 0.535 50
= =   = =       OK     Tee stem is nonslender 

 

Similar calculations, not shown, indicate that the flange of the tee section is also a nonslender 

element. If the tee stem or flange were slender, local buckling effects would need to be considered 

according to the provisions of Article 6.9.4.2.2. 

 

Compute the compressive resistance in accordance with Article 6.9.2.1, where the factored 

compressive resistance, Pr, is taken as: 

 

 r c nP P=                      Eq. (6.9.2.1-1) 

 

where: 

 

 c  = resistance factor for compression as specified in Article 6.5.4.2 (c = 0.95) 

 Pn  =  nominal compressive resistance as specified in Article 6.9.4 or 6.9.5, as applicable 

(kip) 

 

Compute the nominal compressive resistance, Pn, in accordance with Article 6.9.4.1.1. In order to 

determine which equation to use to compute the nominal compressive resistance, it is necessary to 

compute the elastic critical buckling resistance, Pe, and the nominal yield resistance, Po. 

 

The elastic critical buckling resistance, Pe, is specified in Article 6.9.4.1.2 for flexural buckling, 

and specified in Article 6.9.4.1.3 for flexural-torsional buckling. In accordance with Table 

6.9.4.1.1-1, flexural buckling and flexural-torsional buckling must be considered to determine the 

compressive resistance of structural tees. Separate calculations, not provided here, show that 

flexural buckling governs in this particular case. The computation of Pe for the flexural buckling 

resistance is illustrated herein. 
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Compute the elastic critical buckling resistance, Pe, based on flexural buckling in accordance with 

Article 6.9.4.1.2: 

 

 
2

e g2

s

π E
P A

K 

r

=
 
 
 

                Eq. (6.9.4.1.2-1) 

 

where: 

 

 Ag  = gross cross-sectional area of the member (in.2) 

 K  =  effective length factor in the plane of buckling determined as specified in Article 

4.6.2.5 

 ℓ = unbraced length in the plane of buckling (in.) 

 rs = radius of gyration about the axis normal to the plane of buckling (in.) 

 

The elastic critical buckling resistance is then computed as: 

 

 
( )

( )
( )

2

e 2

π 29,000
P 14.2 962 kips

65.0
= =    

 

The nominal yield resistance, Po, is computed in accordance with Article 6.9.4.1.1 as follows: 

 

 o y gP F A=     

 

Therefore, the nominal yield resistance, Po, is computed as: 

 

 ( )( )oP 50 14.2 710 kips= =     

 

As specified in Article 6.9.4.1.1, check the result of Po/Pe: 

 

 o

e

P 710
0.74

P 962
= =     

 

Since Po/Pe is less than 2.25, the nominal compressive resistance, Pn, is computed in accordance 

with Eq. 6.9.4.1.1-1. 

 

 

o

e

P

P

n oP 0.658 P

 
 
 

 
 =
 
 

                Eq. (6.9.4.1.1-1) 

 

 ( )
710

962

nP 0.658 710 521 kips

 
 
 

 
= = 

  
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Compute the factored compressive resistance, Pr, in accordance with Article 6.9.2.1: 

   

 ( )( )r c nP P 0.95 521 495 kips=  = =                  Eq. (6.9.2.1-1) 

 

Determine the factored flexural resistance about the x-axis using the provisions of Article 6.12.1.2 

for miscellaneous flexural members, and specifically Article 6.12.2.2.4 for structural tees. 

The factored flexural resistance, Mr, is to be taken as: 

 

 r f nM M=                 Eq. (6.12.1.2.1-1) 

 

where: 

 

 f  = resistance factor for flexure as specified in Article 6.5.4.2 (f = 1.0) 

 Mn  =  nominal flexural resistance specified in Articles 6.12.2.2 or 6.12.2.3, as applicable 

(kip-in.) 

 

In accordance with Article 6.12.2.2.4a, the nominal flexural resistance is to be taken as the smallest 

value based on yielding, lateral torsional buckling, flange local buckling, and local buckling of the 

tee stem, as applicable.   

 

For yielding of tee stems subject to tension, the nominal flexural resistance is given as: 

 

 n y x yM F Z 1.6M=              Eq. (6.12.2.2.4b-1) 

 

where: 

 

 Fy = specified minimum yield strength (ksi) 

              My     = yield moment = FySx (kip-in.) 

            Sx      = elastic section modulus about the x-axis with respect to the tip of the tee stem (in.3)  

 Zx = plastic section modulus about the x-axis (in.3) 

 

For yielding of tee stems subject to compression, Mn is equal to My according to Eq. (6.12.2.2.4b-

2). Determine if the tip of the stem is in compression or tension: 

 

 axial ux
tip, stem

g x

P M 141 340
f 16.8 ksi

A S 14.2 12.7

−
= + = + =  (tension) 

 

Therefore, the nominal flexural resistance for yielding is limited to 1.6My. The nominal flexural 

resistance for yielding is computed as: 

 

 ( )( )n y xM F Z 50 22.6 1,130 kip in.= = = −    

 

 ( )( )y y x1.6M 1.6F S 1.6 50 12.7 1,016  kip in.= = = −  (governs)  
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nM 1,016 kip in.= −  (for yielding) 

 

For tee stems subject to tension, the nominal flexural resistance based on lateral torsional buckling 

is to be taken as: 

 

• If Lb ≤ Lp, then lateral–torsional buckling does not apply. 

 

• If Lp < Lb ≤ Lr, then: 

      ( ) b p

n p p y

r p

L L
M M M M

L L

 −
= − −   − 

                                          (6.12.2.2.4c-1)  

 

• If Lb > Lr, then: 

 

      n crM M=                 (6.12.2.2.4c-2) 

            

in which: 

 

      
p y

y

E
L 1.76r

F
=         (6.12.2.2.4c-3) 

 

       
y y x

r

y x

I J F dSE
L 1.95 2.36 1

F S E J

   
= +    

  

                                                           (6.12.2.2.4c-4) 

 

       ( )2

cr y

b

1.95E
M I J B 1 B

L
= + +        (6.12.2.2.4c-5) 

 

        
y

b

Id
B 2.3

L J

 
=  

 
        (6.12.2.2.4c-6) 

 

where: 

 

  d    = depth of the tee in tension (in.) 

  Iy     = moment of inertia about the y-axis (in.4) 

  J = St. Venant torsional constant (in.4) 

  Lb = unbraced length (in.) 

  ry = radius of gyration about the y-axis (in.)  

       Sx = elastic section modulus about the x-axis with respect to the tip of the tee stem (in.3)  
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Determine Lp: 

            
p y

y

E 29,000
L 1.76r 1.76(2.65) 112.3 in.

F 50
= = =  

 

Determine Lr: 

 

             

( )

y y x
r

y x

I J F dSE
L 1.95 2.36 1

F S E J

9.30 1.91 (12.7)(100)(2.92)29,000 50
1.95 2.36 1 1,618 in.

50 12.7 29,000 2.92

   
= +    

  

−  
= + =   

   

   

 

Since Lb = 222 in. is greater than Lp = 112.3 in. but less than Lr = 1,618 in., the nominal lateral 

torsional buckling resistance is computed from Eq. (6.12.2.2.4c-1) as follows: 

 

             ( ) b p

n p p y

r p

L L
M M M M

L L

 −
= − −   − 

 

 

              Mp = Mn for yielding = 1,016 kip-in.  

 

(Note: there is an error in the 9th Edition AASHTO LRFD BDS. Mp for checking lateral-torsional 

buckling should be taken as the value of Mn determined for yielding – see AISC Specification 

Article F9). 

 

              My = FySx = (50)(12.7) = 635 kip-in. 

 

              ( )n

222 112.3
M 1,016 1,016 635 988 kip in.

1,618 112.3

− 
= − − = − 

− 
 

 

Since the flange is in compression, flange local buckling must also be considered in accordance 

with Article 6.12.2.2.4d. First check if the flange slenderness, f, exceeds the limiting slenderness 

for a compact flange for tees, pf.  If pf is not exceeded, flange local buckling does not need to be 

checked. 

 

 
( )

f
f

f

b 11.1
λ 6.38

2t 2 0.870
= = =     

 

 
pf

y

E 29,000
λ 0.38 0.38 9.15

F 50
= = =         Eq. (6.12.2.2.4d-6) 

 

 f pfλ 6.38 9.15=   =     
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Given that f  <  pf, local flange buckling does not need to be checked. Also, because the stem is 

in tension, local buckling of the stem does not need to be investigated. 

 

Thus, the nominal flexural resistance, Mn, of the tee section is governed by lateral torsional 

buckling, and is equal to 988 kip-in. Compute the factored flexural resistance, Mr, as follows: 

 

 ( )( )r f nM M 1.0 988 988 kip in.=  = = −                       Eq. (6.12.1.2.1-1) 

 

Check the combined axial compression and flexure as specified in Article 6.9.2.2.1. First, it is 

necessary to determine the value of the factored axial compressive load, Pu, divided by the factored 

compressive resistance, Pr. 

 

 u

r

141P
0.285 0.2

P 495

−
= =      

 

Since the above ratio is greater than 0.2, Eq. 6.9.2.2.1-2 is to be used to check the combined axial 

compression and flexure, noting that there is no bending about the y-axis. Article C6.9.2.2.1 

discusses the fact that Eqs. (6.9.2.2.1-1) and (6.9.2.2.1-2) may significantly underestimate the 

resistance of tees subject to combined axial compression and flexure in which the axial and flexural 

stresses in the flange of the tee are additive in compression. However, it is recommended that these 

equations be conservatively applied in such cases unless significant additional resistance is 

required.   

 

 u ux

r rx

P M8
1.0

P 9 M

 
+  

 
                Eq. (6.9.2.2.1-2) 

 

where: 

 

 Mux  =  factored flexural moment about the x-axis (kip-in.) 

 Mrx = factored flexural resistance (kip-in.) 

 

Second-order effects arise from the additional secondary moment caused by the axial force acting 

through the member deflection. Article 6.9.2.2.1 permits the single-step adjustment or moment 

magnification method specified in Article 4.5.3.3.2b to be used to determine the second-order 

elastic moment in lieu of a second-order elastic analysis as follows: 

 

           ( ) ( )ux b ux2 1
M M=                                                                                       Eq. (4.5.3.2.2b-1)

 
 

The magnification factor, b, is computed as follows: 
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           b = m

u

K e

C
1.0

P
1

P



−


                                                                                     Eq. (4.5.3.2.2b-3) 

 

K is a stiffness reduction factor taken equal to 1.0 for steel members. Cm is the equivalent uniform 

moment factor, which for members braced against sidesway and without transverse loading (other 

than the self-weight of the member) between supports in the plane of bending, is to be taken as: 

 

            Cm = 1

2

M
0.6 0.4

M
+                                                                                      Eq. (4.5.3.2.2b-6) 

 

The tee section is bent in single curvature by equal moments at the end of the member due to the 

eccentricity. For single curvature, the ratio of the end moments M1/M2 = 1.0 is to be taken as 

positive. Therefore, from the preceding equation, Cm = 1.0. 

