AMERICAN INSTITUTE OF STEEL CONSTRUCTION

SPECIFICATION FOR THE
DESIGN, FABRICATION AND ERECTION
OF STRUCTURAL STEEL FOR BUILDINGS

ADOPTED 1936
(REVISED JULY, 1941)

CONTENTS

FOREWORD

SPECIFICATION

PART I. GENERAL—Sections 1—2
PART II. MATERIAL—Section 3
PART III. LOADS AND STRESSES—Sections 4—9
PART IV. UNIT STRESSES—Section 10
PART V. DESIGN—Sections 11—26
PART VI. FABRICATION—Sections 27—28
PART VII. ERECTION—Section 29
PART VIII. INSPECTION—Section 30
section 1. scope.

(a) scope.

this specification defines the practice adopted by the american institute of steel construction in the design, fabrication, and erection of structural steel for buildings.

as used throughout this specification, the term "structural steel" refers exclusively to those materials which are assigned to class a in the code of standard practice for steel structures other than bridges and nothing herein contained shall be interpreted as a recommended practice for any material not specifically assigned to class a in such code.

(b) code.

in the execution of contracts entered into under this specification, the code of standard practice for steel structures other than bridges of the american institute of steel construction shall apply unless otherwise specified or required.

section 2. plans and drawings.

(a) plans.

the plans shall show a complete design with sizes, sections, and the relative location of the various members. floor levels, column centers, and off-sets shall be dimensioned. plans shall be drawn to a scale large enough to convey the information adequately.

(b) shop drawings.

shop drawings shall be made in conformity with the best modern practice and with due regard to speed and economy in fabrication and erection.

section 3. material.

(a) structural steel.

structural steel shall conform to the standard specifications of the american society for testing materials for steel for bridges and buildings, serial designation a7, as amended to date.

(b) rivet steel.

rivet steel shall conform to the standard specifications of the american society for testing materials for structural rivet steel, serial designation a 141, as amended to date.

(c) other metals.

alloy steels, cast steel, cast iron and other metals shall conform to the applicable specifications of the american society for testing materials, as amended to date.

(d) stock material.

stock material shall be of a quality equal to that called for by the specifications of the american society for testing materials for the classifications covering its intended use; and mill test reports shall constitute sufficient record as to the quality of material carried in stock.
Unidentified stock material, if free from surface imperfections, may be used for short sections of minor importance, or for small unimportant details, where the precise physical properties of the material would not affect the strength of the structure.

PART III. LOADS AND STRESSES

SECTION 4. LOADS AND FORCES.

(a) **Loads and Forces.**

Steel structures shall be designed to sustain the following loads and forces:

1. Dead Load.
2. Live Load.
3. Impact.
4. Wind and other Lateral Forces.
5. Erection Loads.
6. Other Forces.

(b) **Dead Load.**

The dead load shall consist of the weight of the steelwork and all material fastened thereto or supported thereby.

(c) **Live Load.**

The live load, and snow load if any, shall be that stipulated by the Code under which the structure is being designed or that required by the conditions involved. In general, the live loads should not be less than those recommended by the Building Code Committee of the National Bureau of Standards, November, 1924, under the caption "Minimum Live Loads for use in the Design of Buildings."

(d) **Impact.**

For structures, carrying live loads which induce impact or vibration, the live load stresses shall be increased sufficiently to provide for same. If not otherwise specified, the increase shall be:

- For elevator supports: 100 percent.
- For traveling crane supports (girders and columns): 25 percent.
- For light machinery, shaft or motor driven, not less than: 20 percent.
- For reciprocating machinery or power units, not less than: 50 percent.

(e) **Crane Runway Forces.**

The lateral forces on crane runways to provide for the effect of crane trolleys shall, if not otherwise specified, be 20 percent of the moving load of the crane, applied at the top of rail, one-half on each side of runway, and considered as acting in either direction normal to the runway rail.

(f) **Wind.**

Proper provision shall be made for stresses caused by wind both during erection and after completion of the building. The wind pressure is dependent upon the conditions of exposure and geographical location of the structure. The allowable stresses specified in Sections 6 (c) and 7 are based upon the steel frame being designed to carry
a wind pressure of not less than twenty (20) pounds per square foot on the vertical projection of exposed surfaces during erection, and fifteen (15) pounds per square foot on the vertical projection of the finished structure.

(g) **Erection.**

Proper provision shall be made for temporary stresses caused by erection.

(h) **Other Forces.**

Structures in localities subject to earthquakes, hurricanes, and other extraordinary conditions shall be designed with due regard for such conditions.

SECTION 5. **REVERSAL OF STRESS.**

(a) **Reversal of Stress.**

Members subject to live loads producing alternating tensile and compressive stresses shall be proportioned as follows:

To the net total compressive and tensile stresses add 50 per cent of the smaller of the two and proportion the member to resist either of the increased stresses resulting therefrom.

Connections shall be proportioned to resist the larger of the two increased stresses.

SECTION 6. **COMBINED STRESSES.**

(a) **Axial and Bending.**

Members subject to both axial and bending stresses shall be so proportioned that the quantity

\[
\frac{f_a}{F_a} + \frac{f_b}{F_b}
\]

shall not exceed unity, in which

- \(F_a\) = axial unit stress that would be permitted by this Specification if axial stress only existed.
- \(F_b\) = bending unit stress that would be permitted by this Specification if bending stress only existed.
- \(f_a\) = axial unit stress (actual) = axial stress divided by area of member.
- \(f_b\) = bending unit stress (actual) = bending moment divided by section modulus of member.

