GBT-Based Structural Analysis of Elastic-Plastic Thin-Walled Members

Structural systems made of high-strength and/or high-ductility metals are usually also rather slender, which means that their structural behavior and ultimate strength are often governed by a combination of plasticity and instability effects. Currently, the rigorous numerical analysis of such systems can only be achieved by resorting to complex and computationally costly shell finite element simulations. This work aims at supplying to designers/researchers an efficient and structurally clarifying alternative to assess the geometrically and/or materially non-linear behavior (up to and beyond the ultimate load) of prismatic thin-walled members, such as those built from cold-formed steel. The proposed approach is based on Generalized Beam Theory (GBT) and is suitable for members exhibiting arbitrary deformation patterns (e.g., global, local, distortional, shear) and made of non-linear isotropic materials (e.g., carbon/stainless steel grades or aluminum alloys). The paper begins by providing a critical overview of the physically and geometrically non-linear GBT formulation recently developed and validated by the authors (Abambres et al. 2012a), which is followed by the presentation and thorough discussion of several illustrative numerical results concerning the structural responses of 4 members (beams and columns) made of distinct (linear, bi-linear or highly non-linear) materials. The GBT results consist of equilibrium paths, modal participation diagrams and amplitude functions, stress contours, displacement profiles and collapse mechanisms  some of them are compared with values obtained from ABAQUS shell finite element analyses. It is shown that the GBT modal nature makes it possible (i) to acquire in-depth knowledge on the member behavioral mechanics at any given equilibrium state (elastic or elastic-plastic), as well as (ii) to provide evidence of the GBT computational efficiency, which is achieved by excluding from the analyses all the deformation modes that do not play any role in a particular member structural response. 

  • Date: 4/16/2013 - 4/20/2013


Abambres, M., Camotim, D., and N. Silvestre; Technical University of Lisbon; Lisbon, Portugal

View content