 

Pe is the Euler buckling load for buckling about the x-axis (i.e. the plane of bending), which is to 

be taken as follows: 

 

            Pe = 
( )

2

2

x x

EI

K


                                                                                            Eq. (4.5.3.2.2b-5) 

 

Kx is the effective length factor for buckling about the x-axis, and x is the unbraced length for 

buckling about the x-axis. For this case, Kx is equal to 1.0 and I is equal to Ix = 93.8 in.4.  Therefore: 

 

           
( )

2

e 2

(29,000)(93.8)
P 545 kips

1.0*222


= =  

 

            
b

1.0
1.35

141
1

1.0(545)

 = =
−

−

 

 

Thus: 

 

            ( )ux 2
M 1.35(340) 459 kip in.= = −  

 

Check Eq. 6.9.2.2.1-2 as follows: 

 

 u ux

r rx

141P M8.0 8 459
0.70 1.0

P 9.0 M 495 9 988

−   
+ = + =    

  
  OK  

 

The WT 9x48.5 serving as the top flange diagonal bracing member in Span 1 of Girder G2 in the 

first bay adjacent to the abutment satisfies the interaction ratio for combined axial compression 
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and flexure for constructability loading. Design checks would be performed for all top flange 

lateral bracing members, investigating both tension and compression constructability forces. 

 

7.14 Bolted Field Splice Design  

 

This section will show the design of a bolted field splice, in accordance with the provisions of 

Article 6.13.6.  The design computations will be illustrated for the Field Splice #1 on Girder G2 

(see Figure 9). First, single bolt capacities are computed for slip resistance (Article 6.13.2.8) and 

shear resistance (Article 6.13.2.7), and the bearing resistance on the connected material (Article 

6.13.2.9). The field splice is then checked for constructability, the service limit state, and the 

strength limit state. For further information on bolted field splice design, refer to the NSBA 

document Bolted Field Splices for Steel Bridge Flexural Members – Overview and Design 

Examples [27], which is available on the NSBA website (www.aisc.org/nsba), and also NSBA’s 

Steel Bridge Design Handbook: Splice Design [28].   

 

All bolts used in the field splice are 0.875 inch diameter ASTM F3125 Grade 325 bolts. Table 

6.13.2.4.2-1 shows that a standard hole diameter size for a 0.875 inch diameter bolt is 0.9375 inch. 

The connection is designed assuming a Class B surface condition is provided and that the faying 

surface is unpainted and blast cleaned. The threads are assumed excluded from the shear planes in 

the flange splices and included in the shear planes in the web splice. This will be checked later on 

in Sections 7.14.3.4 and 7.14.4.3. 

 

Article 6.13.6.1.3a requires at least two rows of bolts on each side of the connection. Oversize or 

slotted holes in either the member or the splice plates are not permitted. In continuous spans, bolted 

splices preferably should be located in regions of lower moment at or near points of dead load 

contraflexure to reduce the major-axis bending moments acting on the splice. This may not always 

be possible in certain situations, such as in longer-span bridges or in cases where additional field 

splices may be needed to reduce the size of a shipping piece; for example, in a sharply curved 

member or where shipping lengths start to exceed a practical upper limit. Web and flange splices 

in areas of stress reversal are to be investigated for both positive and negative flexure to determine 

the governing condition.  

 

The bolt pattern for the top flange splices is shown in Figure 19, the bolt pattern for the bottom 

flange splice is shown in Figure 20, and the bolt pattern for the web splice is shown in Figure 21. 

It should be noted that a 0.5 inch gap is assumed between the edges of the field pieces at this splice 

location. Note in Figure 20 that the  bottom flange longitudinal stiffener is terminated at the end 

of the field section. By including a gap in the splice plate and terminating the longitudinal stiffener 

at the end of the section where the stress is zero, it is not necessary to consider fatigue at the 

terminus of the stiffener, as discussed further in Section 7.11. 

 

http://www.aisc.org/nsba
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Figure 19  Bolt Pattern for the Top Flange Field Splices 

 

 

 
Figure 20  Bolt Pattern for the Bottom Flange Field Splice, shown inside the tub girder 

looking down at the bottom flange 
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Figure 21  Bolt Pattern for the Web Field Splice, dimensions shown along the web slope 

 

Unfactored analysis results for the girder major-axis bending moments, torques, shears, and top 

flange lateral bending moments at Field Splice #1 on Girder G2 are summarized in Table 16. 

 

Table 16  Unfactored Analysis Results for the Design of Field Splice #1 on Girder G2 

 
Note:   Reported shears are the vertical shears and are for major-axis bending plus torsion in the critical tub 

girder web. 

 

Referring to Table 16, the factored Strength I design major-axis bending moments at the point of 

splice are computed as follows: 

DC1STEEL DC1CONC DC1CAST1 DC2 DW Pos. Neg.

Moment (kip-ft) 462 1941 2749 326 428 5221 -3080

Torque (kip-ft) -36 -125 -188 -58 -76 346 -517

Top Flange Lateral 

Moment (kip-ft)
-1 -7 -15 n/a n/a n/a n/a

Shear (kips) -17 -69 -61 -12 -16 36 -85

Unfactored Demands at G2 Field Splice 1

Demand
Dead Load LL+I
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Positive Moment = 1.25[(462 + 1,941) + (326)] + 1.5(428) + 1.75(5,221) = +13,190 kip-ft 

 

Negative Moment = 0.90[(462 + 1,941) + (326)] + 0.65(428) + 1.75(-3,080) = -2,656 kip-ft 

 

7.14.1 Bolt Resistance for the Service Limit State and Constructability 

 

Article 6.13.6.1.3a specifies that bolted splices for flexural members are to be designed using slip-

critical connections (Article 6.13.2.1.1). The connections are to be proportioned to prevent slip 

under load combination Service II and during the placement of the concrete deck. For slip-critical 

connections, the factored resistance, Rr, of a bolt for the Service II load combination and for 

constructability is taken as: 

 

Rr = Rn                  Eq. (6.13.2.2-1) 

 

where: 

 

 Rn  =  the nominal slip resistance as specified in Article 6.13.2.8 (kip) 

 

The nominal slip resistance of a bolt in a slip-critical connection is to be taken as: 

 

 n h s s tR K K N P=                 Eq. (6.13.2.8-1)  

 

where: 

 

 Ns  =  number of slip planes per bolt 

 Pt  = minimum required bolt tension specified in Table 6.13.2.8-1(kip) 

 Kh  = hole size factor specified in Table 6.13.2.8-2 

 Ks = surface condition factor specified in Table 6.13.2.8-3 

 

For this design example: 

  

• 2 slip planes are provided as there are two splice plates on each side of the girder element, 

thus Ns equals 2; 

• As specified in Table 6.13.2.8-1, for 0.875 inch diameter ASTM F3125 Grade 325 bolt, Pt 

is equal to 39 kips; 

• As specified in Table 6.13.2.8-2, for a standard size hole, Kh is equal to 1.00; and 

• As specified in Table 6.13.2.8-3, for Class B surface conditions, Ks is equal to 0.50. 

 

Therefore, the factored slip resistance for service and constructability checks is: 

 

 r nR R (1.0)(0.50)(2)(39) 39 kips/bolt= = =  
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7.14.2 Bolt Resistance for the Strength Limit State  

 

The factored resistance, Rr, of a bolted connection at the strength limit state is to be taken as: 

 

Rr = Rn                 Eq. (6.13.2.2-2) 

 

where:  

 

   =  applicable resistance factor for bolts specified in Article 6.5.4.2 

 

The nominal resistance of the bolted connection at the strength limit state must be computed for  

shear, bearing, and tension, where applicable. 

 

Article 6.13.6.1.3a states that the factored flexural resistance of the flanges at the point of the splice 

at the strength limit state must satisfy the applicable provisions of Article 6.10.6.2, which relates 

to flexure. The girder satisfies the applicable provisions of Article 6.10.6.2 at the splice location; 

however, the checks at this location are not included in this example.   

 

7.14.2.1 Bolt Shear Resistance (Article 6.13.2.7) 

 

The nominal shear resistance, Rn, of a high-strength bolt at the strength limit state in joints whose 

length between extreme fasteners measured parallel to the line of action of the force is less than or 

equal to 38.0 in. (which will be assumed in this design example) and where threads are excluded 

from the shear plane is computed as follows: 

 

 n b ub sR 0.56A F N=                                                                                         Eq. (6.13.2.7-1) 

where: 

 

 Ab  =  area of bolt corresponding to the nominal diameter (in.2) 

 Fub  = specified minimum tensile strength of the bolt in accordance with Article 6.4.3(ksi) 

 Ns  = number of shear planes 

 

In accordance with Article 6.4.3, the specified minimum tensile strength of a 0.875-inch diameter 

ASTM F3125 Grade 325 bolt is 120 ksi. Two shear planes exist for all field splice connections. 

Therefore, the nominal shear resistance is computed as: 

 

Rn = 0.56(0.601)(120)(2) = 80.8 kips/bolt 

 

The factored shear resistance, Rr, of a high-strength bolt at the strength limit state is computed as 

follows: 

 

Rr = sRn                             Eq. (6.13.2.2-2) 
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where:  

 s  =  shear resistance factor for bolts in shear from Article 6.5.4.2 (s = 0.80) 

 

Therefore, the factored shear resistance is: 

 

 Rr = (0.80)(80.8) = 64.6 kips/bolt 

 

The nominal shear resistance in similar joints where threads are included in the shear plane is 

computed as: 

 

 
n b ub sR 0.45A F N=                                                                                         Eq. (6.13.2.7-2) 

  

            nR 0.45(0.601)(120)(2) 64.9 kips / bolt= =   

 

The factored shear resistance at the strength limit state is taken as: 

 

            Rr = 0.80(64.9) = 51.9 kips/bolt    

 

The nominal shear resistance of a bolt in lap splice tension connections greater than 38.0 in. in 

length is to be taken as 0.83 times the preceding values.             

 

7.14.2.2 Bearing Resistance of the Connected Material (Article 6.13.2.9) 

 

The nominal bearing resistance of interior and end bolt holes at the strength limit, Rn, is taken as 

one of the following two terms, depending on the bolt clear distance and the clear end distance. 

 

(1) With bolts spaced at a clear distance between holes not less than 2.0d and with a clear end 

distance not less than 2.0d: 

 

n uR 2.4dtF=                              Eq. (6.13.2.9-1)  

 

(2) If either the clear distance between holes is less than 2.0d or the clear end distance is less 

than 2.0d: 

 

n c uR 1.2L tF=                              Eq. (6.13.2.9-2)  

 

where:  

 

 d  =  nominal diameter of the bolt (in.) 

 t = thickness of the connected material (in.) 

 Fu  = tensile strength of the connected material specified in Table 6.4.1-1 (ksi) 

 Lc = clear distance between holes or between the hole and the end of the member in the 

direction of the applied force 
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For example, in the case of the web splice plates, the end distance is 2.0 inches. According to 

Article 6.8.3, the width of each standard bolt hole for design is to be taken as the nominal diameter 

of the hole = 0.9375 in., creating a clear end distance of 1.53 inches, which is less than 2.0d.  