(b) **Rivets.**

Rivets subject to shearing and tensile forces shall be so proportioned that the combined unit stress will not exceed the allowable unit stress for rivets in tension only.

(c) **Wind and Other Forces.**

Members subject to stresses produced by a combination of wind and other loads may be proportioned for unit stresses 33-1/3 per cent greater than those specified in Section 10, provided the section thus required is not less than that required for the combination of dead load, live load, and impact (if any).

SECTION 7. **MEMBERS CARRYING WIND ONLY.**

(a) **Wind Only.**

Members subject only to stresses produced by wind forces may be proportioned for unit stresses 33-1/3 per cent greater than those specified in Section 10.
SECTION 8. COMPOSITE BEAMS.

(a) Composite Beams.

The term “composite beam” shall apply to any rolled or fabricated steel floor beam entirely encased in a poured concrete haunch at least four inches wider, at its narrowest point, than the flange of the beam, supporting a concrete slab on each side without openings adjacent to the beam; provided that the top of the beam is at least 1\(\frac{1}{2}\) inches below the top of the slab and at least 2 inches above the bottom of the slab; provided that a good grade of stone or gravel concrete with Portland cement, is used; and provided that the concrete haunch has adequate mesh, or other reinforcing steel, throughout its whole depth and across its sofit.

(b) Composite beams may be figured on the assumptions that:

1. The steel beam carries unassisted all dead loads prior to the hardening of the concrete, with due regard for any temporary support provided.

2. The steel and concrete carry by joint action all loads, dead and live, applied after the hardening of the concrete.

(c) Composite Beams.

The total tensile unit stress in the extreme fibre of the steel beam thus computed shall not exceed 20000 pounds per square inch. [Section 10 (a)].

(d) The maximum stresses in the concrete, and the ratio of Young’s moduli for steel and concrete, shall be as prescribed by the specifications governing the design of reinforced concrete for the structure.

(e) The web and the end connections of the steel beam shall be adequate to carry the total dead and live load without exceeding the unit stresses prescribed in this Specification, except as this may be reduced by the provision of other proper support.

SECTION 9. EFFECTIVE SPAN LENGTH.

(a) Simple Spans.

Beams, girders and trusses shall ordinarily be designed on the basis of simple spans whose effective length is equal to the distance between centers of gravity of the members to which they deliver their end reactions.

(b) End Restraint.

When designed on the assumption of end restraint, full or partial, based on continuous or cantilever action, beams, girders and trusses, as well as the sections of the members to which they connect, shall be designed to carry the shears and moments so introduced, in addition to all other forces, without exceeding at any point the unit stresses prescribed in Section 10.

PART IV. UNIT STRESSES

SECTION 10. ALLOWABLE UNIT STRESSES.

(a) Structural and Rivet Steel.

All parts of the structure shall be so proportioned that the unit stress in pounds per square inch shall not exceed the following values:
Tension

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Steel, net section</td>
<td></td>
<td>20,000</td>
</tr>
<tr>
<td>Rivets, on area based on nominal diameter</td>
<td></td>
<td>15,000</td>
</tr>
<tr>
<td>Bolts and other threaded parts, on nominal area at root of thread</td>
<td></td>
<td>12,000</td>
</tr>
</tbody>
</table>

Compression

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns, gross section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For axially loaded columns with values of (l/r) not greater than 120</td>
<td></td>
<td>(17,000 - 0.485 \frac{l^2}{r^2})</td>
</tr>
<tr>
<td>For axially loaded columns with values of (l/r) greater than 120</td>
<td></td>
<td>(\frac{18,000}{1 + \frac{l^2}{18,000r^2}})</td>
</tr>
<tr>
<td>in which (l) is the unbraced length of the column, and (r) is the corresponding radius of gyration of the section, both in inches.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plate Girder Stiffeners, gross section</td>
<td></td>
<td>20,000</td>
</tr>
<tr>
<td>Webs of Rolled Sections at toe of fillet [Crippling, see Section 19 (h)]</td>
<td></td>
<td>24,000</td>
</tr>
</tbody>
</table>

Bending

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension on extreme fibers of rolled sections, plate girders, and built-up members. [See Section 19 (a)]</td>
<td></td>
<td>20,000</td>
</tr>
<tr>
<td>Compression on extreme fibers of rolled sections, plate girders, and built-up members, for values of (l/b) not greater than 40</td>
<td></td>
<td>(22,500 \frac{1 + \frac{l^2}{1800b^2}}{1 + \frac{l^2}{1800b^2}})</td>
</tr>
<tr>
<td>in which (l) is the laterally unsupported length of the member, and (b) is the width of the compression flange, both in inches.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress on extreme fibers of pins</td>
<td></td>
<td>30,000</td>
</tr>
</tbody>
</table>

Shearing

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivets</td>
<td></td>
<td>15,000</td>
</tr>
<tr>
<td>Pins, and turned bolts in reamed or drilled holes</td>
<td></td>
<td>15,000</td>
</tr>
<tr>
<td>Unfinished bolts</td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td>Webs of beams and plate girders, gross section</td>
<td></td>
<td>13,000</td>
</tr>
</tbody>
</table>