Therefore, Eq. (6.13.2.9-2) applies. The specified minimum tensile strength of the girder and splice 

plates in this design example is 65 ksi.  The bearing resistance of the web controls in this case 

since the web thickness is assumed to be less than the sum of the two web splice plate thicknesses. 

The nominal bearing resistance for the end row of bolts in the web splice plates is therefore: 

 

 Rn = 1.2(1.53)(0.5625)(65) = 67.13 kips/bolt 

 

The factored bearing resistance, Rr, is computed as: 

 

Rr = bbRn                   Eq. (6.13.2.2-2) 

 

where:  

 

 bb  = resistance factor for bolts bearing on material from Article 6.5.4.2  

             (bb = 0.80) 

 

Therefore, the factored bearing resistance is: 

 

 Rr = bbRn = (0.80)(67.13) = 53.70 kips/bolt 

 

7.14.3 Flange Splice Design 

 

7.14.3.1 General 

 

Article 6.13.6.1.3b states that flange splice plates and their connections are to be designed to 

develop the smaller design yield resistance of the flanges on either side of the splice. The design 

yield resistance of each flange, Pfy, at the point of splice is taken as: 
 

              fy yf eP F A=                                                                                                                         (6.13.6.1.3b-1) 

 

 in which:   Ae = effective area of the flange under consideration (in.2). Ae is to be taken as: 
 
 

              
u u

e n g

y yf

F
A A A

F

 
=    

                                                                                            (6.13.6.1.3b-2) 

    

where:       

 

        u = resistance factor for fracture of tension members = 0.80 (Article 6.5.4.2) 

                  y = resistance factor for yielding of tension members = 0.95 (Article 6.5.4.2) 

                  An = net area of the flange under consideration determined as specified in Article 6.8.3 

(in.2) 

                  Ag = gross area of the flange under consideration (in.2) 
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                  Fu   = specified minimum tensile strength of the flange under consideration determined 

as specified in Table 6.4.1-1 (ksi) 

                  Fyf = specified minimum yield strength of the flange under consideration (ksi) 

 

The use of the effective flange area in the computation of Pfy accounts for the loss in section 

causing a reduction in the fracture resistance of the net section at the connection for loading 

conditions in which the flange is subject to tension. The effective flange area is conservatively 

used for both tension and compression flanges. 

 

7.14.3.2 Flange Splice Bolts 

 

For each flange, the smaller design yield resistance at the point of splice, Pfy, is to be divided by 

the factored shear resistance of the bolts, determined in Section 7.14.2.1, to determine the total 

number of flange splice bolts required on one side of the splice at the strength limit state. Where 

filler plates are required, the provisions of Article 6.13.6.1.4 apply. 

 

Top Flanges 

 

The left side of the splice has the smaller design yield resistance (i.e., the top flange on the left 

side has a smaller area). Assume 4 rows of bolts across the width of a single top flange 

 

           2 2

e

0.80(65)
A 16 4(0.9375) (1.0) 13.4 in. (1.0)(16) 16.0 in.

0.95(50)

 
= − =  = 

 
 

 

          fyP 50(13.4) 670 kips= =  

 

Since the flange thicknesses are the same on either side of the splice, a filler plate is not required 

in this case. 

 

Therefore: 

 

            
670

N 10.4 bolts
64.6

= =  

 

Use 4 rows with 3 bolts per row = 12 bolts on each side of the splice.   

 

For flanges with one web in horizontally curved girders, the effects of flange lateral bending need 

not be considered in the design of the bolted flange splices since the combined areas of the flange 

splice plates will typically equal or exceed the area of the smaller flange to which they are attached. 

The girder flanges are designed so that the yield stress of the flange is not exceeded at the flange 

tips under combined major-axis and lateral bending for constructability and at the strength limit 

state. Flange lateral bending is also less critical at locations in-between the cross-frames or 

diaphragms where bolted splices are located. The rows of bolts provided in the flange splice on 

each side of the web provide the necessary couple to resist the lateral bending. Flange lateral 

bending will increase the flange slip force on one side of the splice and decrease the slip force on 

the other side of the splice; slip cannot occur unless it occurs on both sides of the splice. 
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St. Venant torsional shears and longitudinal warping stresses due to cross-section distortion are 

typically neglected in top flanges of tub-girder sections once the flanges are continuously braced.  
 

Bottom Flange 

 

The size of the bottom flange is the same on either side of the splice. A filler plate is not required. 

Assume 20 rows of bolts across the width of the flange. 

 

           2 2

e

0.80(65)
A 83 20(0.9375) (0.6875) 48.4 in. (0.6875)(83) 57.1in.

0.95(50)

 
= − =  = 

 
 

 

          fyP 50(48.4) 2,420 kips= =  

 

For box sections in horizontally curved bridges, the vector sum of the St. Venant torsional shear 

and the design yield resistance is to be considered in the design of the bottom flange splice at the 

strength limit state (Article 6.13.6.1.3b). Longitudinal warping stresses due to cross-section 

distortion may be ignored at the strength limit state since the bottom flange splices are designed to 

develop the full design yield capacity of the flanges. Flange lateral bending due to curvature is not 

a consideration for bottom flanges of box girders.  

 

Calculate the factored St. Venant torsional shear flow, f, in the bottom flange at the point of splice 

for the Strength I load combination. The negative live load plus impact torque controls by 

inspection (refer to Table 16). 

 

For the DC1 torque, which is applied to the non-composite section, the enclosed area, Ao, is 

computed for the non-composite box section. The vertical depth, D, between the mid-thickness of 

the flanges, which is equal to 78.84 in., is used. The bottom-flange width between the mid-

thickness of the tub-girder webs is 80.0 in. Therefore: 

 

       
( ) 2

2

o 2

120 80 0.6875 1ft
A *(78.0 0.5 )* 54.8 ft

2 2 144 in.

+
= + + =  

 

From Eq. C6.11.1.1-1, the St. Venant torsional shear flow is calculated as: 

 

       
o

T
f

2A
=  

 

       
1.0(1.25)( 36 125)

f 1.84 kips/ft
2(54.8)

− + −
= = −  

 

For the torques applied to the composite section (i.e. the DC2, DW and LL+IM torques), calculate 

Ao for the composite section from the mid-thickness of the bottom flange to the mid-thickness of 

the concrete deck (considering the deck haunch): 
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( ) 2

2

o 2

120 80 0.6875 9.5 1ft
A *(78.0 4.0 )* 60.5 ft

2 2 2 144 in.

+
= + + + =  

   

        
1.0 1.25( 58) 1.5( 76) 1.75( 517)

f 9.02 kips/ft
2(60.5)

− + − + −
= = −  

 

       
totalf 1.84 9.02 10.86 kips/ft= − + − = −  

 

The factored St. Venant torsional shear at the strength limit state, VSV, at the point of splice is 

computed as: 

 

       SV total f

80.0
V f b 10.86 72.4 kips

12
= = − =  

 

The resultant bolt shear force is computed as: 

 

       ( ) ( ) ( ) ( )
2 2 2 2

fy svR P V 2,420 72.4 2,421 kips= + = + =    

 

       
2,421

N 37.5 bolts
64.6

= =  

 

Use 20 rows with 2 bolts per row = 40 bolts on each side of the splice. 

 

7.14.3.3 Moment Resistance 

 

The moment resistance provided by the flanges at the point of splice is next to be checked against 

the factored moment at the strength limit state. Should the factored moment exceed the moment 

resistance provided by the flanges, the additional moment is to be resisted by the web as specified 

in Article 6.13.6.1.3c.  

 

For composite sections subject to positive flexure, the moment resistance provided by the flanges 

at the strength limit state is computed as Pfy for the bottom flange times the moment arm taken as 

the vertical distance from the mid-thickness of the bottom flange to the mid-thickness of the 

concrete deck including the concrete haunch (Figure C6.13.6.1.3b-1). For composite sections 

subject to negative flexure and noncomposite sections subject to positive or negative flexure, the 

moment resistance provided by the flanges is computed as Pfy for the top or bottom flange, 

whichever is smaller, times the moment arm taken as the vertical distance between the mid-

thickness of the top and bottom flanges (Figure C6.13.6.1.3b-2). If necessary, the moment 

resistance provided by the flanges can potentially be increased by staggering the flange bolts. 

 

Positive Flexure (refer to Figure C6.13.6.1.3b-1) 

 

      Use Pfy for the bottom flange = 2,420 kips 
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      Flange moment arm:   A = D + tft/2 + thaunch + ts/2 = 78 + (0.6875/2) + 4.0 + (9.5/2) = 87.09 in. 

 

      Mflange = 2,420 x (87.09/12) = 17,653 kip-ft > 13,190 kip-ft   OK 

 

Negative Flexure (refer to Figure C6.13.6.1.3b-2) 

 

      Use the smaller value of Pfy for the top and bottom flanges. In this case, the top flanges have 

the smaller value of Pfy = 2 x 670 kips = 1,340 kips. 

 

      Flange Moment Arm:   A = D + (tft + tfc)/2 = 78 + (1.0 + 0.6875)/2 = 78.84 in. 

 

      Mflange = 1,340 x (78.84/12) = 8,804 kip-ft > |-2,656| kip-ft 

 

Therefore, the flanges have adequate capacity to resist the Strength I moment requirements at the 

splice. No moment contribution from the web is required. 

 

7.14.3.4 Flange Splice Plates 

 

The design of the top-flange splice plates is illustrated first. The width of the outside splice plate 

should be at least as wide as the width of the narrowest flange at the splice. The thickness of the 

outside splice plate should be at least one-half the thickness of the thinner flange at the splice plus 

1/16 of an inch [27]. As a result, the flange will control the bearing and block shear rupture 

resistance, which is checked later on in this design example. 

 

         o o

1.0 5
t 0.0625 0.5625 in. se t in.

2 8
 + = =U  

 

The width of the inside splice plates should be such that the plates clear the flange-to-web weld on 

each side of the web by a minimum of ⅛ in [27]. Assuming 5/16-inch flange-to-web welds are 

used, the minimum clearance distance, C, between the two inner splice plates is computed as 

follows: 

 

        

" "

web

1 1
C t 2 weld size 0.5625 2 0.3125 1.4375 in.

8 8

   
 + + = + + =   

   
 

 

         
( ) ( )f

i

b C 16 1.4375
b 7.28 in.

2 2

− −
= = =  

 

At the strength limit state, Pfy may be assumed equally divided to the inner and outer flange splice 

plates when the areas of the inner and outer plates do not differ by more than 10 percent (Article 

C6.13.6.1.3b). In this case, Pfy may be assumed equally divided to the inner and outer plates and 

the shear resistance of the bolted connection may be checked for Pfy acting in double shear.  

Applying the above 10 percent guideline gives: 
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f o i i f o0.9b t 2b t 1.1b t   

 

Substituting the equation for bi given above into the preceding equation and rearranging gives: 
 

        o i o

f

C
0.9t 1 t 1.1t

b

 
 −  

 
 

 

        
i

1.4375
0.9(0.625) 1 t 1.1(0.625)

16.0

 
 −  

 
 

 

         
i0.5625 (0.91)t 0.6875   

 

        

"

i i

3
0.62 t 0.76 Use t

4
  =         

     

Therefore, for the top-flange splices, try a 5/8 in. x 16 in. outside splice plate and two ¾ in. x 7¼ 

in. inside splice plates. A filler plate is not required. All plates are ASTM A709 Grade 50 steel.  