Bearing

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivets</td>
<td>Double Shear</td>
<td>40,000</td>
</tr>
<tr>
<td></td>
<td>Single Shear</td>
<td>32,000</td>
</tr>
<tr>
<td>Turned bolts in reamed or drilled holes</td>
<td>Double Shear</td>
<td>40,000</td>
</tr>
<tr>
<td></td>
<td>Single Shear</td>
<td>32,000</td>
</tr>
<tr>
<td>Unfinished bolts</td>
<td></td>
<td>25,000</td>
</tr>
<tr>
<td></td>
<td>Single Shear</td>
<td>20,000</td>
</tr>
<tr>
<td>Pins</td>
<td></td>
<td>32,000</td>
</tr>
</tbody>
</table>

Contact Area

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milled Stiffeners and other Milled Surfaces</td>
<td></td>
<td>30,000</td>
</tr>
<tr>
<td>Fitted Stiffeners</td>
<td></td>
<td>27,000</td>
</tr>
</tbody>
</table>

Expansion rollers and rockers (pounds per linear inch)

<table>
<thead>
<tr>
<th>Material</th>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion rollers and rockers</td>
<td></td>
<td>600d</td>
</tr>
<tr>
<td>in which (d) is diameter of roller or rocker in inches.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

American Institute of Steel Construction
(b) **Cast Steel**
Compression and Bearing same as for Structural Steel. Other Unit Stresses, 75 per cent of those for Structural Steel.

(c) **Masonry [Bearing]**
Granite .. 800
Sandstone and Limestone ... 400
Portland Cement Concrete, unless otherwise specified 600
Hard Brick in Cement Mortar ... 250

PART V. DESIGN

SECTION 11. SLENDERNESS RATIO.

(a) The ratio of unbraced length to least radius of gyration $\frac{l}{r}$ for compression members and for tension members other than rods shall not exceed:

For main compression members ... 120
For bracing and other secondary members in compression 200
For tension members other than rods ... 300

ALLOWABLE WORKING STRESS FOR AXIALLY LOADED COLUMNS

![Graph showing allowable working stress for axially loaded columns]

\[f = \text{Allowable column stress in kips per sq. in.} \]

\[\frac{l}{r} = \text{Ratio of length to least radius of gyration} \]
SECTION 12. DEPTH RATIO.

(a) Simple Spans.

The depth of rolled beams in floors shall be not less than 1/24 of the span. Where floors are subject to shocks or vibrations, the depth of beams and girders preferably shall be not less than 1/20 of the span, or, if members of less depth are used, the section area shall be increased until the maximum deflection will not be greater than that of a beam with depth of 1/20 of the span. The depth of roof purlins preferably shall not be less than 1/24 of the span, and in no case less than 1/30 of the span, except in the case of corrugated sheeting roofs with a pitch not less than 1 in 21/2.

(b) Restrained and Continuous Spans.

Minimum depth ratios for restrained and continuous spans shall be such that the deflections at critical points will be not greater than those of simple spans of the minimum depth ratio permitted under Section 12 (a).

SECTION 13. UNSUPPORTED COMPRESSION FLANGES.

(a) The ratio of unbraced length to width of flange \(\frac{l}{b} \) for compression flanges of rolled sections, plate girders, and built-up members subject to bending shall not exceed 40.

<table>
<thead>
<tr>
<th>Unit Stress f (Kips)</th>
<th>Ratio</th>
<th>Unit Stress f (Kips)</th>
<th>Ratio</th>
<th>Unit Stress f (Kips)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0</td>
<td>20.00</td>
<td>1.000</td>
<td>23.5</td>
<td>17.22</td>
<td>.861</td>
</tr>
<tr>
<td>15.5</td>
<td>19.85</td>
<td>.993</td>
<td>24.0</td>
<td>17.05</td>
<td>.852</td>
</tr>
<tr>
<td>16.0</td>
<td>19.70</td>
<td>.985</td>
<td>24.5</td>
<td>16.87</td>
<td>.844</td>
</tr>
<tr>
<td>16.5</td>
<td>19.54</td>
<td>.977</td>
<td>25.0</td>
<td>16.70</td>
<td>.835</td>
</tr>
<tr>
<td>17.0</td>
<td>19.39</td>
<td>.969</td>
<td>25.5</td>
<td>16.53</td>
<td>.826</td>
</tr>
<tr>
<td>17.5</td>
<td>19.23</td>
<td>.961</td>
<td>26.0</td>
<td>16.36</td>
<td>.818</td>
</tr>
<tr>
<td>18.0</td>
<td>19.07</td>
<td>.953</td>
<td>26.5</td>
<td>16.19</td>
<td>.809</td>
</tr>
<tr>
<td>18.5</td>
<td>18.91</td>
<td>.945</td>
<td>27.0</td>
<td>16.01</td>
<td>.801</td>
</tr>
<tr>
<td>19.0</td>
<td>18.74</td>
<td>.937</td>
<td>27.5</td>
<td>15.84</td>
<td>.792</td>
</tr>
<tr>
<td>19.5</td>
<td>18.58</td>
<td>.929</td>
<td>28.0</td>
<td>15.67</td>
<td>.784</td>
</tr>
<tr>
<td>20.0</td>
<td>18.41</td>
<td>.920</td>
<td>28.5</td>
<td>15.50</td>
<td>.775</td>
</tr>
<tr>
<td>20.5</td>
<td>18.24</td>
<td>.912</td>
<td>29.0</td>
<td>15.34</td>
<td>.767</td>
</tr>
<tr>
<td>21.0</td>
<td>18.07</td>
<td>.904</td>
<td>29.5</td>
<td>15.17</td>
<td>.758</td>
</tr>
<tr>
<td>21.5</td>
<td>17.90</td>
<td>.895</td>
<td>30.0</td>
<td>15.00</td>
<td>.750</td>
</tr>
<tr>
<td>22.0</td>
<td>17.73</td>
<td>.887</td>
<td>30.5</td>
<td>14.83</td>
<td>.742</td>
</tr>
<tr>
<td>22.5</td>
<td>17.56</td>
<td>.878</td>
<td>31.0</td>
<td>14.67</td>
<td>.733</td>
</tr>
<tr>
<td>23.0</td>
<td>17.39</td>
<td>.869</td>
<td>31.5</td>
<td>14.50</td>
<td>.725</td>
</tr>
</tbody>
</table>

\(f = \frac{22500}{1 + \frac{l^2}{1800 b^2}} \)

\(l = \) Unsupported length in inches.
\(b = \) Width of flange in inches.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
SECTION 14. MINIMUM THICKNESS OF MATERIAL.