 

At the strength limit state, the design force in the splice plates is not exceed the factored  

resistance in tension specified in Article 6.13.5.2. The factored resistance, Rr, in tension is to be 

taken as the least of the values given by either Eqs. 6.8.2.1-1 and 6.8.2.1-2 for yielding and fracture, 

respectively, or the block shear rupture resistance specified in Article 6.13.4. 

 

Check the factored yield resistance of the splice plates in tension: 

 

             r y y gR F A=                                                                                                     Eq. (6.8.2.1-1) 

 

where:     

               y  =  resistance factor for yielding of tension members = 0.95 (Article 6.5.4.2) 

               Ag = gross cross-sectional area of the connected element (in.2) 

 

Outside splice plate:  

 

      rR 0.95(50)(16.0)(0.625) 475 kips 670 / 2 335 kips ok= =  =  

 

Inside splice plates:  

 

      rR 0.95(50)(2)(7.25)(0.75) 517 kips 670 / 2 335 kips ok= =  =  

 

Check the net section fracture resistance of the splice plates in tension. As specified in Article 

6.8.3, for design calculations, the width of standard-size bolt holes is taken as the nominal diameter 

of the holes, or 15/16 in. for a ⅞-in.-diameter bolt. According to Article 6.13.5.2, for splice plates 

subject to tension, the design net area, An, must not exceed 0.85Ag.  
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Outside plate: 

  

        2 2

n0.85(16.0)(0.625) 8.50 in. A 16.0 4(0.9375) (0.625) 7.66 in.=  = − =  

 

Inside plates: 

 

        2 2

n0.85(2)(7.25)(0.75) 9.24 in. A 2(7.25) 4(0.9375) (0.75) 8.06 in.=  = − =  

  

Therefore, use the lesser net area to check the net section fracture resistance of the splice plates. If 

An had been greater than or equal to 0.85Ag, then 0.85Ag should be substituted for An to check the 

net section fracture resistance. 

 

            r u u n pR F A R U=                                                                                             Eq. (6.8.2.1-2) 

 

where:            

             u  = resistance factor for fracture of tension members = 0.80 (Article 6.5.4.2) 

             Fu  = tensile strength of the connected element specified in Table 6.4.1-1 (ksi) 

              An = net cross-sectional area of the connected element determined as specified in Article 

6.8.3 (in.2) 

              Rp =  reduction factor for holes taken equal to 0.90 for bolt holes punched full size, and 1.0 

for bolt holes drilled full size or subpunched and reamed to size (use 1.0 for splice 

plates since the holes in field splices are not allowed to be punched full size) 

              U =  reduction factor to account for shear lag (use 1.0 for splice plates since all elements 

are connected) 

 

Outside plate:  

            rR 0.80(65)[16.0 4(0.9375)](0.625)(1.0)(1.0) 398 kips 670 / 2 335 kips ok= − =  =  

 

Inside plates:   

             rR 0.80(65)[2(7.25) 4(0.9375)](0.75)(1.0)(1.0) 419 kips 670 / 2 335 kips ok= − =  =  

 

To check the block shear rupture resistance of the splice plates and the flange (and later on the 

factored bearing resistance of the bolt holes in Section 7.14.3.5), the bolt spacings and bolt edge 

and end distances must first be established and checked. Refer to the bolt pattern shown in Figure 

19. 

 

As specified in Article 6.13.2.6.1, the minimum spacing between centers of bolts in standard holes 

is not to be less than 3.0d, where d is the diameter of the bolt.  For ⅞-in.-diameter bolts: 

 

       mins 3d 3(0.875) 2.63 in. use 3.0 in.= = =  

 

Since the length between the extreme bolts (on one side of the splice) in this lap-splice tension 

connection measured parallel to the line of action of the force is less than 38.0 in., no reduction in 

the factored shear resistance of the bolts is required, as originally assumed. 
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As specified in Article 6.13.2.6.2, to seal against the penetration of moisture in joints, the spacing, 

s, of a single line of bolts adjacent to a free edge of an outside plate or shape (when the bolts are 

not staggered) must satisfy the following requirement: 

 

        ( )s 4.0 4.0t 7.0 in. +   

  

where t is the thickness of the thinner outside plate or shape. First, check for sealing along the 

edges of the outer splice plate (the thinner plate) parallel to the direction of the applied force.  The 

bolt lines closest to the edges of the flanges are assumed to be 3.0 in. from the edges of the flanges. 

A ½-in. gap is assumed between the girder flanges at the splice to allow the splice to provide 

drainage and allow for fit-up: 

 

        
max

max

s 4.0 4.0(0.625) 6.5 in. 7.0 in.

s 6.5 in. 6.5 in. OK

= + = 

= =
 

 

Check for sealing along the free edge at the end of the splice plate: 

 

        
max

max

s 4.0 4.0(0.625) 6.5 in. 7.0 in.

s 6.5 in. 6.0 in. OK

= + = 

= 
 

 

Note that the maximum pitch requirements for stitch bolts specified in Article 6.13.2.6.3 apply 

only to the connection of plates in mechanically fastened built-up members and are not to be 

applied here in the design of the splice. 

 

The edge distance of bolts is defined as the distance perpendicular to the line of force between the 

center of a hole and the edge of the component. In this example, the edge distance of 2.0 in. satisfies 

the minimum edge distance requirement of 1⅛ in. specified for ⅞-in.-diameter bolts in Table 

6.13.2.6.6-1. This distance also satisfies the maximum edge distance requirement of 8.0t (not to 

exceed 5.0 in.) = 8.0(0.625) = 5.0 in. specified in Article 6.13.2.6.6. 

 

The end distance of bolts is defined as the distance along the line of force between the center of a 

hole and the end of the component. In this example, the end distance of 1.5 in. satisfies the 

minimum end distance requirement of 1⅛ in. specified for ⅞-in.-diameter bolts. The maximum 

end distance requirement of 5.0 in. is also satisfied. Although not specifically required, note that 

the distance from the corner bolts to the corner of the splice plate, equal to ( )
2 22.0 (1.5) 2.5 in.+ =

, also satisfies the maximum end distance requirement. If desired, the corners of the plate can be 

clipped to meet this requirement. Although not done in this example, fabricators generally prefer 

that the end distance on the girder flanges at the point of splice be increased a minimum of ¼ in. 

from the design value to allow for girder trim. 
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Check the block shear rupture resistance of the splice plates in tension.  

 

           Eq. (6.13.4-1) 

 

where:  

 

            bs   = resistance factor for block shear rupture = 0.80 (Article 6.5.4.2)  

            Avg = gross area along the plane resisting shear stress (in.2) 

            Avn = net area along the plane resisting shear stress (in.2) 

            Atn   = net area along the plane resisting tension stress (in.2) 

            Ubs = reduction factor for block shear rupture resistance taken equal to 0.50 when the 

tension stress is non-uniform and 1.0 when the tension stress is uniform (use 1.0 for 

splice plates) 

 

Assume the potential block shear failure planes on the outside and inside splice plates shown in 

Figure 22.  

  
Figure 22  Assumed Block Shear Failure Planes for Top Flange Splice Plates 

A) Outside Splice Plate; B) Inside Splice Plates 
 

  

( ) ( )tnubsvgypbstnubsvnupbsr AFUAF58.0RAFUAF58.0RR ++=
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Check the outside splice plate. Atn is the net area along the place resisting the tensile stress.  

  

         2

tnA 2 3.0 2.0 1.5(0.9375) (0.625) 4.49 in.= + − =  

 

Avn is the net area along the place resisting the shear stress.  

 

         2

vnA 2 2(3.0) 1.5 2.5(0.9375) (0.625) 6.45 in.= + − =  

 

Avg is the gross area along the plane resisting the shear stress. 

 

         2

vgA 2 2(3.0) 1.5 (0.625) 9.38 in.= + =  

 

Therefore: 

 

 

( )

r

r

R 0.80(1.0) 0.58(65)(6.45) 1.0(65)(4.49) 428 kips

0.80(1.0) 0.58(50) 9.38 1.0(65)(4.49) 451 kips

670
R 428 kips 335 kips OK

2

= + =

 + =  

 =  =

 

 

Since the inside splice plates are thicker than the outside splice plate in this case, the block shear 

rupture resistance of the inside splice plates is satisfactory by inspection. 

 

Check the block shear rupture resistance in tension of the critical girder top flange at the splice. 

Only the calculations for the flange on the left-hand side of the splice, which is the critical flange 

for this check, are shown below. Two potential failure modes are investigated for the flange as 

shown in Figure 23.  
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Figure 23  Assumed Block Shear Failure Planes for Critical Top Flange at the Splice 

A) Assumed Failure Mode 1; B) Assumed Failure Mode 2 

 

For Failure Mode 1: 

 

         2

tnA 2 3.0 0.9375 (1.0) 4.13 in.= − =  

 

         2

vnA 4 2(3.0) 3.0 2.5(0.9375) (1.0) 26.63 in.= + − =  

 

         2

vgA 4 2(3.0) 3.0 (1.0) 36.00 in.= + =  

 

 

( )

r

r

R 0.80(1.0) 0.58(65)(26.63) 1.0(65)(4.13) 1,018 kips

0.80(1.0) 0.58(50) 36.00 1.0(65)(4.13) 1,050 kips

R 1,018 kips 670 kips OK

= + =

 + =  

 = 

 

 

For Failure Mode 2: 

 

         2

tnA 2 3.0 2.0 1.5(0.9375) (1.0) 7.19 in.= + − =  
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         2

vnA 2 2(3.0) 3.0 2.5(0.9375) (1.0) 13.31in.= + − =  

 

         2

vgA 2 2(3.0) 3.0 (1.0) 18.00 in.= + =  

 

 

( )

r

r

R 0.80(1.0) 0.58(65)(13.31) 1.0(65)(7.19) 775 kips

0.80(1.0) 0.58(50) 18.00 1.0(65)(7.19) 791 kips

R 775 kips 670 kips OK

= + =

 + =  

 = 

 

 

The factored yield resistance of the splice plates in compression is the same as the factored yield 

resistance of the splice plates in tension given by Eq. (6.8.2.1-1), and therefore, need not be 

checked. Buckling of the splice plates in compression is not a concern since the unsupported length 

of the plates is limited by the maximum bolt spacing and end distance requirements. 

 

Next, the design of the bottom flange splice plates will be illustrated. The thickness of the splice 

plates should be at least one-half the thickness of the thinner flange at the splice plus 1/16 of an 

inch [27]. As a result, the flange will control the bearing and block shear rupture resistance, which 

is checked later on in this design example. 

 

         o o

0.6875 3
t 0.0625 0.4063 in. se t in.

2 4
 + = =U  

 

The splice-plate thickness satisfies the minimum thickness requirement for steel specified in 

Article 6.7.3. 

 

The width of the inside splice plate should be such that the plate clears the flange-to-web weld on 

each side of the web by a minimum of ⅛ in [27]. Assuming 5/16-inch flange-to-web welds are 

used, the minimum clearance distance, C, on each side is computed as: 

 

        

" "
1 1

C weld size 0.3125 0.4375 in.
8 8

   
 + = + =   

   
 

 

The maximum width of the inside splice plate is therefore computed as: 

 

           
80.0 0.5625 2(0.4375) 78.56 in.− − =

 

Therefore, for the bottom-flange splice, try ¾ in. x 76 in. outside and inside splice plates. A filler 

plate is not required. All plates are again ASTM A709 Grade 50 steel.  

 

Check the factored yield resistance of the splice plates in tension. Use the resultant force, R, which 

includes the St. Venant torsional shear in the bottom flange: 
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rR 0.95(50)(76.0)(0.75) 2,708 kips 2,421/ 2 1,211kips ok= =  =  

 

Check the net section fracture resistance of the splice plates in tension. According to Article 

6.13.5.2, for splice plates subject to tension, the design net area, An, must not exceed 0.85Ag.  

 

        2 2

n0.85(76.0)(0.75) 48.45 in. A 76.0 20(0.9375) (0.75) 42.94 in.=  = − =  

 

Therefore, use the lesser net area to check the net section fracture resistance of the splice plates. If 

An had been greater than or equal to 0.85Ag, then 0.85Ag should be substituted for An to check the 

net section fracture resistance. 

           

rR 0.80(65)[76.0 20(0.9375)](0.75)(1.0)(1.0) 2,233 kips 2,421/ 2 1,211kips= − =  =  OK 

 

To check the block shear rupture resistance of the splice plates and the flange (and later on the 

factored bearing resistance of the bolt holes in Section 7.14.3.5), the bolt spacings and bolt edge 

and end distances must first be established and checked. Refer to the bolt pattern shown in Figure 

20. 

 

Since the length between the extreme bolts (on one side of the splice) in this lap-splice tension 

connection measured parallel to the line of action of the force is less than 38.0 in., no reduction in 

the factored shear resistance of the bolts is required, as originally assumed. 

 

Check for sealing along the edges of the outer splice plate parallel to the direction of the applied 

force. The bolt lines closest to the edges of the flanges are assumed to be 2.0 in. from the edges of 

the flanges. A ½-in. gap is assumed between the girder flanges at the splice to allow the splice to 

provide drainage and allow for fit-up: 

 

        
max

max

s 4.0 4.0(0.75) 7.0 in.

s 7.0 in. 4.5 in. OK

= + =

= 
 

 

Check for sealing along the free edge at the end of the splice plate: 

 

        
max

max

s 4.0 4.0(0.75) 7.0 in.

s 7.0 in. 5.0 in. OK

= + =

= 
 

 

The edge distance of bolts is defined as the distance perpendicular to the line of force between the 

center of a hole and the edge of the component. In this example, the edge distance of 1.75 in. 

satisfies the minimum edge distance requirement of 1⅛ in. specified for ⅞-in.-diameter bolts in 

Table 6.13.2.6.6-1. This distance also satisfies the maximum edge distance requirement of 8.0t 

(not to exceed 5.0 in.) = 8.0(0.75) = 6.0 in. > 5.0 in. (i.e., use 5.0 in.) specified in Article 6.13.2.6.6. 

 

The end distance of bolts is defined as the distance along the line of force between the center of a 

hole and the end of the component. In this example, the end distance of 1.5 in. satisfies the 

minimum end distance requirement of 1⅛ in. specified for ⅞-in.-diameter bolts. The maximum 



 

161 

 

end distance requirement of 4.0 in. is also satisfied. Although not specifically required, note that 

the distance from the corner bolts to the corner of the splice plate, equal to

( )
2 21.75 (1.5) 2.3 in.+ = , also satisfies the maximum end distance requirement. If desired, the 

corners of the plate can be clipped to meet this requirement. Although not done in this example, 

fabricators generally prefer that the end distance on the girder flanges at the point of splice be 

increased a minimum of ¼ in. from the design value to allow for girder trim. 

 

Check the block shear rupture resistance of the splice plates in tension.  

 

Assume the potential block shear failure planes on the splice plates shown in Figure 24.  The failure 

planes are shown on one splice plate only; the same failure planes apply to both the outside and 

inside plates. 

 

   
Figure 24  Assumed Block Shear Failure Planes for Bottom Flange Splice Plates 

Atn is the net area along the place resisting the tensile stress.  

  

         2

tnA 1.75 18(3.75) 5.0 19.5(0.9375) (0.75) 41.98 in.= + + − =  

 

Avn is the net area along the place resisting the shear stress.  

 

         2

vnA 1.5 4.5 1.5(0.9375) (0.75) 3.45 in.= + − =  

 

Avg is the gross area along the plane resisting the shear stress. 

 

         2

vgA 1.5 4.5 (0.75) 4.50 in.= + =  

 

Therefore: 

 

 

( )

r

r

R 0.80(1.0) 0.58(65)(3.45) 1.0(65)(41.98) 2,287 kips

0.80(1.0) 0.58(50) 4.50 1.0(65)(41.98) 2,287 kips

2,421
R 2,287 kips 1,211 kips OK

2

= + =

 + =  

 =  =
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The block shear rupture resistance of the critical bottom flange at the splice is satisfactory by 

inspection since the end distance for the flange of 2.0 in. is larger than for the splice plates and a 

similar block shear failure plane would be assumed. 

 

The factored yield resistance of the splice plates in compression is the same as the factored yield 

resistance of the splice plates in tension given by Eq. (6.8.2.1-1), and therefore, need not be 

checked. Buckling of the splice plates in compression is not a concern since the unsupported length 

of the plates is limited by the maximum bolt spacing and end distance requirements.  

 

Check that the threads are excluded from the shear planes as originally assumed. According to the 

2020 RCSC Specification [29], shear planes located in the transition length of high-strength bolts 

should be considered shear planes with the threads included. Unless the use and position of washers 

and DTIs are clearly identified in the contract documents, a conservative assumption to determine 

whether threads are excluded from or included in the shear plane is to position one washer and one 

DTI under the bolt head located adjacent to the thicker outer ply. Refer to ASTM F436/F436M for 

washer thicknesses; the nominal thickness of the typical standard washer is 5/32 inches (the 

dimension “T” in the calculations below). Refer to ASME B18.2.6 [30] or manufacturer data for 

the appropriate DTI dimensions (for a 7/8” diameter bolt, use a DTI thickness of 0.260 inches – 

the dimension “F” in the calculations below). Sum the grip length of the connection, i.e., the total 

nominal thicknesses of the connection plies, the thicknesses of the assumed washer and DTI, plus 

an additional value specified in Table C-2.2 of the 2020 RCSC Specification [29] to allow for 

manufacturing tolerances and sufficient thread engagement with a heavy hex nut. Round up the 

sum to the next ¼-inch increment up to a bolt length of 6 inches and to the next ½-inch increment 

for longer bolts to determine the minimum nominal bolt length (the dimension “LNOM” in the 

calculations below). Next, determine the minimum bolt body length, i.e., the distance from the 

head of the bolt to the beginning of the transition length (the dimension “LB MIN” in the calculations 

below) and compare that length to the location of the furthest shear plane measured from the bolt 

head (the dimension “LSP” in the calculations below) to determine whether the threads are excluded 

or included. The minimum bolt body length can either be determined directly from Table 2.1.9.2-

1 of ASME B18.2.6 [30] using the calculated minimum nominal bolt length and the nominal bolt 

diameter or calculated indirectly by subtracting the appropriate thread length, LT, and transition 

thread length, Y, found in Table C-2.1 of the 2020 RCSC Specification [29] from the calculated 

minimum nominal bolt length. 

 

Short high-strength bolts with lengths indicated in Table 2.5 of the 2020 RCSC Specification [29] 

are fully threaded in accordance with ASME B18.2.6 [30] and thus should be designed for threads 

included in the shear plane. The thicknesses of the assumed washer and DTI should conservatively 

be subtracted from the calculated minimum nominal bolt length before making this determination.   

 

Bottom Flange Splice: 

 
7/8" diameter bolt  

PLYL 0.75" 0.6875" 0.75" 2.1875"= + + =  

MIN PLYL L + F + T 1.125" (RCSC Table C-2.2)

2.1875" 0.260" 5 / 32" 1.125" 3.73"

= +

= + + + =
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NOML 3.75" (round up to nearest 1/ 4"per RCSC 2.7 Commentary)=  

NOML F T

3.75" 0.260" 5 / 32" 3.33" L 2" (RCSC Table 2.5)

− −

= − − =  =
 

 

Therefore, bolt is not fully threaded. 

 

B MIN NOM TL L L Y (RCSC Table C-2.1)

3.75" 1.5" 9 / 32" 1.97"

= − −

= − − =
 

 

(Note: agrees with value of LB MIN from Table 2.1.9.2-1 of ASME B18.2.6) 

 

SP B MINL 0.260" 5 / 32" 0.75" 0.6875" 1.85" L 1.97"= + + + =  =  

 

Therefore, threads are excluded from the shear planes. 
 

Top Flange Splice: 

 
7/8" diameter bolt  

PLYL 0.625" 1.0" 0.75" 2.375"= + + =  

MIN PLYL L + F + T 1.125" (RCSC Table C-2.2)

2.375" 0.260" 5 / 32" 1.125" 3.92"

= +

= + + + =
 

NOML 4.00" (round up to nearest 1/ 4"per RCSC 2.7 Commentary)=  

NOML F T

4.00" 0.260" 5 / 32" 3.58" L 2" (RCSC Table 2.5)

− −

= − − =  =
 

 

Therefore, bolt is not fully threaded. 

 

B MIN NOM TL L L Y (RCSC Table C-2.1)

4.00" 1.5" 9 / 32" 2.22"

= − −

= − − =
 

 

(Note: agrees with value of LB MIN from Table 2.1.9.2-1 of ASME B18.2.6) 

 

SP B MINL 0.260" 5 / 32" 0.75" 1.00" 2.17" L 2.22"= + + + =  =  

 

Therefore, threads are excluded from the shear planes. 

 

If the threads had been included in the shear planes in either case, check with the Owner to see if 

the use of DTIs is permitted. If not, the DTI may be removed from the above calculations.   
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7.14.3.5 Bearing Resistance Check 

 

The bearing resistance of the connection at the strength limit state is taken as the sum of the smaller 

of the shear resistance of the individual bolts and the bearing resistance of the individual bolt holes 

parallel to the line of the design force. 

 

The bearing resistance of connected material in the top-flange splice will be checked herein. The 

sum of the inner and outer splice plate thicknesses exceeds the thickness of the thinner flange at 

the point of splice, and the splice plate areas satisfy the 10 percent rule described previously. 

Therefore, the smaller flange on the left-hand side of the splice controls the bearing resistance of 

the connection. 

 

For standard-size holes, the nominal bearing resistance, Rn, parallel to the applied bearing force is 

given by Eq. (6.13.2.9-1) or (6.13.2.9-2), as applicable. 