(a) Main Material.

The minimum thickness of steel except for linings, fillers, and the webs of rolled beams and channels, shall be:

For exterior construction, fully accessible for repainting, $\frac{3}{4}$ inch.

For exterior construction, not fully accessible for repainting, $\frac{5}{8}$ inch, except as noted in the following clause.

For exterior lintels supporting masonry or wood and with steel partially exposed, in structures over two stories in height, $\frac{7}{16}$ inch.

For interior construction, fully accessible for repainting, $\frac{3}{4}$ inch.

For exterior or interior construction, permanently waterproofed as by an envelope of poured-in-place stone concrete, or otherwise sealed against moisture or change of air, $\frac{1}{4}$ inch.

The foregoing thicknesses presume the absence of any atmospheric agents more corrosive than rain and fog; and shall be suitably increased if contact with such more corrosive agents is to be expected.

(b) Gusset Plates.

Gusset plates for trusses with end reactions greater than 35,000 pounds shall be not less than $\frac{7}{8}$ inch thick.

(c) Flanges.

The thickness of the outstanding legs of flange angles shall be not less than $\frac{1}{12}$ the width, for girders, columns and main compression chords of trusses; nor less than $\frac{7}{16}$ of the width for other compression members. The thickness of cover plates of welded girders without flange angles shall be not less than $\frac{1}{12}$ the half width.

(d) Compression Members.

In compression members consisting of segments connected by cover plates or lacing, or segments connected by webs, the thickness of the webs of the segments shall be not less than $\frac{1}{32}$ of the unsupported distance between the nearest rivet lines, or the roots of the flanges in case of rolled sections. The thickness of the cover plates or webs connecting the segments shall be not less than $\frac{1}{40}$ of the unsupported distance between the nearest lines of their connecting rivets, or the roots of their flanges in case of rolled sections. For such members in which the stress is less than that allowable, the denominators 32 and 40 may be multiplied by the factor $\sqrt{\frac{f_t}{f}}$ in which f_t = the allowable unit stress and f = the unit stress in the member.

SECTION 15. GROSS AND NET SECTIONS.

(a) Definitions.

The gross section of a member at any point shall be determined by summing the products of the thickness and the gross width of each element as measured normal to the axis of the member. The net section shall be determined by substituting for the gross width the net width computed in accordance with paragraphs (c) to (h) of this Section.
(b) Application.

Unless otherwise specified, tension members shall be designed on the basis of net section. Columns shall be designed on the basis of gross section. Beams and girders shall be designed in accordance with Section 20 (a).

(c) Single Angles in Tension.

Sections shall be made symmetrical wherever practicable. The effective area of single angles in tension shall be assumed as the net area of the connected leg plus 50 percent of the area of the unconnected leg. Single angles connected by lug angles shall be considered as connected by one leg.

(d) Net Width.

In the case of a chain of holes extending across a part in any diagonal or zigzag line, the net width of the part shall be obtained by deducting from the gross width the sum of the diameters of all the holes in the chain, and adding, for each gage space in the chain, the quantity

\[s^2, \quad \frac{s^2}{4g} \]

where

- \(s \) = longitudinal spacing (pitch) in inches of any two successive holes.
- \(g \) = transverse spacing (gage) in inches of the same two holes.

The critical net section of the part is obtained from that chain which gives the least net width.

(e) Angles.

For angles, the gross width shall be the sum of the widths of the legs less the thickness. The gage for holes in opposite legs shall be the sum of the gages from back of angle less the thickness.

(f) Splice Members.

For splice members, the thickness considered shall be only that part of the thickness of the member which has been developed by rivets beyond the section considered.

(g) Size of Holes.

In computing net area the diameter of a rivet hole shall be taken as \(\frac{3}{4} \) inch greater than the nominal diameter of the rivet.

(h) Pin Holes.

In pin connected tension members, the net section across the pin hole, transverse to the axis of the member, shall be not less than 140 per cent, and the net section beyond the pin hole, parallel with the axis of the member, not less than 100 per cent, of the net section of the body of the member.

In all pin-connected riveted members the net width across the pin hole, transverse to the axis of the member, shall preferably not exceed 8 times the thickness of the member at the pin.

SECTION 16. EXPANSION.

(a) Transverse Expansion.

No provision for transverse expansion in structures shall be made in wall bearing spans 50 feet and under in span. Wall bearing spans over 50 feet and up to and in-
cluding 100 feet in span shall slide on smooth surfaces at one end. Wall bearing spans over 100 feet in span shall have expansion rollers or rockers at one end. Expansion rollers shall be not less than 3 inches in diameter. Expansion ends shall be secured against lateral movement, and all fixed ends against movement in any direction.