 

For the four bolt holes adjacent to the end of the flange, the end distance is 3.0 in. Therefore, the 

clear distance, Lc, between the edge of the hole and the end of the flange is: 

 

       c

0.9375
L 3.0 2.53 in. 2.0d 2.0(0.875) 1.75 in.

2
= − =  = =   

 

Therefore, use Eq. (6.13.2.9-1):  

 

        n uR 4(2.4dtF ) 4 2.4(0.875)(1.0)(65) 546 kips= = =  

 

Since: 

 

       r bb nR R=   

 

       Rr = 0.80(546) = 437 kips  

 

The total factored shear resistance of the bolts in the four holes adjacent to the end of the flange, 

acting in double shear is 4(64.6) = 258 kips < 437 kips. Therefore, the factored shear resistance of 

the bolts controls and bearing does not control for the four end holes. 

 

For the other eight bolt holes, the center-to-center distance between the bolt holes in the direction 

of the applied force is 3.0 in. Therefore, the clear distance, Lc, between the edges of the adjacent 

holes is: 

 

       cL 3.0 0.9375 2.0625 in. 2.0d 1.75 in.= − =  =  

 

Therefore, use Eq. (6.13.2.9-1):    

 

        n uR 8(2.4dtF ) 8 2.4(0.875)(1.0)(65) 1,092 kips= = =  
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Since: 

 

       
r bb nR R=   

 

       Rr = 0.80(1,092) = 874 kips  

 

The total factored shear resistance of the bolts in the eight interior bolt holes is 8(64.6) = 517 kips 

< 874 kips. Therefore, the factored shear resistance of the bolts controls and bearing does not 

control for the eight interior bolt holes. 

 

The total factored shear resistance of the bolts in the twelve holes is: 

 

       Rr = 258 + 517 = 775 kips > Pfy = 670 kips   OK  

 

Calculations similar to the above show that the bearing resistance of the connected material in the 

bottom flange splice does not control, and that the total factored shear resistance of the bolts in the 

forty bolt holes in the bottom flange splice is sufficient. 

 

7.14.3.6 Slip Resistance Check 

 

The moment resistance provided by the nominal slip resistance of the flange splice bolts that are 

required to satisfy the strength limit state is to be checked against the factored moment for checking 

slip. The nominal slip resistance of the flange splice bolts was determined previously in Section 

7.14.1. The nominal slip resistance of a bolt need not be adjusted for the effect of a filler (if 

present); the resistance to slip between either connected part and the filler is comparable to that 

which would exist between the connected parts if the filler were not present. 

 

Should the factored moment exceed the moment resistance provided by the nominal slip resistance 

of the flange splice bolts, the additional moment is to be resisted by the web as specified in Article 

6.13.6.1.3c. The factored moments for checking slip are to be taken as the moment at the point of 

splice under Load Combination Service II, as specified in Table 3.4.1-1, and also the factored 

moment at the point of splice due to the deck placement sequence as specified in Article 3.4.2.1. 

 

St. Venant torsional shears and longitudinal warping stresses due to cross-section distortion are 

typically neglected in top flanges of tub sections once the flanges are continuously braced. 

Longitudinal warping stresses due to cross-section distortion are typically relatively small in the 

bottom flange at the service limit state and for constructability and may be neglected when 

checking bottom flange splices for slip. As discussed in Section 7.14.3.2, the effects of flange 

lateral bending also need not be considered in checking the bolted connections of the flange splices 

for slip. 

 

The moment resistance provided by the nominal slip resistance of the flange splice bolts is 

calculated as shown in Figures C6.13.6.1.3b-1 and C6.13.6.1.3b-2, with the appropriate nominal 
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slip resistance of the flange splice bolts substituted for Pfy. For checking slip due to the factored 

deck casting moment, the moment resistance of the noncomposite section is used.    

 

Service II Positive Moment (refer to Figure C6.13.6.1.3b-1) 

 

Referring to Table 16, the factored Service II positive moment at the point of splice is computed 

as: 

 

          Service II Positive Moment = 1.0(462 + 1,941) + 1.0(326) + 1.0(428) + 1.3(+5,221) = 

+9,944 kip-ft 

 

Use the nominal slip resistance of the bottom flange splice bolts. For box sections in horizontally 

curved bridges, for checking slip, the St. Venant torsional shear in the bottom flange is 

conservatively subtracted from the slip resistance provided by the bottom flange bolts (Article 

6.13.6.1.3b)  

 

Calculate the factored St. Venant torsional shear flow, f, in the bottom flange at the point of splice 

for the Service II load combination. The negative live load plus impact torque controls by 

inspection (refer to Table 16). 

 

For the DC1 torque, which is applied to the non-composite section, the enclosed area, Ao, for the 

non-composite box section was computed previously to be 54.8 ft2 (Section 7.14.3.2).   
 

From Eq. (C6.11.1.1-1), the St. Venant torsional shear flow is calculated as: 
 

       
o

T
f

2A
=  

 

       
1.0( 36 125)

f 1.47 kips/ft
2(54.8)

− + −
= = −  

 

For the torques applied to the composite section (i.e. the DC2, DW and LL+IM torques), Ao for 

the composite section was computed previously to be 60.5 ft2 (Section 7.14.3.2).  Therefore: 
  

       
1.0( 58) 1.0( 76) 1.3( 517)

f 6.66 kips/ft
2(60.5)

− + − + −
= = −  

 

       totalf 1.47 6.66 8.13 kips/ft= − + − = −  

   

The bottom-flange width between the mid-thickness of the tub-girder webs is 80.0 in. The factored 

St. Venant torsional shear for the Service II load combination, VSV, at the point of splice is 

computed as: 

 

        SV total f

80.0
V f b 8.13 54.2 kips

12
= = − =  
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Nominal slip resistance of the bottom flange splice with 40 bolts:  

       Pt = 40(39.0 kips/bolt) = 1,560 kips – 54.2 kips = 1,506 kips        

       Flange Moment Arm:  A = D + tft/2 + thaunch + ts/2 = 78 + 0.6875/2 + 4.0 + 9.5/2 = 87.09 in. 

 

       Mflange = 1,506 kips x (87.09/12) = 10,930 kip-ft > 9,944 kip-ft    OK 

 

Service II Negative Moment (refer to Figure C6.13.6.1.3b-2) 

 

Referring to Table 16, the factored Service II negative moment at the point of splice is computed 

as: 

 

       Service II Negative Moment = 1.0(462 + 1,941) + 1.0(326) + 1.0(428) + 1.3(-3,080) = 

                                                         -847 kip-ft 

 

       Use the nominal slip resistance of the top or bottom flange splice bolts, whichever is smaller. 

 

       Nominal slip resistance of the top flange splices with 12 bolts each:  Pt = 2 x 12(39.0 kips/bolt) 

= 936 kips < 1,506 kips 

 

       Flange moment arm:  A = D + (tft + tfc)/2 = 78 + (1.0 + 0.6875)/2 = 78.84 in. 

 

       Mflange = 936 x (78.84/12) = 6,150 kip-ft > |-847| kip-ft   

 

Deck Placement (refer to Figure C6.13.6.1.3b-2) 

 

Referring to Table 16, the factored moment due to the self-weight of the steel plus the moment 

due to the deck placement at the point of splice is computed as: 

 

       Mdeck placement = 1.25(462 + 2,749) = 4,014 kip-ft 

 

       The deck-placement moment is applied to the noncomposite section. Use the nominal slip 

resistance of the top or bottom flange splice bolts, whichever is smaller. 
 

         Nominal slip resistance of the top flange splices with 12 bolts each:  Pt = 2 x 12(39.0 kips/bolt) 

= 936 kips < 1,506 kips 

 

       Flange moment arm:  A = D + (tft + tfc)/2 = 78 + (0.6875 + 1.0)/2 = 78.84 in. 

 

       Mflange = 936 x (78.84/12) = 6,150 kip-ft > 4,014 kip-ft    OK 

 

Although not included in this example in the interest of brevity, the special load combination 

specified in Article 3.4.2.1 must also be considered in this check for the deck placement sequence. 

Separate calculations show that the slip resistance of the flange splice bolts is also satisfactory for 

this load combination. 
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Therefore, the flanges have adequate slip resistance to resist the Service II and deck casting 

moment requirements at the splice. No moment contribution from the web is required. 

 

In cases where the moment resistance provided by the flange splice bolts is sufficient at the strength 

limit state (which is the case in this design example), but a moment contribution from the web is 

required to resist slip, the number of flange splice bolts may be increased to increase the moment 

resistance provided by the nominal slip resistance of the flange splice bolts to prevent having to 

add an additional row of web splice bolts to resist the resultant web slip force. 

 

Since the combined area of the inside and outside flange splice plates is greater than the area of 

the smaller top flange at the point of splice, fatigue of the base metal of the top flange splice plates 

adjacent to the slip-critical bolted connections (if subject to a net tensile stress as specified in 

Article 6.6.1.2.1) does not need to be checked. Similarly, the flexural stresses in the splice plates 

at the service limit state under the Service II load combination need not be checked.  

 

7.14.3.7 Article 6.10.1.8 – Tension Flanges with Holes 

 

When checking flexural members at the strength limit state or for constructability, the following 

additional requirement shall be satisfied at all cross-sections containing holes in the tension flange: 
 

       n
t u yt

g

A
f 0.84 F F

A

 
   

 

                                                                                                        Eq. (6.10.1.8-1) 

 

where:       

 

                 An = net area of the tension flange determined as specified in Article 6.8.3 (in.2) 

       Ag = gross area of the tension flange (in.2) 

            ft      =  stress on the gross area of the tension flange due to the factored loads calculated 

without consideration of flange lateral bending (ksi)  

     Fu   =  specified minimum tensile strength of the tension flange determined as specified 

in Table 6.4.1-1 (ksi) 

Separate calculations show that the tensile stress in the bottom flange at the strength limit state 

controls. Calculate the factored Strength I tensile stress in the bottom flange at the point of splice: 

 

( ) ( ) ( )
t

1.25 462 1,941 1.25 326 1.5 428 1.75(5,221)
f (bot. flange) 1.0 (12) 23.41 ksi (T)

5,355 6,801 7,395

+ + 
= + + = 

 
 

 

           2

nA 83.0 20(0.9375) (0.6875) 44.17 in.= − =  

       

        
2

gA (83.0)(0.6875) 57.06 in.= =  
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          n
u yt

g

A 44.17
0.84 F 0.84 (65) 42.27 ksi F 50 ksi

A 57.06

   
= =  =       

 

        

        
tf 23.41ksi 42.27 ksi OK=   

 

7.14.4 Web Splice Design 

 

7.14.4.1 General 

 

As a minimum, web splice plates and their connections are to be designed at the strength limit state 

for a design web force taken equal to the smaller factored shear resistance of the web, Vr = ϕvVn, 

on either side of the splice determined according to the provisions of Article 6.10.9 or 6.11.9, as 

applicable. Since the web splice is being designed to develop the full factored shear resistance of the 

web at the strength limit state, the effect of the additional St. Venant torsional shear in the web may 

be ignored at the strength limit state. 

 

Should the moment resistance provided by the flanges at the point of splice, determined as 

specified in Article 6.13.6.1.3b, not be sufficient to resist the factored moment at the strength limit 

state (which is not the case in this design example), the web splice connections are to instead be 

designed for a design web force taken equal to the vector sum of the smaller factored shear 

resistance and a horizontal force in the web that provides the necessary moment resistance in 

conjunction with the flanges. 

  

The horizontal force in the web is to be computed as the portion of the factored moment at the 

strength limit state at the point of splice that exceeds the moment resistance provided by the flanges 

divided by the appropriate moment arm. For composite sections subject to positive flexure, the 

moment arm is taken as the vertical distance from the mid-depth of the web to the mid-thickness 

of the concrete deck including the concrete haunch (Figure C6.13.6.1.3c-1). For composite 

sections subject to negative flexure and noncomposite sections subject to positive or negative 

flexure, the moment arm is taken as one-quarter of the web depth (Figure C6.13.6.1.3c-2). 

 

7.14.4.2 Web Splice Bolts 

 

The computed design web force is to be divided by the factored shear resistance of the bolts, 

determined in Section 7.14.2.1, to determine the total number of web splice bolts required on one 

side of the splice at the strength limit state. The factored shear resistance of the bolts should be 

based on threads included in the shear planes, unless the web splice-plate thickness exceeds 0.5 in. 

As a minimum, two vertical rows of bolts spaced at the maximum spacing for sealing bolts 

specified in Article 6.13.2.6.2 should be provided, with a closer spacing and/or additional rows 

provided only as needed. For bolted web splices with thickness differences of 1/16 in. or less, filler 

plates should not be provided. 

 

Since the moment resistance provided by the flange splices is sufficient to resist the factored 

moment at the strength limit state at the point of splice in this case, the web splice bolts are 
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designed at the strength limit state for a design web force taken equal to the smaller factored shear 

resistance of the web on either side of the splice. 

 

Compute the nominal shear resistance of the 0.5625-inch-thick web at the splice according to the 

provisions of Articles 6.10.9.2 and 6.10.9.3 for unstiffened and stiffened webs, respectively. For 

this design example, separate calculations indicate that transverse stiffeners are required at the 

splice, therefore Article 6.10.9.3 is employed. A stiffener spacing equal to the internal cross-frame 

spacing used on Girder G2 is assumed, where do = 196 inches. 

 

The nominal shear resistance of an interior web panel is computed in accordance with Article 

6.10.9.3.2. First, determine if Eq. 6.10.9.3.2-1 is satisfied. According to Article 6.11.9, for box 

flanges, bfc (in this case) is to be taken as one-half the effective flange width between webs in 

checking Eq. 6.10.9.3.2-1, but not to exceed 18 times the thickness of the box flange. Therefore, 

(79.4375/2) = 39.72 in. > 18(0.6875) = 12.38 in. Use bfc = 12.38 in. to check Eq. 6.10.9.3.2-1 as 

follows: 

 

( )
w

fc fc ft ft

2Dt
2.5

b t b t


+
              Eq. (6.10.9.3.2-1) 

 

( )

( )( )

( )( ) ( )( )( )
w

fc fc ft ft

2 80.40 0.56252Dt
3.69 2.5

b t b t 16 1.0 12.38 0.6875
= = 

+ +
  

 

Since Eq. 6.10.9.3.2-1 is not satisfied, the nominal shear resistance, Vn, is computed in accordance 

with Eq. (6.10.9.3.2-8). 

 

( )
n p

2

o o

0.87 1 C
V V C

d d
1

D D

 
 
 −
 = +

     + + 
     

            Eq. (6.10.9.3.2-8) 

 

where: 

 

 Vn = nominal shear resistance of the web panel (kip) 

 Vp = plastic shear force (kip) 

 C = ratio of shear-buckling resistance to the shear yield strength 

 do = transverse stiffener spacing (in.) 

 

The plastic shear force, Vp, is computed according to Eq. 6.10.9.3.2-3 as follows: 

 

Vp = 0.58FywDtw              Eq. (6.10.9.3.2-3) 
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Determine which equation is to be used to compute the ratio of shear-buckling resistance to the 

shear yield strength, C.  

 

 
2 2

o

5 5
k 5 5 5.84

d 196

80.40D

= + = + =
   

  
  

            Eq. (6.10.9.3.2-7) 

 

Since: 

 

 
w yw

D 80.4 Ek 29,000(5.84)
142.9 1.40 1.40 81

t 0.5625 F 50
= =  = =   

 

 
2

yw

w

1.57 Ek
C

FD

t

 
=   

   
 
 

              Eq. (6.10.9.3.2-6) 

 

 
( )

2

1.57 29,000(5.84)
C 0.260

50142.9

 
= = 

 
 

 

Vp is the plastic shear force and is calculated as follows: 

 

 p yw wV 0.58 F D t=               Eq. (6.10.9.3.2-3) 

 

 ( )( )( )pV 0.58 50.0 80.40 0.5625 1,312 kips= =  

 

Therefore, 

 

 ( )n
2

0.87(1 0.260)
V 1,312 0.260 508 kips

196.0 196
1

80.40 80.40

 
 

− 
= + = 

  + +    

 

             

             r v nV V 1.0(508) 508 kips=  = =  

 

Number of Bolts Required (threads included in the shear plane): N = 508/51.9 = 9.8 bolts 

 

Note that the greater than 38.0 in. length reduction for the shear resistance of the bolts only applies 

to lap-splice tension connections (Article 6.13.2.7) and is not to be applied in the design of the web 

splice.  
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The AASHTO LRFD BDS requires at least two rows of bolts in the web over the depth of the web 

(Article 6.13.6.1.3a). The maximum permitted spacing of the bolts for sealing is s ≤ (4.0 + 4.0t) ≤ 

7.0 in., where t is the thickness of the splice plate (Article 6.13.2.6.2). Assuming the splice plate 

thickness will be one-half the smaller web thickness at the point of splice plus 1/16 in. gives a 

splice plate thickness of: 

 

        
1 9 1 7

t x 0.34 in. Use t in.
2 16 16 16

= + = =  

 

The splice-plate thickness satisfies the minimum thickness requirement for steel specified in 

Article 6.7.3. A filler plate is not required since the webs are the same thickness on both sides of 

the splice. 

 

The maximum bolt spacing for the 7/16 in. splice plate is: 

 
       s 4.0 (4.0 x 0.4375) 5.75 in. 7.0 in. + =   

 

The minimum bolt spacing is 3d = 3(0.875) = 2.625 in.  

 

Using approximately a 2.825 in. gap from the top and bottom of the web to the top and bottom 

web splice bolts so as to not impinge on bolt assembly clearances [refer to Table 7-15 of the AISC 

Manual of Steel Construction – use H2 + max(C1, C2) = 2¾ in. minimum clearance for a 7/8-in. 

diameter bolt] [26], the available web depth for the bolt pattern is 80.40 – (2 x 2.825) = 74.75 in. 

The number of bolts required to meet the maximum bolt spacing is: 

 

Number of bolts = 
74.75

1 14 bolts in two vertical rows on each side of splice
5.75

+ =  

 

= 28 bolts > N = 9.8 bolts    OK 

Use 28 bolts in two vertical rows (14 bolts per row) on each side of the splice. 

 

7.14.4.3 Web Splice Plates 

 

The web splice plates are 7/16 in. x 78¾ in. The plates are ASTM A709 Grade 50 steel.  

The factored shear resistance of the web at the strength limit state, Vr, is not to exceed the factored 

shear yielding or factored shear rupture resistance of the web splice plates (Article 6.13.6.1.3c). 

 

For shear yielding, the factored resistance of the web splice plates is determined as specified in 

Article 6.13.5.3 as follows: 

 

         Rr = ϕv0.58FyAvg                               Eq. (6.13.5.3-1) 

 

where:      
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                Avg =   gross area of the connection element subject to shear (in.2) 

                Fy =   specified minimum yield strength of the connection element (ksi) 

                v =   resistance factor for shear = 1.0 (Article 6.5.4.2) 

 

         
rR 1.0(0.58)(50)2(0.4375)(78.75) 1,998 kips= =  

  

         
r rR 1,998 kips V 508 kips=  =   OK 

 

For shear rupture, the factored resistance of the web splice plates is determined as specified in 

Article 6.13.5.3 as follows: 
       

         r vu p u vnR 0.58R F A=                                                                            Eq. (6.13.5.3-2) 

 

where:     

 

                Avn =  net area of the connection element subject to shear (in.2) 

                Fu    =  tensile strength of the connection element (ksi) 

                Rp   =  reduction factor for holes taken equal to 0.90 for bolt holes punched full size and 

1.0 for bolt holes drilled full size or subpunched and reamed to size (use 1.0 for 

splice plates since the holes in field splices are not allowed to be punched full 

size) 

                vu =  resistance factor for shear rupture of connection elements = 0.80 (Article 6.5.4.2) 

 

          rR 0.80(0.58)(1.0)(65)(2) 78.75 14(0.9375) (0.4375) 1,732 kips= − =  

 

         r rR 1,732 kips V 508 kips=  =    OK 

 

The factored shear resistance of the web, Vr, is also not to exceed the block shear rupture resistance 

of the web splice plates. To check the block shear rupture resistance of the web splice plates (and 

the factored bearing resistance of the bolt holes in Section 7.14.4.4), the bolt edge and end distances 

must first be established and checked. 

 

The edge distance of bolts is defined as the distance perpendicular to the line of force between the 

center of a hole and the edge of the component. In this example, the edge distance from the center 

of the vertical line of holes in the web plate to the edge of the field piece of 2.0 in. satisfies the 

minimum edge distance requirement of 1⅛ in. specified for ⅞-in.-diameter bolts in Table 

6.13.2.6.6-1. This distance also satisfies the maximum edge distance requirement of 8.0t (not to 

exceed 5.0 in.) = 8.0(0.4375) = 3.5 in. specified in Article 6.13.2.6.6. The edge distance for the 

outermost vertical row of holes on the web splice plates is set at 2.0 in. Although not done in this 

example, fabricators generally prefer that the edge distance on the web at the point of splice be 

increased a minimum of ¼ in. from the design value to allow for girder trim. 

 

The end distance of bolts is defined as the distance along the line of force between the center of a 

hole and the end of the component. In this example, the end distance of 2.0 in. at the top and bottom 

of the web splice plates satisfies the minimum end distance requirement of 1⅛ in. specified for ⅞-
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in.-diameter bolts. The maximum end distance requirement of 3.5 in. is also satisfied. Although 

not specifically required, note that the distance from the corner bolts to the corner of the web splice 

plate, equal to
2 2(2.0) (2.0) 2.8 in.+ = , also satisfies the maximum end distance requirement.  