(b) Longitudinal Expansion.
Provision shall be made for longitudinal expansion of the structure. All expansion provisions shall be figured for 100 degrees F. variation in temperature and for a coefficient of expansion of 0.0000065 per degree per unit of length. Expansion joints in buildings having masonry wall enclosures shall be so spaced as to inhibit visible cracking of the walls.

SECTION 17. CONNECTIONS.

(a) Minimum Connections.
Connections carrying calculated stresses, except for lacing, sag bars, and girts, shall have not fewer than 2 rivets.

(b) Eccentric Connections.
Members meeting at a point shall have their gravity axes meet at a point if practicable; if not, provision shall be made for their eccentricity.

(c) Rivets.
The rivets at the ends of any member transmitting stresses into that member should preferably have their centers of gravity on the gravity axis of the member; otherwise, provision shall be made for the effect of the resulting eccentricity. Pins may be so placed as to counteract the effect of bending due to dead load.

(d) Unrestrained Members.
When beams, girders or trusses are designed on the basis of simple spans in accordance with Section 9 (a), their end connections may ordinarily be designed for the reaction shears only. If, however, the eccentricity of the connection is excessive, provision shall be made for the resulting moment.

(e) Restrained Members.
When beams, girders or trusses are subject both to reaction shear and end moment, due to the restraint specified in Section 9 (b), their connections shall be specially designed to carry both shear and moment without exceeding at any point the unit stresses prescribed in Section 10. Ordinary end connections comprising only a pair of web angles, with not more than a nominal seat and top angle, shall not be assumed to provide for this kind of end moment.

(f) Fillers.
In truss construction when rivets carrying computed stress pass through fillers, the fillers shall be extended beyond the connected member and the extension secured by enough rivets to distribute the total stress in the member uniformly over the combined sections of the member and filler.

Fillers under plate girder stiffeners at end bearings or points of concentrated loads shall be secured by sufficient rivets to prevent excessive bending and bearing stresses.
(g) **Splices.**
Compression members when faced for bearing shall be spliced sufficiently to hold the connecting members accurately in place. Other joints in riveted work, whether in tension or compression shall be spliced so as to transfer the stress to which the member is subject.

SECTION 18. RIVETS AND BOLTS.

(a) **Diameter.**
In proportioning and spacing rivets, the nominal diameter of the undriven rivet shall be used.

(b) **Effective Bearing Area.**
The effective bearing area of pins, bolts, and rivets shall be the diameter multiplied by the length in bearing; except, that for countersunk rivets, half the depth of the countersink shall be deducted.

(c) **Double and Single Shear Bearing.**
Only that portion of a rivet or bolt shall be considered in double shear bearing, which lies between two portions which are stressed in the opposite direction. The remainder of the rivet or bolt shall be considered in single shear bearing.

(d) **Long Grips.**
Rivets carrying calculated stress, and whose grip exceeds five diameters, shall have their number increased 1 per cent for each additional \(\frac{1}{12} \) inch in the rivet grip. Special care shall be used in heating and driving such rivets.

(e) **Use of Unfinished Bolts.**
All field connections may be made with unfinished bolts, except as provided in Par. (e) hereof.

(f) **Use of Rivets.**
Rivets shall be used for the following connections:
Column splices in all tier structures 200 feet or more in height.
Column splices in tier structures 100 to 200 feet in height, if the least horizontal dimension is less than 40 per cent of the height.
Column splices in tier structures less than 100 feet in height, if the least horizontal dimension is less than 25 per cent of the height.
Connections of all beams and girders to columns, and of any other beams and girders on which the bracing of columns is dependent, in structures over 125 feet in height.
Roof-truss splices and connections of trusses to columns, column splices, column bracing, and crane supports in all structures carrying cranes of over 5-ton capacity.
Connections for supports of running machinery, or of other live loads which produce impact or reversal.
Any other connections stipulated on the design plans.
For the purpose of this Specification, the height of a tier structure shall be taken as the vertical distance from the curb level to the highest point of the roof beams, in the case of flat roofs, or to the mean height of the gable, in the case of roofs having a
rise of more than one to a 4½ run. Where the curb level has not been established, or where the structure does not adjoin a street, the mean level of the adjoining land shall be used instead of curb level. Penthouses may be excluded in computing the height of a structure.

(g) Use of Turned Bolts.

Turned bolts in reamed or drilled holes, as specified in Section 27 (d), may be used in shop or field work where it is impossible to drive satisfactory rivets. The finished shank shall be long enough to provide full bearing, and washers shall be used under the nuts to give full grip when the nuts are turned tight.

SECTION 19. RIVET SPACING.

(a) Minimum Pitch.

The preferable minimum distance between centers of rivet holes shall be not less than 4½ inches for 1¼ inch rivets, 4 inches for 1½ inch rivets, 3½ inches for 1 inch rivets, 3 inches for 7/8 inch rivets, 2¼ inches for ¾ inch rivets, 2 inches for 5/8 inch rivets, and 1¾ inches for 1/2 inch rivets, but in no case shall it be less than three times the diameter of the rivet.

(b) Maximum Pitch Compression Members.

The maximum pitch in the line of stress of compression members composed of plates and shapes shall not exceed 16 times the thickness of the thinnest outside plate or shape, nor 20 times the thinnest enclosed plate or shape with a maximum of 12 inches, and at right angles to the direction of stress the distance between lines of rivets shall not exceed 30 times the thickness of the thinnest plate or shape. For angles in built sections with two gage lines, with rivets staggered, the maximum pitch in the line of stress in each gage line shall not exceed 24 times the thickness of the thinnest plate with a maximum of 18 inches.

(c) End Pitch Compression Members.

The pitch of rivets at the ends of built compression members shall not exceed four diameters of the rivets for a length equal to 1½ times the maximum width of the member.

(d) Two-Angle Members.

In tension members composed of two angles, a pitch of 3'-6" will be allowed, and in compression members, 2'-0", but the ratio l/r for each angle between rivets shall be not more than 3/4 of that for the whole member.

(e) Minimum Edge Distance.

The minimum distance from the center of any punched rivet hole to any edge shall be that given in Table I.
TABLE I

<table>
<thead>
<tr>
<th>Rivet Diameter, Inches</th>
<th>Minimum Edge Distance (Inches) for Punched Holes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In Sheared Edge</td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>5/8</td>
<td>1 1/8</td>
</tr>
<tr>
<td>3/4</td>
<td>1 1/4</td>
</tr>
<tr>
<td>7/8</td>
<td>1 1/2</td>
</tr>
<tr>
<td>1</td>
<td>1 3/4</td>
</tr>
<tr>
<td>1 1/8</td>
<td>2</td>
</tr>
<tr>
<td>1 1/4</td>
<td>2 1/4</td>
</tr>
</tbody>
</table>

*May be decreased 1/4 inch when holes are near end of beam.

(f) Minimum Edge Distance in Line of Stress.

The distance from the center of any rivet under computed stress, and that end or other boundary of the connected member toward which the pressure of the rivet is directed, shall be not less than the shearing area of the rivet shank (single or double shear respectively) divided by the plate thickness.

This end distance may however be decreased in such proportion as the stress per rivet is less than that permitted under Section 10 (a); and the requirement may be disregarded in case the rivet in question is one of three or more in a line parallel to the direction of stress.

(g) Maximum Edge Distance.

The maximum distance from the center of any rivet to the near edge shall be 12 times the thickness of the plate, but shall not exceed 6 inches.

SECTION 20. PLATE GIRDERS AND ROLLED BEAMS.

(a) Proportioning.

Riveted plate girders, cover-plated beams, and rolled beams shall in general be proportioned by the moment of inertia of the gross section. No deduction shall be made for standard shop or field rivet holes in either flange; except that in special cases where the reduction of the area of either flange by such rivet holes, calculated in accordance with the provisions of Section 15, exceeds 15 per cent of the gross flange area, the excess shall be deducted. If such members contain other holes, as for bolts, pins, or countersunk rivets, the full deduction for such holes shall be made. The deductions thus applicable to either flange shall be made also for the opposite flange if the corresponding holes are there present.

(b) Web.

Plate girder webs shall have a thickness of not less than 1/170 of the unsupported distance between flanges.

(c) Flanges.

Cover plates, when required, shall be equal in thickness or shall diminish in thickness from the flange angles outward. No plate shall be thicker than the flange angles.
Unstiffened cover plates shall not extend more than 6 inches nor more than 12 times the thickness of the thinnest plate beyond the outer row of rivets connecting them to the angles.

The total cross-sectional area of cover plates shall not exceed 70 per cent of the total flange area.

(d) Rivets.

Rivets connecting the flanges to the web shall be proportioned to resist the horizontal shear due to bending as well as any loads applied directly to the flange.

(e) Stiffeners.

Stiffeners shall be placed on the webs of plate girders at the ends and at points of concentrated loads. Such stiffeners shall have a close bearing against the flanges, shall extend as closely as possible to the edge of the flange angles, and shall not be crimped. They shall be connected to the web by enough rivets to transmit the stress. Only that portion of the outstanding legs outside of the fillets of the flange angles shall be considered effective in bearing.

If \(h/t \) is equal to or greater than 70, intermediate stiffeners shall be required at all points where \(h/t \) exceeds \(\frac{8,000}{\sqrt{v}} \), in which

\[
\begin{align*}
\sqrt{v} &= \text{the clear depth between flanges, in inches} \\
t &= \text{the thickness of the web, in inches} \\
v &= \text{greatest unit shear in panel, in pounds per square inch under any condition of complete or partial loading.}
\end{align*}
\]

The clear distance between intermediate stiffeners, when stiffeners are required by the foregoing, shall not exceed 84 inches or that given by the formula

\[
d = \frac{270,000t}{v} \frac{3\sqrt{v}t}{h}
\]

\(d \) = the clear distance between stiffeners, in inches.

Intermediate stiffeners may be crimped over the flange angles.

Plate girder stiffeners shall be in pairs, one on each side of the web, and shall be connected to the web by rivets spaced not more than 8 times their nominal diameter.

(f) Splices.

Web splices in plate girders shall be proportioned to transmit the full shearing and bending stresses in the web at the point of splice.

Flange splices shall be proportioned to develop the full stress of the members cut.

(g) Lateral Forces.

The flanges of plate girders supporting cranes shall be proportioned to resist the lateral forces specified in Section 4(d). The flanges of plate girders supporting other moving loads shall be proportioned to resist any lateral forces produced by such loads. The combination of axial and transverse stresses shall comply with Section 6(a).
(h) Web Crippling of Beams.

Rolled beams shall be so proportioned that the compression stress at the web toe of the fillets, resulting from concentrated loads, shall not exceed the value of 24,000 pounds per square inch allowed in Section 10 (a). The governing formulas shall be:

For interior loads \(\frac{R}{t(N + 2k)} \) = not over 24,000

For end reactions \(\frac{R}{t(N + k)} \) = not over 24,000

R = concentrated interior load or end reactions, in pounds.

\(t \) = thickness of web, in inches.