 

Block shear rupture resistance normally does not govern for typical web splice plates, but the check 

is illustrated here for completeness. The assumed block shear failure plane for the web splice plate 

is shown in Error! Reference source not found.25. 
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Figure 25  Assumed  Block Shear Failure Planes for the Web Splice Plates 

(Note: the indicated vertical distances are measured along the web slope.)  
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According to Article 6.13.4, the factored resistance of the combination of parallel and 

perpendicular planes is to be taken as: 

 

               Eq. (6.13.4-1) 

 

where:  

 

            Rp  =  reduction factor for holes taken equal to 1.0 for bolt holes drilled full size 

 Avg =  gross area along the plane resisting shear stress (in.2) 

 Avn = net area along the plane resisting shear stress (in.2) 

 Ubs =  reduction factor for block shear rupture resistance taken equal to 1.0 when the 

tension stress is uniform 

 Atn = net area along the plane resisting tension stress (in.2) 

 bs  = resistance factor for block shear = 0.80 (Article 6.5.4.2) 

 

First, compute the area terms, based on the assumed block shear failure planes shown in Error! R

eference source not found.: 

 

               2

vgA 2 78.75 2.0 (0.4375) 67.16 in.= − =  

  

   2

vnA 2 78.75 2.0 13.5(0.9375) (0.4375) 56.08 in.= − − =  

 

   2

tnA 2 3.0 2.0 1.5(0.9375) (0.4375) 3.14 in.= + − =  

 

Compute the factored resistance as follows: 

 

  r1R 0.80(1.0) 0.58(65)(56.08) (1.0)(65)(3.14) 1,855 kips= + =  

 

  r2R 0.80(1.0) 0.58(50)(67.16) 1.0(65)(3.14) 1,721 kips= + = (controls) 

 

 r rR 1,721kips V 508 kips OK=  =  

 

Since the combined area of the web splice plates is greater than the area of the web at the point of 

splice, the fatigue stresses in the base metal of the web splice plates adjacent to the slip-critical 

bolted connections (if subject to a net tensile stress as specified in Article 6.6.1.2.1) need not be 

checked. Also, the flexural stresses in the splice plates at the service limit state under the Service 

II load combination need not be checked.  

 

Check that the threads are included in the shear planes as originally assumed. Refer to the 

discussion near the end of Section 7.14.3.4 regarding this check.  

  

( ) ( )tnubsvgypbstnubsvnupbsr AFUAF58.0RAFUAF58.0RR ++=
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Web Splice: 

 
7/8" diameter bolt  

PLYL 0.4375" 0.5625" 0.4375" 1.4375"= + + =  

MIN PLYL L + F + T 1.125" (RCSC Table C-2.2)

1.4375" 0.260" 5 / 32" 1.125" 2.98"

= +

= + + + =
 

NOML 3.00" (round up to nearest 1/ 4"per RCSC 2.7 Commentary)=  

NOML F T

3.00" 0.260" 5 / 32" 2.58" L 2" (RCSC Table 2.5)

− −

= − − =  =
 

 

Therefore, bolt is not fully threaded. 

 

B MIN NOM TL L L Y (RCSC Table C-2.1)

3.00" 1.5" 9 / 32" 1.22"

= − −

= − − =
 

 

(Note: agrees with value of LB MIN from Table 2.1.9.2-1 of ASME B18.2.6) 

 

SP B MINL 0.260" 5 / 32" 0.4375" 0.5625" 1.42" L 1.22"= + + + =  =  

 

Therefore, threads are included in the shear planes. 

 

7.14.4.4 Bearing Resistance 

 

Check the bearing resistance of the web splice bolt holes at the strength limit state. The assumption 

is that at the strength limit state, the bolts have slipped and gone into bearing. The bearing 

resistance of the smaller web controls in this case since the web thickness is less than the sum of 

the two splice plate thicknesses.   

 

When a moment contribution from the web is required at the strength limit state (which is not the 

case in this example), the resultant forces causing bearing on the web bolt holes are inclined. The 

bearing resistance of each bolt hole in the web can conservatively be calculated in this case using 

the clear edge distance, as shown on the left of Figure C6.13.6.1.3c-3. This calculation is 

conservative since the resultant forces act in the direction of inclined distances that are larger than 

the clear edge distance. This calculation is also likely to be a conservative calculation for the bolt 

holes in the adjacent rows. Should the bearing resistance be exceeded, it is recommended that the 

edge distance be increased slightly in lieu of increasing the number of bolts or thickening the web. 

Another option would be to calculate the bearing strength based on the inclined distance or resolve 

the resultant force in the direction parallel to the edge distance. In cases where the bearing strength 

of the web splice plate controls, the smaller of the clear edge or end distance on the splice plates 

can be used to compute the bearing strength of the outermost hole. 

 

For the two bolt holes at the bottom of the web splice, the clear distance, Lc, between the edge of 

the hole and the end of the web in the direction of the applied force is: 
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         c

0.9375
L 2.825 2.36 in. 2.0d 2.0(0.875) 1.75 in.

2
= − =  = =   

 

Therefore, use Eq. (6.13.2.9-1):  

 

          n uR 2(2.4dtF ) 2 2.4(0.875)(0.5625)(65) 154 kips= = =  

 

Since: 

 

         
r bb nR R=   

 

         Rr = 0.80(154) = 123 kips  

 

The total factored shear resistance of the bolts in the two holes at the bottom of the web splice, 

acting in double shear, is 2(51.9) = 104 kips < 123 kips. Therefore, the factored shear resistance 

of the bolts controls and bearing does not control for these two bolt holes. 

 

The center-to-center distance between the other twenty-six bolt holes in the direction of the applied 

force is 5¾ in. Therefore, the clear distance, Lc, between the edges of the adjacent holes is: 

 

        cL 5.75 0.9375 4.8125 in. 2.0d 2.0(0.875) 1.75 in.= − =  = =  

 

Therefore, use Eq. (6.13.2.9-1):   

 

         n uR 26(2.4dtF ) 26 2.4(0.875)(0.5625)(65) 1,996 kips= = =  

 

Since: 

 

        r bb nR R=   

 

        Rr = 0.80(1,996) = 1,597 kips  

The total factored shear resistance of the other twenty-six bolts in the web splice is 26(51.9) = 

1,349 kips < 1,597 kips. Therefore, the factored shear resistance of the bolts controls and bearing 

does not control for other twenty-six bolt holes. 

 

The total factored shear resistance of the bolts in the twenty-eight holes is: 

 

        Rr = 104 + 1,349 = 1,453 kips > Vr = 508 kips   ok  

 

7.14.4.5 Slip Resistance 
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At a minimum, bolted connections for web splices are to be checked for slip under a web slip force 

taken equal to the factored shear in the web at the point of splice.  

 

Should the moment resistance provided by the nominal slip resistance of the flange splice bolts, 

determined as specified in Article 6.13.6.1.3b, not be sufficient to resist the factored moment for 

checking slip at the point of splice (which is not the case in this example), the web splice bolts are 

instead to be checked for slip under a web slip force taken equal to the vector sum of the factored 

shear and a horizontal force in the web that provides the necessary slip resistance in conjunction with 

the flange splices. The horizontal force in the web is computed as the portion of the factored 

moment for checking slip at the point of splice that exceeds the moment resistance provided by 

the nominal slip resistance of the flange splice bolts divided by the appropriate moment arm (see 

Figure C6.13.6.1.3c-1 or C6.13.6.1.3c-2, as applicable).  

 

The factored shear for checking slip is taken as the shear in the web at the point of splice under 

Load Combination Service II, as specified in Table 3.4.1-1, or the factored shear in the web at the 

point of splice due to the deck placement sequence as specified in Article 3.4.2.1, whichever 

governs. For tub girders in horizontally curved bridges (and since slip is a serviceability 

requirement), the shear is taken as the sum of the factored flexural and St. Venant torsional shears 

in the web subjected to additive shears when checking slip (Article 6.13.6.1.3c). Since the tub 

girder has inclined webs, the factored shear is taken as the component of the factored vertical shear 

in the plane of the web. 
 

The unfactored shears at the point of splice in the web subject to additive shears are as follows 

(Table 16): 

 

VDC1  = -17 + -69 = -86 kips 

VDC2  = -12 kips 

VDW  =   -16 kips 

V-LL+IM  =  -85 kips 

Vdeck placement =    -61 kips 

 

Service II Shear = 1.0(-86 + -12) + 1.0(-16) + 1.3(-85) = -225 kips 

 

            |-225| kips > Vdeck placement = 1.25 x |-61| kips = 76 kips 

 

Although not included in this example in the interest of brevity, the special load combination 

specified in Article 3.4.2.1 must also be considered in this check for the deck placement sequence. 

Separate calculations show that this load combination also does not control for the web slip-

resistance check. 

 

The factored shear in the plane of the inclined web is computed as: 

 

             i

V 225
V 232 kips

cos cos14

−
= = = −


 

Slip resistance of web splice w/ 28 bolts: Pt = 28(39.0 kips/bolt) = 1,092 kips > |-232 kips|    OK  
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8.0 SUMMARY OF DESIGN CHECKS AND PERFORMANCE RATIOS 

 

The results for this design example at each limit state are summarized below for the maximum 

positive moment and maximum negative moment locations. The results for each limit state are 

expressed in terms of a performance ratio, defined as the ratio of the calculated value due to the 

applied loads to the corresponding resistance. 

Maximum Positive Moment Region, Span 1 (Section G2-1) 

 

Constructability 

 Flexure (Strength I) 

  Eq. (6.10.3.2.1-1) – Top Flange Yielding   0.421 

                        Eq. (6.10.3.2.1-2) – Top Flange Local Buckling  0.328 

  Eq. (6.10.3.2.1-2) – Top Flange Lateral Torsional Buck. 0.345 

  Eq. (6.10.3.2.1-3) – Top Flange Web Bend Buckling 0.369 

  Eq. (6.11.3.2-3) – Bottom Flange Yielding   0.231 

 

Service Limit State 

 No checks required in this design example 

 

Fatigue Limit State 

 Flexure (Fatigue I) 

  Eq. (6.6.1.2.2-1) – Bottom Flange    0.468 

 

Strength Limit State 

 Ductility Requirement – Eq. (6.10.7.3-1)    0.332 

 Flexure (Strength I) 

  Eq. (6.11.7.2.1-1) – Top Flange    0.502 

  Eq. (6.11.7.2.2-5) – Bottom Flange    0.754 

  Article 6.11.7.2.1 – Concrete Deck Stresses   0.413 

 

Interior Support, Maximum Negative Moment (Section G2-2) 

 

Constructability 

 Flexure (Strength I) 

  Eq. (6.10.3.2.2-1) – Top Flange Yielding   0.547 

  Eq. (6.11.3.2-1) – Bottom Flange Local Buckling  0.428 

 Shear (Strength I) 

  Eq. (6.10.3.3-1)      0.348 

 

Service Limit State (Service II) 

 Web Bend-Buckling - Eq. (6.10.4.2.2-4)    0.841 

 

Fatigue Limit State 

 Flexure (Fatigue I) 

  Eq. (6.6.1.2.2-1) – Top Flange    0.059 
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Strength Limit State  

 Flexure (Strength I) 

  Eq. (6.11.8.1.2-1) – Top Flange Yielding   0.888 

  Eq. (6.11.8.1.1-1) – Bottom Flange Local Buckling  0.876 

  Eq. (C6.11.8.1.1-1) – Bottom Flange    0.849 

  Article 6.11.1.1 

   Bottom Flange cross-section distortional stresses 0.475 

 Shear (Strength I) – Eq. (6.10.9.1-1)     0.639 
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