N = length of bearing, in inches.

k = distance from outer face of flange to web toe of fillet, in inches.

SECTION 21. SEPARATORS.

(a) Separators.

Where two or more rolled beams or channels are used to form a girder, they shall be connected by bolts and separators at intervals of not more than 5 feet. All beams having a depth of 12 inches or more shall have at least 2 bolts to each separator. When concentrated loads are carried from one beam to the other, or distributed between the beams, rolled or built-up diaphragms shall be used, designed with sufficient stiffness to distribute the load. Where beams are exposed, they shall be filled with concrete or spaced sufficiently far apart to permit cleaning and painting.

SECTION 22. TIE PLATES.

(a) Compression Members.

The open sides of compression members shall be provided with lacing having tie plates at each end, and at intermediate points if the lacing is interrupted. Tie plates shall be as near the ends as practicable. In main members carrying calculated stresses the end tie plates shall have a length of not less than the distance between the lines of rivets connecting them to the segments of the member, and intermediate ones of not less than one-half of this distance. The thickness of tie plates shall be not less than one-fiftieth of the distance between the lines of rivets connecting them to the segments of the members, and the rivet pitch shall be not more than four diameters. Tie plates shall be connected to each segment by at least three rivets.

(b) Tension Members.

Tie plates shall be used to secure the parts of tension members composed of shapes. They shall have a length not less than two-thirds of the length specified for tie plates in compression members. The thickness shall be not less than one-fiftieth of the distance between the lines of rivets connecting them to the segments of the member and they shall be connected to each segment by at least three rivets.
SECTION 23. LACING.

(a) **Spacing.**
Lacing bars of compression members shall be so spaced that the ratio \(l/r \) of the flange included between their connections shall be not over \(\frac{3}{4} \) of that of the member as a whole.

(b) **Proportioning.**
Lacing bars shall be proportioned to resist a shearing stress normal to the axis of the member equal to two per cent of the total compressive stress in the member. In determining the section required the compression formula shall be used, \(l \) being taken as the length of the bar between the outside rivets connecting it to the segment for single lacing and 70 per cent of that distance for double lacing. The ratio \(l/r \) shall not exceed 140 for single lacing nor 200 for double lacing.

(c) **Minimum Proportions.**
The thickness of lacing bars shall be not less than one-fortieth for single lacing, and one-sixtieth for double lacing, of the distance between end rivets; their minimum width shall be three times the diameter of the rivets connecting them to the segments.

(d) **Inclination.**
The inclination of lacing bars to the axis of the members shall preferably be not less than 45 degrees for double lacing and 60 degrees for single lacing. When the distance between the rivet lines in the flanges is more than 15 inches, the lacing shall be double and riveted at the intersection if bars are used, or else shall be made of angles.

SECTION 24. CAMBER.

(a) **Shown on Plans.**
Cambering, if any, of trusses, beams or girders, shall be called for on the design plans.

(b) **Trusses and Girders.**
Trusses of 80 feet or greater span shall generally be cambered for approximately the dead load deflection. Crane girders of 75 feet or greater span shall generally be cambered for approximately the dead and half live load deflection.

(c) **Beams.**
Specified camber for rolled beams over 15 inches in depth shall be only that offered as cold cambering at the mill.

(d) **Camber for Other Trades.**
If camber is required in order to bring a loaded member into proper relation with the work of other trades, as for the attachment of runs of sash, the requirement shall be set forth on the plans and on the detail drawings.

(e) **Erection.**
Required camber of trusses shall be shown on the erection diagram. If camber involves the erection of any member under a straining force, or in a specific sequence, this shall be noted on the erection diagram.
(f) **Initial Stress.**

The total initial stress in any adjustable member shall be assumed at not less than 5,000 pounds.

SECTION 25. COLUMN BASES.

(a) **Loads.**

Proper provision shall be made to transfer the column loads, and moments if any, to the footings and foundations.

(b) **Alignment.**

Column bases shall be set level and to correct elevation with full bearing on the masonry.

(c) **Finishing.**

Column bases shall be finished to accord with the following requirements:

1. Rolled steel bearing plates, 2" or less in thickness, may be used without planing, provided a satisfactory contact bearing is obtained; rolled steel bearing plates, over 2", but 4" or less in thickness, may be straightened by pressing (planed on all bearing surfaces if presses are not available) to obtain a satisfactory contact bearing; rolled steel bearing plates, over 4" in thickness, shall be planed on all bearing surfaces (except as noted under 3).

2. Column bases other than rolled steel bearing plates shall be planed on all bearing surfaces (except as noted under 3).

3. The bottom surfaces of bearing plates and column bases which rest on masonry foundations and are grouted to insure full bearing contact need not be planed.

SECTION 26. ANCHOR BOLTS.

(a) **Anchor Bolts.**

Anchor bolts shall be designed to provide resistance to all conditions of tension and shear at the bases of columns, including the tensile components of any bending moments which may result from fixation or partial fixation of columns.
SECTION 27. WORKMANSHIP.

(a) General.
All workmanship shall be equal to the best practice in modern structural shops.

(b) Straightening.
All material shall be clean and straight. If straightening or flattening is necessary, it shall be done by a process and in a manner that will not injure the material. Sharp kinks or bends shall be cause for rejection.

(c) Heating.
Rolled sections, except for minor details, shall preferably not be heated or, if heated, shall be annealed, but this restriction does not apply to gas cutting, Section 27 (m).

(d) Holes.
Holes for rivets or unfinished bolts shall be $\frac{3}{6}$ inch larger than the nominal diameter of the rivet or bolt. If the thickness of the material is not greater than the nominal diameter of the rivet or bolt plus $\frac{1}{6}$ inch, the holes may be punched. If the thickness of the material is greater than the nominal diameter of the rivet or bolt plus $\frac{1}{6}$ inch, the holes shall be either drilled from the solid, or sub-punched and reamed. The die for all sub-punched holes, and the drill for all sub-drilled holes, shall be $\frac{3}{6}$ inch smaller than the nominal diameter of the rivet or bolt.

Holes for turned bolts shall be 1/50 inch larger than the external diameter of the bolt. If the bolts are to be inserted in the shop, the holes may be either drilled from the solid, or sub-punched and reamed. If the bolts are to be inserted in the field, the holes shall be sub-punched in the shop and reamed in the field. All drilling or reaming for turned bolts shall be done after the parts to be connected are assembled.

Drifting to enlarge unfair holes shall not be permitted. Holes that must be enlarged to admit the rivets shall be reamed. Poor matching of holes shall be cause for rejection.

(e) Planing.
Planing or finishing of sheared plates or shapes will not be required unless specifically called for on the drawings.

(f) Assembling.
All parts of riveted members shall be well pinned or bolted and rigidly held together while riveting. Drifting done during assembling shall not distort the metal or enlarge the holes.

(g) Riveting.
All rivets are to be power-driven hot. Rivets driven by pneumatically or electrically operated hammers are considered power-driven. Standard rivet heads shall be of approximately hemispherical shape and of uniform size throughout the work for the same size rivet, full, neatly finished, and concentric with the holes. Rivets, after driving, shall be tight, completely filling the holes, and with heads in full contact with the surface. Rivets shall be heated uniformly to a temperature not exceeding 1950° F.; they shall not be driven after their temperature is below 1000° F.

Loose, burned, or otherwise defective rivets shall be replaced.
(h) **Finishing.**
Compression joints depending upon contact bearing shall have the bearing surfaces truly machined to a common plane after the members are riveted. All other joints shall be cut straight.

(i) **Lacing Bars.**
The ends of lacing bars shall be neat and free from burrs.

(j) **Tolerances.**
Finished members shall be true to line and free from twists, bends, and open joints.

Compression members may have a lateral variation not greater than 1/1000 of the axial length between points which are to be laterally supported.

A variation of $\frac{1}{10}$ inch is permissible in the overall length of members with both ends milled.

Members without milled ends which are to be framed to other steel parts of the structure may have a variation from the detailed length not greater than $\frac{1}{8}$ inch for members 30 feet or less in length, and not greater than $\frac{3}{16}$ inch for members over 30 feet in length.

(k) **Castings.**
All steel castings shall be annealed.

(m) **Gas Cutting.**
The use of a cutting torch is permissible if the metal being cut is not carrying stresses during the operation. To determine the effective width of members so cut, $\frac{1}{4}$ inch shall be deducted from each gas cut edge. The radius of re-entrant gas cut fillets shall be as large as practicable, but never less than 1 inch.

SECTION 28. SHOP PAINTING.

(a) **Shop Coat.**
Before leaving the shop, all steel work shall be thoroughly cleaned, by effective means, of all loose mill scale, rust and foreign matter. Except where encased in concrete, all steel work shall be given one coat of approved metal protection, applied thoroughly and evenly and well worked into the joints and other open spaces. All paint shall be applied to dry surfaces.

(b) **Inaccessible Parts.**
Parts inaccessible after assembly shall be given two coats of shop paint, preferably of different colors.

(c) **Contact Surfaces.**
Contact surfaces shall be cleaned, by effective means, before assembly, but not painted.

(d) **Finished Surfaces.**
Machine finished surfaces shall be protected against corrosion by a suitable coating.
PART VII. ERECTION

SECTION 29. ERECTION.

(a) Bracing.
The frame of all steel skeleton buildings shall be carried up true and plumb, and temporary bracing shall be introduced wherever necessary to take care of all loads to which the structure may be subjected, including erection equipment, and the operation of same. Such bracing shall be left in place as long as may be required for safety.

(b) Bolting Up.
As erection progresses the work shall be securely bolted up to take care of all dead load, wind and erection stresses.

(c) Erection Stresses.
Wherever piles of material, erection equipment or other loads are carried during erection, proper provision shall be made to take care of stresses resulting from the same.

(d) Alignment.
No riveting shall be done until the structure has been properly aligned.

(e) Riveting.
Rivets driven in the field shall be heated and driven with the same care as those driven in the shop.

(f) Turned Bolts.
Holes for turned bolts to be inserted in the field shall be reamed in the field as specified in Section 27 (d).

(g) Field Painting.
All field rivets and bolts, also all serious abrasions to the shop coat, shall be spot painted with the material used for the shop coat, or an equivalent, and all mud and other firmly attached and objectionable foreign materials shall be removed, before general field painting.
Responsibility for this touch-up and cleaning, as well as for general field painting, shall be allocated in accordance with accepted local practices and this allocation shall be set forth explicitly in the contract.

PART VIII. INSPECTION

SECTION 30. INSPECTION.

(a) General.
Material and workmanship at all times shall be subject to the inspection of experienced engineers representing the purchaser.

(b) Cooperation.
All inspection as far as possible shall be made at the place of manufacture, and the Contractor or Manufacturer shall cooperate with the Inspector, permitting access for inspection to all places where work is being done.

(c) Rejections.
Material or workmanship not conforming to the provisions of this Specification may be rejected at any time defects are found during the progress of the work.